
Cogent C API and Utilities

Version 7.2

Cogent Real-Time Systems, Inc.

September 16, 2010

Cogent C API and Utilities: Version 7.2

The Application Program Interface and several utilities used by the Cogent tools.

Published September 16, 2010
Cogent Real-Time Systems, Inc.

162 Guelph Street, Suite 253
Georgetown, Ontario
Canada, L7G 5X7

Toll Free: 1 (888) 628-2028
Tel: 1 (905) 702-7851
Fax: 1 (905) 702-7850

Information Email: info@cogent.ca
Tech Support Email: support@cogent.ca
Web Site: www.cogent.ca

Copyright © 1995-2011 by Cogent Real-Time Systems, Inc.

Revision History

Revision 7.2-1 September 2007
Updated to maintain compatibility with Windows DataHubs.

Revision 6.2-1 February 2005
Removed synchronous TCP functions.

Revision 5.0-1 August 2004
Compatible with Cascade DataHub and Cascade Connect Version 5.0.

Revision 4.1-1 September 2002
Added Cascade Historian reference entries.

Revision 4.0-2 October 2001
Added function reference entries.

Revision 4.0-1 September 2001
Source code compatible across QNX 4, QNX 6, and Linux.

Revision 3.0-1 September 2000
Initial release of documentation.

Copyright, trademark, and software license information.

Copyright Notice

© 1995-2011 Cogent Real-Time Systems, Inc. All rights reserved.

Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form or by

any means, electronic or mechanical, for any purpose, without the express written consent of Cogent Real-Time Systems, Inc.

Cogent Real-Time Systems, Inc. assumes no responsibility for any errors or omissions, nor do we assume liability for damages resulting from the

use of the information contained in this document.

Trademark Notice

Cascade DataHub, Cascade Connect, Cascade DataSim, Connect Server, Cascade Historian, Cascade TextLogger, Cascade NameServer, Cascade

QueueServer, RightSeat, SCADALisp and Gamma are trademarks of Cogent Real-Time Systems, Inc.

All other company and product names are trademarks or registered trademarks of their respective holders.

END-USER LICENSE AGREEMENT FOR COGENT SOFTWARE

IMPORTANT - READ CAREFULLY: This End-User License Agreement ("EULA") is a legal agreement between you (either an individual or a

single entity) and Cogent Real-Time Systems Inc. ("Cogent") of 162 Guelph Street, Suite 253, Georgetown, Ontario, L7G 5X7, Canada (Tel:

905-702-7851, Fax: 905-702-7850), from whom you acquired the Cogent software product(s) ("SOFTWARE PRODUCT" or "SOFTWARE"),

either directly from Cogent or through one of Cogent’s authorized resellers.

The SOFTWARE PRODUCT includes computer software, any associated media, any printed materials, and any "online" or electronic

documentation. By installing, copying or otherwise using the SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA. If you

do not agree with the terms of this EULA, Cogent is unwilling to license the SOFTWARE PRODUCT to you. In such event, you may not use or

copy the SOFTWARE PRODUCT, and you should promptly contact Cogent for instructions on return of the unused product(s) for a refund.

SOFTWARE PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by copyright laws and copyright treaties, as well as other intellectual property laws and treaties. The

SOFTWARE PRODUCT is licensed, not sold.

1. EVALUATION USE: This software is distributed as "Free for Evaluation", and with a per-use royalty for Commercial Use, where "Free for

Evaluation" means to evaluate Cogent’s software and to do exploratory development and "proof of concept" prototyping of software

applications, and where "Free for Evaluation" specifically excludes without limitation:

i. use of the SOFTWARE PRODUCT in a business setting or in support of a business activity,

ii. development of a system to be used for commercial gain, whether to be sold or to be used within a company, partnership, organization

or entity that transacts commercial business,

iii. the use of the SOFTWARE PRODUCT in a commercial business for any reason other than exploratory development and "proof of

concept" prototyping, even if the SOFTWARE PRODUCT is not incorporated into an application or product to be sold,

iv. the use of the SOFTWARE PRODUCT to enable the use of another application that was developed with the SOFTWARE PRODUCT,

v. inclusion of the SOFTWARE PRODUCT in a collection of software, whether that collection is sold, given away, or made part of a

larger collection.

vi. inclusion of the SOFTWARE PRODUCT in another product, whether or not that other product is sold, given away, or made part of a

larger product.

2. COMMERCIAL USE: COMMERCIAL USE is any use that is not specifically defined in this license as EVALUATION USE.

3. GRANT OF LICENSE: This EULA covers both COMMERCIAL and EVALUATION USE of the SOFTWARE PRODUCT. Either clause

(A) or (B) of this section will apply to you, depending on your actual use of the SOFTWARE PRODUCT. If you have not purchased a

license of the SOFTWARE PRODUCT from Cogent or one of Cogent’s authorized resellers, then you may not use the product for

COMMERCIAL USE.

A. GRANT OF LICENSE (EVALUATION USE): This EULA grants you the following non-exclusive rights when used for

EVALUATION purposes:

Software: You may use the SOFTWARE PRODUCT on any number of computers, either stand-alone, or on a network, so long as

every use of the SOFTWARE PRODUCT is for EVALUATION USE. You may reproduce the SOFTWARE PRODUCT, but only as

reasonably required to install and use it in accordance with this LICENSE or to follow your normal back-up practices.

Subject to the license expressly granted above, you obtain no right, title or interest in or to the SOFTWARE PRODUCT or related

documentation, including but not limited to any copyright, patent, trade secret or other proprietary rights therein. All whole or partial

copies of the SOFTWARE PRODUCT remain property of Cogent and will be considered part of the SOFTWARE PRODUCT for the

purpose of this EULA.

Unless expressly permitted under this EULA or otherwise by Cogent, you will not:

i. use, reproduce, modify, adapt, translate or otherwise transmit the SOFTWARE PRODUCT or related components, in whole or in

part;

ii. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

iii. alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;

iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;

v. use a multi-processor version of the SOFTWARE PRODUCT in a network larger than that for which you have paid the

corresponding multi-processor fees;

vi. decompile, disassemble or otherwise attempt or assist others to reverse engineer the SOFTWARE PRODUCT;

vii. circumvent, disable or otherwise render ineffective any demonstration time-outs, locks on functionality or any other restrictions

on use in the SOFTWARE PRODUCT;

viii. circumvent, disable or otherwise render ineffective any license verification mechanisms used by the SOFTWARE PRODUCT;

ix. use the SOFTWARE PRODUCT in any application that is intended to create or could, in the event of malfunction or failure,

cause personal injury or property damage; or

x. make use of the SOFTWARE PRODUCT for commercial gain, whether directly, indirectly or incidentally.

B. GRANT OF LICENSE (COMMERCIAL USE): This EULA grants you the following non-exclusive rights when used for

COMMERCIAL purposes:

Software: You may use the SOFTWARE PRODUCT on one computer, or if the SOFTWARE PRODUCT is a multi-processor version -

on one node of a network, either: (i) as a development systems for the purpose of creating value-added software applications in

accordance with related Cogent documentation; or (ii) as a single run-time copy for use as an integral part of such an application. This

includes reproduction and configuration of the SOFTWARE PRODUCT, but only as reasonably required to install and use it in

association with your licensed processor or to follow your normal back-up practices.

Storage/Network Use: You may also store or install a copy of the SOFTWARE PRODUCT on one computer to allow your other

computers to use the SOFTWARE PRODUCT over an internal network, and distribute the SOFTWARE PRODUCT to your other

computers over an internal network. However, you must acquire and dedicate a license for the SOFTWARE PRODUCT for each

computer on which the SOFTWARE PRODUCT is used or to which it is distributed. A license for the SOFTWARE PRODUCT may

not be shared or used concurrently on different computers.

Subject to the license expressly granted above, you obtain no right, title or interest in or to the SOFTWARE PRODUCT or related

documentation, including but not limited to any copyright, patent, trade secret or other proprietary rights therein. All whole or partial

copies of the SOFTWARE PRODUCT remain property of Cogent and will be considered part of the SOFTWARE PRODUCT for the

purpose of this EULA.

Unless expressly permitted under this EULA or otherwise by Cogent, you will not:

i. use, reproduce, modify, adapt, translate or otherwise transmit the SOFTWARE PRODUCT or related components, in whole or in

part;

ii. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

iii. alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;

iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;

v. use a multi-processor version of the SOFTWARE PRODUCT in a network larger than that for which you have paid the

corresponding multi-processor fees;

vi. decompile, disassemble or otherwise attempt or assist others to reverse engineer the SOFTWARE PRODUCT;

vii. circumvent, disable or otherwise render ineffective any demonstration time-outs, locks on functionality or any other restrictions

on use in the SOFTWARE PRODUCT;

viii. circumvent, disable or otherwise render ineffective any license verification mechanisms used by the SOFTWARE PRODUCT, or

ix. use the SOFTWARE PRODUCT in any application that is intended to create or could, in the event of malfunction or failure,

cause personal injury or property damage.

4. WARRANTY: Cogent cannot warrant that the SOFTWARE PRODUCT will function in accordance with related documentation in every

combination of hardware platform, software environment and SOFTWARE PRODUCT configuration. You acknowledge that software bugs

are likely to be identified when the SOFTWARE PRODUCT is used in your particular application. You therefore accept the responsibility of

satisfying yourself that the SOFTWARE PRODUCT is suitable for your intended use. This includes conducting exhaustive testing of your

application prior to its initial release and prior to the release of any related hardware or software modifications or enhancements.

Subject to documentation errors, Cogent warrants to you for a period of ninety (90) days from acceptance of this EULA (as provided above)

that the SOFTWARE PRODUCT as delivered by Cogent is capable of performing the functions described in related Cogent user

documentation when used on appropriate hardware. Cogent also warrants that any enclosed disk(s) will be free from defects in material and

workmanship under normal use for a period of ninety (90) days from acceptance of this EULA. Cogent is not responsible for disk defects

that result from accident or abuse. Your sole remedy for any breach of warranty will be either: i) terminate this EULA and receive a refund

of any amount paid to Cogent for the SOFTWARE PRODUCT, or ii) to receive a replacement disk.

5. LIMITATIONS: Except as expressly warranted above, the SOFTWARE PRODUCT, any related documentation and disks are provided "as

is" without other warranties or conditions of any kind, including but not limited to implied warranties of merchantability, fitness for a

particular purpose and non-infringement. You assume the entire risk as to the results and performance of the SOFTWARE PRODUCT.

Nothing stated in this EULA will imply that the operation of the SOFTWARE PRODUCT will be uninterrupted or error free or that any

errors will be corrected. Other written or oral statements by Cogent, its representatives or others do not constitute warranties or conditions of

Cogent.

In no event will Cogent (or its officers, employees, suppliers, distributors, or licensors: collectively "Its Representatives") be liable to you for

any indirect, incidental, special or consequential damages whatsoever, including but not limited to loss of revenue, lost or damaged data or

other commercial or economic loss, arising out of any breach of this EULA, any use or inability to use the SOFTWARE PRODUCT or any

claim made by a third party, even if Cogent (or Its Representatives) have been advised of the possibility of such damage or claim. In no event

will the aggregate liability of Cogent (or that of Its Representatives) for any damages or claim, whether in contract, tort or otherwise, exceed

the amount paid by you for the SOFTWARE PRODUCT.

These limitations shall apply whether or not the alleged breach or default is a breach of a fundamental condition or term, or a fundamental

breach. Some jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, or certain limitations

of implied warranties. Therefore the above limitation may not apply to you.

6. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS:

Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be separated for use

on more than one computer.

Termination. Without prejudice to any other rights, Cogent may terminate this EULA if you fail to comply with the terms and conditions of

this EULA. In such an event, you must destroy all copies of the SOFTWARE PRODUCT and all of its component parts.

7. UPGRADES: If the SOFTWARE PRODUCT is an upgrade from another product, whether from Cogent or another supplier, you may use or

transfer the SOFTWARE PRODUCT only in conjunction with that upgrade product, unless you destroy the upgraded product. If the

SOFTWARE PRODUCT is an upgrade of a Cogent product, you now may use that upgraded product only in accordance with this EULA. If

the SOFTWARE PRODUCT is an upgrade of a component of a package of software programs which you licensed as a single product, the

SOFTWARE PRODUCT may be used and transferred only as part of that single product package and may not be separated for use on more

than one computer.

8. COPYRIGHT: All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images, photographs,

animations, video, audio, music, text and ’applets", incorporated into the SOFTWARE PRODUCT), any accompanying printed material, and

any copies of the SOFTWARE PRODUCT, are owned by Cogent or its suppliers. You may not copy the printed materials accompanying the

SOFTWARE PRODUCT. All rights not specifically granted under this EULA are reserved by Cogent.

9. PRODUCT SUPPORT:Cogent has no obligation under this EULA to provide maintenance, support or training.

10.RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as provided in DFARS

227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (OCT 1988), FAR 12.212(a)(1995), FAR 52.227-19, or FAR

52.227-14 (ALT III), as appropriate. Manufacturer is Cogent Real-Time Systems Inc. 162 Guelph Street, Suite 253, Georgetown, Ontario,

L7G 5X7, Canada.

11.GOVERNING LAW: This Software License Agreement is governed by the laws of the Province of Ontario, Canada. You irrevocably attorn

to the jurisdiction of the courts of the Province of Ontario and agree to commence any litigation that may arise hereunder in the courts

located in the Judicial District of Peel, Province of Ontario.

Table of Contents
I. Programmers Manual.. xiii

1. Introduction..1
1.1. When to use the different Cogent APIs...1
1.2. Function Naming Conventions..2
1.3. System Requirements..2
1.4. Download and Installation...2

1.4.1. QNX 4...??
1.4.2. QNX 6...??
1.4.3. Linux...??
1.4.4. Installed file locations...??
1.4.5. Installing licenses..??

1.5. Cogent Product Integration..4
1.6. Where can I get help?..4

2. Point Structure, Storage, and Manipulation...6
2.1. Creating Points..6
2.2. Maintaining a Point Hash Table..6
2.3. Accessing and Copying Point Values..7
2.4. Memory Allocation and String Values..7

3. Interprocess Communication...8
3.1. Connections and Channels..8
3.2. Task Structure Caching..8
3.3. Messages..8
3.4. Cascade NameServer Functions..9
3.5. Photon Functions...10
3.6. Pulses and Timers..10
3.7. Cascade QueueServer Functions...10
3.8. Receiving Messages and Events..11
3.9. Replying to Messages..11
3.10. Sending Messages...11
3.11. Task Structures..12
3.12. Working with TCP/IP..12

4. The Cascade NameServer..13
4.1. Domains...13
4.2. Locating Other Tasks on the Network...13
4.3. Task Started and Stopped Messages..14

5. Communicating with the Cascade DataHub..15
5.1. Exceptions...15
5.2. Echoes..15
5.3. Non-Existent Cascade DataHub Points...15
5.4. Parsing Point Messages...15
5.5. Optimizing Throughput...16
5.6. Point Size Limit...16
5.7. Cascade DataHub API Code Examples...17

5.7.1. Reading from the Cascade DataHub...17
5.7.2. Writing data to the Cascade DataHub...20
5.7.3. Registering for exceptions from the Cascade DataHub......................................24
5.7.4. A sample makefile definition..29

6. The Cascade Historian...30
6.1. Command/Function Correspondence..30
6.2. Binary Data Buffer Functions..31

vii

7. Cogent Driver Specifications...32
7.1. Cogent Driver Functions...32
7.2. Hilscher Fieldbus CIF Card...32

7.2.1. I/O Block Functions..32
7.2.2. Control Block Functions...32
7.2.3. Status Block Functions...33

A. GNU General Public License..35
B. GNU Lesser General Public License...41

II. Reference...49

I. Utilities ...50
lsend, gsend...51
nsnames...53
nserve...55
qserve...57

II. Data Types...58
HI_stVALUE ..59
PT_stCPOINT ..60
PT_TYPE, PT_uVALUE..61
ST_STATUS...62

III. Cascade DataHub Functions..63
DH_AppendString ..64
DH_CreatePoint ...65
DH_FindPointAddress ...66
DH_FormatPoint ...67
DH_ParsePointMsg ..69
DH_ParsePointString ...71
DH_PointAdd , DH_PointDivide , DH_PointMultiply ..73
DH_ReadPoint , DH_ReadExistingPoint ...75
DH_RegisterAllPoints ..77
DH_RegisterPoint , DH_RegisterExistingPoint ..78
DH_SendPointMessage ...80
DH_SetLock , DH_SetSecurity ...81
DH_SetReceiveFormat ...82
DH_SetTransmitFormat ..84
DH_UnregisterPoint ...85
DH_WritePoint , DH_WriteExistingPoint , DH_WriteExistingPoints86

IV. Cogent Driver Functions..88
DR_ApCloseIPC ...89
DR_ApCommand...90
DR_ApConnectIPC ..91
DR_ApDescribeBuffer ...92
DR_ApDescribePnt ..94
DR_ApInitIPC ...96
DR_ApListBuffers ..97
DR_ApListPoints ..99
DR_ApPointBufAddress ..101
DR_ApReadBlock ...103
DR_ApReadControl ..105
DR_ApReadPoint ...107
DR_ApReadStatus ..109
DR_ApUpdateBuffers ...111

viii

DR_ApWriteBlock ..112
DR_ApWriteControl ...114
DR_ApWritePoint ..116

V. Cascade Historian Functions...117
HI_Add ..118
HI_BufferIDDestroy ...120
HI_BufferIDLength ...121
HI_BufferIDRead ..122
HI_Bufsize ..124
HI_ClipBuffer ...126
HI_Count ...127
HI_Deadband ..128
HI_Delete ...131
HI_Describe ..132
HI_Disable ..134
HI_Earliest ..135
HI_Enable ...136
HI_ExchangeBuffer ...137
HI_FileBase ..138
HI_Flush ...140
HI_GapCountBuffer ...141
HI_GapFillBuffer ..142
HI_History ..143
HI_Interpolate ...145
HI_InterpolateData ...148
HI_Latest ...150
HI_Length ...151
HI_List ...152
HI_ScaleBuffer ...154
HI_StatBuffer ...155
HI_Register ..156
HI_Unregister ...157
HI_Version ..158

VI. Inter-Process Communication Functions...159
IP_AddFDHandler ..162
IP_AttachPhoton ..163
IP_AttachPhotonMainloop ...164
IP_ConnectToPort ..165
IP_ConnectToService ...166
IP_DetachPhotonMainloop ...167
IP_GetChannelID ..168
IP_GetConnectionID ...169
IP_IsPulse ..170
IP_ListenToPort ..171
IP_ListenToService ...172
IP_MsgCascade ...173
IP_MsgCreate ...174
IP_MsgData ..175
IP_MsgDefaultSize ...176
IP_MsgDestroy ...177
IP_MsgInfoReply ..178

ix

IP_MsgInfoReplyRaw ...179
IP_MsgLisp ..180
IP_MsgRaw...181
IP_MsgRawData ...182
IP_MsgResize ...183
IP_NserveAdd ...184
IP_NserveClose ...185
IP_NserveInit ...186
IP_NserveInitMyself ...187
IP_NserveLookup ..188
IP_NserveLookupId ...189
IP_NserveLookupName ...190
IP_NservePackTaskInfo ..191
IP_NserveQueryNameCount ...193
IP_NserveQueryNames ...194
IP_NserveReattach ...195
IP_NserveRemove ..196
IP_NserveSetDomain ...197
IP_pfTaskComp ...198
IP_PhotonGUIFilter ...199
IP_PhotonGUIHandler ...200
IP_ProcessMessage ...201
IP_PulseDestroy ..202
IP_PulseNew ..203
IP_PulseTimed ...204
IP_PulseTrigger ..205
IP_QueueClose ...206
IP_QueueOpen ...207
IP_QueueRead ...208
IP_QueueStrerror ..209
IP_QueueWait ...210
IP_QueueWrite ...212
IP_Receive ..213
IP_ReceiveNonblock ...215
IP_RemoveFDHandler ...216
IP_Reply ...217
IP_ReplyRaw ..218
IP_SelectFD ..219
IP_SetChannelID ..220
IP_SetConnectionID ...221
IP_SetGUIHandler ..222
IP_TaskCloseAsync ...223
IP_TaskCloseSync ..224
IP_TaskConnect ...225
IP_TaskCopy ..226
IP_TaskCreate ...227
IP_TaskCreateMe ..228
IP_TaskDefaultDomain ..229
IP_TaskDestroy ...230
IP_TaskFindID ...231
IP_TaskFindName ..232

x

IP_TaskInitAsync ..233
IP_TaskInitAsyncWrites ...234
IP_TaskIntern ...235
IP_TaskNew ..236
IP_TaskSendAsync ..237
IP_TaskSendRaw ...238
IP_TaskSendSync ..239
IP_TaskSetDomain ..240
IP_TaskSetInfo ...241
IP_TaskSetQname ..243
IP_TaskUnintern ..244
IP_TaskWaitAsync ..245
IP_TaskZero ..246
IP_TimerTime ...247
IP_UnselectFD ...248

VII. Cascade TextLogger Functions..249
LG_Cache ...250
LG_Collect ..252
LG_Disable ..254
LG_Empty ...255
LG_Enable ...256
LG_Exit ...257
LG_Fall ...258
LG_File ...260
LG_Flush ...262
LG_Group ...263
LG_Log ..264
LG_Output ...265
LG_Time ...266
LG_Timestamp ...268
LG_Tolerance ...270
LG_UseGMT...271

VIII. Point Manipulation Functions...272
PT_FindCPoint ...273
PT_InitClient ...274
PT_NewCPoint ...275
PT_PointCopyValue ...276
PT_PointFormat ...277
PT_PointInt ..278
PT_PointReal ...279
PT_PointString ...280

Index..??

Colophon...284

xi

List of Tables
6-1. Cascade Historian Commands and Functions..??
6-2. Cascade Historian Binary Data Buffer Functions..??

xii

I. Programmers Manual
Table of Contents

1. Introduction ..1

2. Point Structure, Storage, and Manipulation...6

3. Interprocess Communication..8

4. The Cascade NameServer...13

5. Communicating with the Cascade DataHub...15

6. The Cascade Historian..30

7. Cogent Driver Specifications..32

A. GNU General Public License...35

B. GNU Lesser General Public License...41

Chapter 1. Introduction
The Cogent C API is an easy-to-use set of functions that fall into five main categories:

• Point structure, storage, and manipulation.

• Inter-process communication (synchronous and asynchronous).

• Global name server registration and lookup.

• Cascade DataHub reading, writing and exception reporting.

• Device driver control.

The Cogent Utilities are used by several Cogent products, primarily to facilitate inter-process
communication.

To use the Cogent C API, you should be familiar with C programming.

1.1. When to use the different Cogent APIs
There are four Cogent APIs, grouped as:

• DataHub APIs for C++, Java, and .NET

• Cogent C API

The Cogent C API
This API lets you write high-speed clients that can interact with the Cascade DataHub, Cascade
Historian, Cascade TextLogger, CIF Driver, DVN Driver, PFB Driver, and Gamma. It works in Linux,
QNX 6, and QNX 4. Interprocess communication relies on Send/Receive/Reply message passing. In
Linux, this is supported by Cogent’s SRR Module. In QNX, this is supported by QNX’s own
Send/Receive/Reply protocol.

The DataHub APIs for C++, Java, and .NET
These three APIs share, as much as possible, common methods and syntax. For this reason they are
distributed in one package and documented in a single book.

• The DataHub API for C++ lets you write programs in C++ that connect to the DataHub over TCP,
namely LAN, WAN, or the Internet.

• The DataHub API for Java lets you write programs in Java that connect to the DataHub over TCP,
namely LAN, WAN, or the Internet. In addition, it lets you create web browser applications that
receive and display live data from the DataHub.

• The DataHub API for .NET lets you write programs in .NET that connect to the DataHub over TCP,
namely LAN, WAN, or the Internet. This API is implemented in C#, but can be used with any .NET
language.

The following table shows the availability and support for these APIs in Windows, Linux, and QNX:

Language Windows Linux QNX 6 QNX 4

C++ supported unsupported unsupported unsupported

1

Chapter 1. Introduction

Language Windows Linux QNX 6 QNX 4

Java supported unsupported unsupported not available

.NET supported may be available using
Mono

not available not available

For more information on these APIs, please refer to the DataHub APIs for C++, Java, and .NET
manual.

1.2. Function Naming Conventions
The naming convention in these libraries consists of a two-letter package identifier followed by an
underscore and a function name in which each word is capitalized. There are no separators between
words within the function name.

• DHstands for the Cascade DataHub.

• DRstands for the CIF Driver.

• HI stands for the Cascade Historian.

• IP stands for Inter-Process communication.

• PT stands for Cascade DataHub points, and also for their data types.

1.3. System Requirements

QNX 6
• QNX 6.1.0 or later.

• GNU C.

QNX 4
• QNX 4.23A or later.

• Watcom C 10.6.

Linux
• Linux 2.4 or later.

• The GNU C compiler (GCC).

• The SRR IPC kernel module, which includes a synchronous message passing library modeled on the
QNX 4 send/receive/reply message-passing API. This module installs automatically, but requires a C
compiler for the installation. You can get more information and/or download this module at the Cogent
Web Site.

2

Chapter 1. Introduction

1.4. Download and Installation
You can download the Cogent C API from the Cogent Web Site, and then follow these instructions for
installing it on your system.

Cogent software comes packaged in self-installing archives available for download, or on diskette for
commerically-licensed packages. Each software package name, which we refer to in these instructions as
software_package_name , contains the product name, version number, operating system and
sometimes other information, and will end with either.sh.gz or .qpr . For example,
gamma-4.0-bin-48-Linux.sh.gz or CascDataHub-4.0-bld10-x86-Cogent.qpr are
typical package names. The installation procedure is standardized across Cogent products, but depends
on the operating system.

1.4.1. QNX 4

Option A: Install the archive from diskette.

1. Log in as root.

2. Insert the program diskette into your QNX 4 computer.

3. Type the command:install

and respond to the system prompts.

Option B: Install the archive from a download or received as an e-file.

1. Download or copy thesoftware_package_name .sh.gz file onto your QNX 4 computer.

2. Log in as root.

3. Type the command:gunzip software_package_name .sh.gz

This unzips the software package, and removes the.gz extension from the end of the filename.

4. Type the command:sh software_package_name .sh

and respond to the system prompts.

If you get an error trying to install the.sh archive in QNX, please read the Installing
program archives in QNX section of the Glossary, FAQ and Troubleshooting for help.

1.4.2. QNX 6

Option A: Use the QNX 6 Installer program. The Cogent repository is located at
http://developers.cogentrts.com/repository.

Option B: Download thesoftware_package_name .qpr file using the QNX 6 Voyager browser.
The archive will install automatically.

Option C: Download or copy from diskette thesoftware_package_name .qpr file onto your
QNX 6 computer. Then (as root) run the command:

qnxinstall software_package_name .qpr

and respond to the system prompts.

1.4.3. Linux

First make sure the SRR kernel module is installed. If not, it is downloadable from the SRR for Linux
page of the Cogent web site. Then follow these instructions to install the software package:

3

Chapter 1. Introduction

1. Download or copy from diskette thesoftware_package_name .sh.gz file onto your Linux
computer.

2. Log in as root.

3. Type the command:gunzip software_package_name .sh.gz

This unzips the software package, and removes the.gz extension from the end of the filename.

4. Type the command:sh software_package_name .sh

and respond to the system prompts.

1.4.4. Installed file locations

On whichever OS the software is installed, all files will be written to the/usr/cogent/ directory.
Depending on which packages are installed, the following subdirectories will contain the types of files
shown:

bin/ Binary executables.

dll/ Dynamically-linked libraries.

docs/ Miscellaneous documentation. (Regular documentation is downloaded separately.)

include/ Header files.

lib/ Cogent library files.

license The license file (see below).

require/ Lisp or Gamma files used by Gamma or its extensions.

src/ The source code for examples, tests, tutorials, etc.

1.4.5. Installing licenses

Licenses to use the software can be purchased from Cogent. To install a license, you need to copy the
license string into the/usr/cogent/license file. If this file does not exist on your system, just
create one as a text file and list the license strings, one per line.

If a license is not installed, you will see the following console message on startup:

software_package_name : No valid licenses found.
This program is running in demo mode and will terminate after 1 hour.

and the software will run for one hour in demo mode.

1.5. Cogent Product Integration
Cogent products work together to support real-time data connectivity in Windows, Linux, and QNX.
They can be dynamically integrated as a group of modules where each module connects to any other
module(s) as needed. New modules can be added and existing modules reconfigured or modified, all
during run-time. Data in any module of the system can be collected and redistributed to any other module
via the Cascade DataHub and Cascade Connect. Communication with field devices is provided by one of
several Cogent Device Drivers. Historical records of unlimited size can be maintained and queried with
the Cascade Historian, and ASCII text files can be logged with the Cascade TextLogger.

Custom programs written in C or C++ can interface with the system, using the Cogent C API or the
DataHub APIs for C++, Java, and .NET. In addition, Cogent’s own dynamically-typed object-oriented
programming language, Gamma, is fully compatible with all modules. User interfaces can be created in
Gamma, which supports Photon in QNX and GTK in Linux.

4

Chapter 1. Introduction

1.6. Where can I get help?
If you are having problems with a Cogent product, first check the Troubleshooting Guide. If you can’t
find the answer there, you can contact Cogent Real-Time Systems, Inc. for technical support for any
product you have purchased.

• Email: <support@cogent.ca >

• Phone: 1-888-628-2028

• Fax: (905) 702-7850

5

Chapter 2. Point Structure, Storage, and
Manipulation

The Cascade DataHub represents points given the following properties:

• Point type: One of integer, floating point, or character string.

• Point value: Based on the point type.

• Confidence factor: 0 - 100 percent, unused by most applications.

• Name: The character string representing the point name.

• Locked: 0 for locked, or1 for unlocked.

• Security: 0 to 32768 , where higher numbers represent higher security.

• Address: An internal pointer carrying the DataHub address where the point was last found.

• User Data: A void pointer which can be used to store user-defined data with a point structure. In
addition, the Cascade DataHub uses other point attributes internally, which are not available to the
user. These deal with the clients who have registered for exceptions, and the necessary flags to ensure
that all clients receive the latest values for all points, regardless of communication link speed.

The Cascade DataHub point structure is calledPT_stCPOINT , and a convenience pointer to the
structure type is calledPT_pCPOINT. The Cogent C API provides a number of functions for
manipulating thePT_stCPOINT structures.

2.1. Creating Points
There are two ways to "create" a new data point: create a new point structure, or change thename of an
existing point structure.

Creating a point structure is done either by creating a local variable of typePT_stCPOINT , or by
allocating it on the heap (throughmalloc). The functionPT_NewCPoint will allocate a point on the
heap, and initialize all of its internal values to sensible numbers. This function is useful when you would
like to maintain all of the point definitions internally to your program, and would like to manage the
storage and lookup of these points yourself. ThePT_FindCPoint function will automatically call
PT_NewCPoint if it attempts to look up a point that does not currently exist in your application.

Changing thename of a point (or PT_stCPOINT structure) means changing the value of thename
field. When doing this, theaddress field must be set to0.

Zeroing an entire point structue (ie. setting all field values to0) for points of type
PT_TYPE_STRINGwill create a memory leak.

2.2. Maintaining a Point Hash Table
The Cogent third-party library provides a mechanism for internally managing DataHub point information
within your own program. This mechanism uses a hash table based on the name of the point. The
hashing function uses binary search in order to resolve collisions within the hash table. The maximum
length of the ordered array is 32000 points, and the length of the hash table is 256 entries. This places a
limit of 32000 points per hash entry and 8192000 total points in the table. At the time of this writing, the
hashing function uses a first-character lookup on the point name, meaning that the hash table preserves
alphabetical order, but imposes a limit of 32000 points starting with the same letter on the datahub.

6

Chapter 2. Point Structure, Storage, and Manipulation

In order to maintain a point hash table within your program, you must use the function
Pt_InitClient , which will set up a static hash table within your program. In order to look up a point
within the hash table, you use the functionPT_FindCPoint , which will create an entry in the hash
table if necessary and return the resulting point structure.

2.3. Accessing and Copying Point Values
Cascade DataHub points may take on one of three types:

• integer, using the typePT_TYPE_INT32;

• floating point, using the typePT_TYPE_REAL; and

• string, using the typePT_TYPE_STRING.

Since the type may change during the life of a point, care must be taken to ensure that the appropriate
value is used in a given situation. This can be simplified by using the accessor functions
PT_PointString , PT_PointInt andPT_PointReal , which will perform a best-guess
conversion of the point type to the type requested. ThePT_PointString function will also format the
point value according to a printf-style format directive. The value of a point really includes attributes like
its timestamp, confidence factor and security, so it is better to copy the point value using the
PT_PointCopyValue function, which will copy all related information into the destination point. If
the type of the point isPT_TYPE_STRING, then the point value will be allocated on the heap. In
addition, if the destination point is an existing point of typePT_TYPE_STRING, then its current value
will be freed using thefree() C library call.

2.4. Memory Allocation and String Values
String values for points are normally allocated on the heap. Some functions, notably
PT_PointCopyValue , make this assumption and may free the string pointer or allocate space for a
new value. This is not true for a point name. The programmer must control the memory associated with
the point name in thePT_stCPOINT structure.

Zeroing an entire point structue (ie. setting all field values to0) for points of type
PT_TYPE_STRINGwill create a memory leak.

7

Chapter 3. Interprocess Communication
This package is written to be source code compatible across the QNX 4, QNX 6 and Linux operating
systems. In Linux, the SRR Module is required.

In addition to this library, two programs are required:qserveandnserve. These should have been
included with this package or another sofware package from Cogent.qserveprovides asynchronous
message queueing services, and offers a number of small changes from the semantics of the POSIX
mqueueprogram. The major differences are the semantics of message notification, transparent
networking, and the removal of a queue when its creating process terminates.nserveprovides name
resolution services on a per-process basis, allowing processes to easily identify one another by name,
thereby making it possible for them to communicate.nserveis intended to maintain consistent name
information across a network. In addition,nservecan inform all processes on the network viaqserve
whenever a named process start or stops.

Node ID has different meanings in QNX 4, QNX 6 and Linux. In QNX 4, the node ID is the node
number, which is unique on the network, and always refers to the same node. In QNX 6, the node ID is
the "node descriptor", which is only unique on a single machine, and is transient on the network. The
node ID, when valid, indicates the identifier of the foreign node as seen by the current node. A node ID
of zero always indicates the node on which the process is running. In Linux, the node ID is currently
meaningless, as the SRR Module does not implement network message passing.

3.1. Connections and Channels
Connection and channel identifiers and node names are only relevant to QNX 6. Under QNX 4 and
Linux, connection and channel should always be zero, and node name will either be the string
representation of a node number, or "".

• IP_SetConnectionID - sets the connection ID for IP library use.

• IP_GetConnectionID - returns the connection ID for IP library use.

• IP_SetChannelID - sets the channel ID for IP library use.

• IP_GetChannelID - returns the channel ID for IP library use.

3.2. Task Structure Caching
Some applications find it useful to cache task structures in an easily accessible table in the local
application, rather than making a query to the name server every time task information is required. This
caching is called "interning" the task structure. A task structure can be "found" locally only if it has been
interned.

• IP_TaskFindName - finds a task by its name.

• IP_TaskFindID - finds a task by its node, process, and channel IDs.

• IP_TaskCopy - copies a task structure.

• IP_TaskIntern - adds a task to a process’s task cache.

• IP_TaskUnintern - removes a task from a process’s task cache.

8

Chapter 3. Interprocess Communication

3.3. Messages
Message structures are used to encapsulate the information passed between processes. The underlying
messaging primitives do not specify a data format so information concerning the sending task, the
message length and message type is not necessarily available. TheIP_Msg structure efficiently
encapsulates this information, while following the OS convention on message type and subtype header
information.

An IP_Msg is in fact a wrapper on a data buffer. Only themsg portion is transmitted or received into
during an interprocess communication transaction. In most cases, themsg portion is a pointer to an
IP_MsgBuffer structure which defines the message type, subtype, length and identifying information
about the sender. TheIP_MsgBuffer structure is of varying length, with the last part of the structure
containing the data.

• IP_MsgDefaultSize - gets the default size of interprocess messages.

• IP_MsgCreate - creates anIP_Msg structure.

• IP_MsgData - returns a pointer to the data payload of anIP_Msg structure.

• IP_MsgDestroy - frees memory associated with a message.

• IP_MsgResize - resizes theIP_MsgBuffer , if possible.

• IP_MsgCascade - writes message data to anIP_MsgBuffer .

• IP_MsgRaw - like IP_MsgCascade , with IP_SUB_RAWfor its subtype .

• IP_MsgRawData - gives a pointer toIP_RAWmessage data.

• IP_MsgLisp - constructs a formatted text message.

3.4. Cascade NameServer Functions
The Cascade NameServer (nserve) is a necessary part of a system using theIP_* functions. Its purpose
is to map a node, a process ID, and (in QNX 6) a channel ID, to a process name. A program that uses the
CogentIP_* library functions will normally declare a name withnservein order to advertise its
presence.nservealso carries a queue name for asynchronous communication, and a Cascade DataHub
domain name where applicable.

For more information onnservesee:The Cascade NameServerchapter of this manual.

• IP_NserveInit - creates a task structure and informsnserve.

• IP_NserveInitMyself - declares current task structure information tonserve.

• IP_NservePackTaskInfo - makes a Lisp-parseable version of task information.

• IP_NserveLookup - fills in a known task structure.

• IP_NserveLookupId - finds a task by node, process and channel ID.

• IP_NserveLookupName - allocates and fills in a new task structure.

• IP_NserveAdd - adds an entry tonserve.

• IP_NserveRemove - removes an entry fromnserve

• IP_NserveReattach - closes and renews all task connections and queues.

• IP_NserveClose - closes the channel tonserve.

• IP_NserveSetDomain - changes a task’s domain name.

9

Chapter 3. Interprocess Communication

• IP_NserveQueryNameCount - gives the number of registered names.

• IP_NserveQueryNames - fills an array withnserve’s names.

3.5. Photon Functions
Programs using the Photon® microGUI will operate in one of two modes: a) allowing the Photon
function,PtMainLoop , to implement the event loop, or b) by implementing an event loop using
IP_Receive . Different set-up calls are required depending on which of these methods is used. It is
possible to set up a program to use both of these methods, at the user’s option.

• IP_DetachPhotonMainloop

• IP_AttachPhotonMainloop

• IP_AttachPhoton

• IP_PhotonGUIFilter

• IP_PhotonGUIHandler

3.6. Pulses and Timers
A pulseis an asynchronous message whose primary purpose is to signal to a process that an event has
occurred. The occurrence of the pulse is the important information, not the payload that the pulse might
carry. In the CascadeIP_* functions, a pulse cannot carry a payload, so that its only information content
is its occurrence. Pulses in QNX 4 and Linux are implemented as proxies.

Timerscan be attached to pulses such that the pulse is delivered when the timer expires, or at a set
interval. This library does not deal with timers that deliver operating system signals. Using signals for
asynchronous messaging is generally considered poor practise.

• IP_PulseNew - creates a new pulse.

• IP_PulseDestroy - destroys a pulse.

• IP_PulseTimed - sets up timers to trigger pulses.

• IP_IsPulse - validates a received message against a pulse ID.

• IP_TimerTime - adjusts pulse timer parameters.

• IP_PulseTrigger - immediately sends a pulse.

3.7. Cascade QueueServer Functions
The low-level interface to the Cascade QueueServer (qserve) is normally not used directly by a program.
These functions are entirely encapsulated within other functions in this library. They are included here
for completeness.

• IP_QueueOpen - opens a queue for reading or writing.

• IP_QueueClose - closes a queue.

• IP_QueueWrite - writes a message to a queue.

• IP_QueueRead - reads a message from the queue.

• IP_QueueWait - requests notification of an event.

10

Chapter 3. Interprocess Communication

• IP_QueueStrerror - gives access to error strings.

3.8. Receiving Messages and Events
The CogentIP_* functions unify the process event space by treating all forms of input and notification
as events.

• IP_SetGUIHandler - sets callback functions for GUI events.

• IP_Receive - receives any message.

• IP_ReceiveNonblock - receives any message, without blocking.

• IP_AddFDHandler - tells IP_Receive to accept file input.

• IP_RemoveFDHandler - prevents IP_Receive from accepting file input.

• IP_SelectFD - is used internally only.

• IP_UnselectFD - is used internally only.

• IP_ProcessMessage - classifies messages for IP_Receive.

TheIP_Receive function can accept input from the following sources:

1. a message from another process using the CogentIP_* functions

2. a message from another process using the OS IPC primitives

3. an asynchronous message via Cascade QueueServer

4. data available on a file descriptor

5. a pulse

6. a signal

7. a Photon microGUI event

8. a task death notification for_PPF_INFORMEDtasks (QNX 4 and Linux)

3.9. Replying to Messages
Some messages and events require a reply. The reply can be via the low-level interprocess
communication mechanism, or indirectly via anIP_MsgInfo structure. This structure is filled by
IP_Receive with enough information to facilitate a reply. Further, the message can be either a
Cascade IPC message structure (IP_Msg), or it can be a raw binary buffer. In the case of a raw reply, it
is the programmer’s responsibility to ensure that the message is correctly formatted for the receiver.
IP_MsgInfoReply is the normal means of replying.

• IP_Reply - replies to an IP_SYNC message using rcvid.

• IP_MsgInfoReply - replies to an IP_SYNC message using IP_MsgInfo.

• IP_ReplyRaw - replies to an IP_RAW message using rcvid.

• IP_MsgInfoReplyRaw - replies to an IP_RAW message using IP_MsgInfo.

11

Chapter 3. Interprocess Communication

3.10. Sending Messages
A task may send messages either synchronously or asynchronously. With a synchronous message, the
sender must block waiting for the receiver to reply. There is no time limit on how long the sender may
block. With an asynchronous message, the sender transmits the message to a queue, and immediately
returns without blocking. The receiver is notified that a message is waiting, and gets it at some later time
through a call toIP_Receive .

• IP_TaskConnect - opens a connection to a receiver.

• IP_TaskSendSync - transmits a message, and waits for a reply.

• IP_TaskSendAsync - transmits a message viaqserveand returns immediately.

• IP_TaskSendRaw - sends data in bytes, synchronously.

3.11. Task Structures

• IP_TaskCloseAsync - closes queues and cleans up resources.

• IP_TaskCloseSync - closes synchronous connections and cleans up resources.

• IP_TaskSetInfo - sets the fields in a task structure.

• IP_TaskCreate - creates a new task structure.

• IP_TaskCreateMe - creates a task structure for the current process.

• IP_TaskDefaultDomain - returns the Cascade DataHub default domain.

• IP_TaskDestroy - closes connections and queues, removes the task and frees memory.

• IP_TaskInitAsync - creates a read-only queue.

• IP_TaskInitAsyncWrites - opens a task’s queue as write-only.

• IP_pfTaskComp - compares two tasks for equality.

• IP_TaskWaitAsync - registers the task for events inqserve.

• IP_TaskZero - sets all task structure fields to defaults.

• IP_TaskNew - creates a new task structure.

• IP_TaskSetDomain - sets or changes a task’s domain name.

• IP_TaskSetQname - sets a task’s queue name.

3.12. Working with TCP/IP
This library provides some simple functions for implementing TCP/IP servers and clients. These
functions are primarily provided to simplify the interface with theIP_Receive function. These
functions always create an Internet Domain socket, and always assume a TCP connection as opposed to
UDP or ICMP.

• IP_ListenToPort - is a wrapper forlisten .

• IP_ListenToService - like IP_ListenToPort , but uses the service name.

• IP_ConnectToPort - resolves a host name and connects to a port.

• IP_ConnectToService - like IP_ConnectToPort , but uses the service name.

12

Chapter 4. The Cascade NameServer
The Cascade NameServer (nserve) provides network name services, information about queues and
domains for all registered tasks, and alert messages to registered tasks whenever another task starts or
stops on the network. The name server must be started after the Cascade QueueServer,qserve, usually
through thesysinit.N startup file. Both of these utilities are started automatically by most Cogent
products on startup, if they are not running already.

nserveis used to maintain information about currently running tasks in the Cascade DataHub universe.
All names registered on the name server are considered global within the system network, and all names
should be unique on the network. This facility cannot be used as a global semaphore due to the race
conditions associated with more than one task attempting to use the same name. Tasks whose names do
not particularly matter can be made up of a combination of node number and task id.

When a task starts up, it must register a name, queue, and domain with the name server in order to make
itself available to other tasks in the system. A task is not strictly obligated to have a queue name, but it
will not be able to receive asynchronous messages without one. This initialization is performed through
theIP_NserveInit function. The domain of a task may be changed at any time using the
IP_TaskSetDomain function.

QNX Note:nserveprovides facilities not available through the QNXnameloc
program. It usesnamelocto identify itself to the QNX operating system and any
Cascade DataHub processes, but the Cascade DataHub processes themselves do not
need to register withnameloc. Thenservefacility extendsnamelocwith:
• Asynchronous notification of tasks starting and stopping on a network-wide basis,
without the need for a task to become "informed."

• Maintenance of a queue name for each task, so tasks can communicate
asynchronously.

• Maintenance of a domain name for each task, so you can keep track of tasks’
peers throughout the network.

4.1. Domains
All tasks usingnservemust declare a domain. This is a character string of up to 15 characters that
differentiates groups of cooperating processes. All processes with the same domain name are considered
to be running in the same domain. This differentiation generally only affects the manner in which
processes retrieve information from the Cascade DataHub.

Tasks do not need to specify a domain name for points in the DataHub running in that domain. In order
to access points in another domain, a process must prepend the domain name followed by a colon to the
point name. Similarly, the Cascade DataHub will transmit a point name with the domain name attached
when delivering an exception to a task in another domain. For example, if a task is running in the default
domain and wishes to read a point,water_level in thecontrol domain’s DataHub, it must access
that point ascontrol:water_level .

4.2. Locating Other Tasks on the Network
Any task which is registered throughnservecan be located through a call to one of these three functions:

• IP_NserveLookup finds a task by name and hasnservefill in its structure.

13

Chapter 4. The Cascade NameServer

• IP_NserveLookupID finds a task by node, process and channel ID, and hasnservefill in its
structure.

• IP_NserveLookupName takes a name registered withnserveand fills in a new task structure for it.

4.3. Task Started and Stopped Messages
nserveautomatically transmits a message to all tasks that have a queue whenever another task registered
with nservestarts or stops. This mechanism makes it very simple for user tasks to respond to changes in
the system. For example, a user task may want to know when a DataHub for a particular domain has
started in order to register for exceptions from some or all of its points. These messages will be
transmitted to the user task with a message type ofIP_ASYNCand a command ofIP_SUB_LISP .
When a task starts or stops,nservewill send a message to all other registered tasks on the network as:
(taskstarted name queue domain node pid) , or (taskdied name queue domain
node pid) .

14

Chapter 5. Communicating with the Cascade
DataHub

The Cascade DataHub contains a snapshot of the current values of all of its points. A point is essentially
a name and an associated value, along with auxiliary information such as time stamp, security and lock
status. The following functions provide access to the Cascade DataHub through the Cascade DataHub
IPC functions (IP_*).

The Cascade DataHub provides three basic data services:

• ReadA user task synchronously reads a point value from the DataHub. SeeDH_ReadPoint and
DH_ReadExistingPoint .

• Write A user task synchronously writes a point to the DataHub. SeeDH_WritePoint and
DH_WriteExistingPoint .

• ExceptionA user task informs the DataHub that it would like to be alerted whenever a point value
changes, and to have an unsolicited (asynchronous) message sent to it. SeeDH_RegisterPoint ,
DH_RegisterExistingPoint , DH_RegisterAllPoints , DH_ParsePointMsg , and
DH_ParsePointString .

5.1. Exceptions
The Cascade DataHub is designed using the exception paradigm of point value transmission. That is, a
client task can tell the DataHub that it would like to be informed whenever a value changes on one or
more points, and then it simply waits for the DataHub to transmit the changes. This mechanism generally
results in less network traffic and substantially reduced delays compared with the more popular polling
method of DataHub query. The Cascade DataHub automatically concatenates point messages to be sent
to a client if more than one exception occurs before a message is sent out.

5.2. Echoes
In an exception-based system, it is possible for a task to both write a point value in the datahub, and
receive exceptions on that point. This creates a potential positive feedback situation where a task will
essentially start talking to itself forever through the DataHub. Even in cases where the client task chooses
to ignore point values that have not changed since the last message, it is still possible to get more than
one value for a point into the communication "pipeline" and generate the same infinite loop. The Cascade
DataHub solves this by marking exceptions as either a normal exception, or as an echo. An echo is a
point exception which is being returned to the task which originally transmitted the value change to the
DataHub. Most user tasks should ignore or treat echo messages differently from regular exception
messages.

5.3. Non-Existent Cascade DataHub Points
The Cascade DataHub, by default, creates any points that do not currently exist whenever it receives a
read, write or exception request message. This allows the DataHub to populate itself without having any
a-priori information about the system in which it is running. On occasion, it may be useful for a task to
determine whether a point exists. This may be done using the functionsDH_WriteExistingPoint ,
DH_ReadExistingPoint andDH_RegisterExistingPoint . These functions will return an
error if the named point does not exist when the function is called.

15

Chapter 5. Communicating with the Cascade DataHub

5.4. Parsing Point Messages
When an exception arrives from the DataHub, it is in a form that must be parsed in order to extract the
type, value, timestamp, etc. This can be done easily with the functionsDH_ParsePointMsg and
DH_ParsePointString .

5.5. Optimizing Throughput
To optimize data throughput between clients and the DataHub, custom clients can make two calls:

1. DH_SetTransmitFormat(msgformat);

2. DH_SetReceiveFormat(htask, hmsg, domain, msgformat, NULL);

msgformat is one of:

• PT_FMT_ASCII

• PT_FMT_BINARY

DH_SetTransmitFormatinstructs the API to transmit all point change messages from the custom client
to the DataHub using the specified message format.

DH_SetReceiveFormatinstructs the DataHub to transmit all messages to the custom client using the
specified format. This call will fail withST_NO_TASKif the custom client has never successfully called
one ofDH_RegisterPoint, DH_RegisterExistingPointor DH_RegisterAllPoints. This is because the
Cascade DataHub does not maintain internal state information for clients that are not registered to
receive point exceptions.

5.6. Point Size Limit
There is an inter-process communication message size limit that all Cogent processes must agree upon.
This defaults to 8192 bytes, and no point value can exceed this number, less a certain variable amount of
header, so conservatively this number is about 8100 bytes. We’ll call this theIPC Message Size.

There is an additional buffer specific to the DataHub that used to create exception messages which is
nominally 1000 bytes in length. This is kept small to limit the number of exceptions that go out in a
single IPC message. We’ll call this theException Message Size.

When a point representation is constructed, it is constructed in the exception buffer, so that limit is 1000
bytes, less some header. A string value is further reduced because strings may contain escaped
characters, and the rendering code estimates the size conservatively by assuming the worst case: all
characters are escaped, and each character in the input string requires two characters to render. This
limits the string to (1000 - header) / 2, giving us a few characters less than 500.

You can increase the Exception Message Size with the-b option to the DataHub. This size cannot be
greater than the IPC Message Size. There is also a hard limit of 65000 characters.

You can increase the IPC Message Size by setting the environment variableIP_MSG_DEFAULT_SIZE.
You mustmake this environment variable the same for all programs that are going to communicate with
the DataHub. This size cannot be greater than 65535 if you plan to have it run in Linux, or over a QNX
network.

For example, to work with larger strings:

[sh]$ export IP_MSG_DEFAULT_SIZE=65535
...
[sh]$ datahub -b 65000
...

16

Chapter 5. Communicating with the Cascade DataHub

[sh]$ writept -s test ’1234567890...’ ➊

...
[sh]$ readpt -s test

➊ Insert a large number of characters here.

These settings would allow you to create strings up to approximately (65000 - 30) / 2 bytes in the
DataHub.

5.7. Cascade DataHub API Code Examples
These code examples are provided in source form as part of the Cascade DataHub API, normally
installed in the/usr/cogent/src/datahub directory. They are provided here so that you can see
what is involved in communicating with the DataHub using your own C programs. The Gamma
programming language also contains many ’hooks’ into the DataHub. For more information about using
Gamma with the DataHub see the DataHub demo program that is available for download from the
Cogent web site. The Cascade DataHub demo uses Gamma to show the features of the DataHub. If you
download and run the Gamma demo for the DataHub you will have to reinstall your commercial version
of the DataHub, because the version that comes with the Gamma demo contains a time limited license.

5.7.1. Reading from the Cascade DataHub
/*

* Cascade DataHub point reader: readpt
*
* (C) Copyright Cogent Real-Time Systems Inc., 1997. All rights reserved.
*
* This program reads a point from the Cascade DataHub and displays the
* result on the standard output.
*
* This program is supplied with the Cascade DataHub programming API. It
* may be copied or modified, in whole or in part, for the sole purpose of
* creating applications to be used with the Cascade DataHub.
*/

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <time.h>

#include <cogent.h>

/*
* A point is one of three types. We discover which one we have and
* print the appropriate name, value, confidence factor, lock status
* and security level.
*/

void print_point (PT_pCPOINT ppoint, int brief)
{

char *t;

printf ("Point: %s\n", ppoint->name);

switch (ppoint->type)
{

case PT_TYPE_INT32:
printf ("Value: %ld\n", (long)ppoint->value.i);
break;

case PT_TYPE_REAL:
printf ("Value: %g\n", ppoint->value.r);
break;

17

Chapter 5. Communicating with the Cascade DataHub

case PT_TYPE_STRING:
printf ("Value: %s\n", ppoint->value.s);
break;

default:
printf ("Value: ...unknown point type!\n");
break;

}
if(!brief)
{

t = ctime ((time_t*)&ppoint->seconds);
t[19] = ’\0’;
printf ("Time: %s.%03ld\n", &t[4],

(long)ppoint->nanoseconds / 1000000);
printf ("Conf: %d\n", ppoint->conf);
printf ("Lock: %d\n", ppoint->locked);
printf ("Secur: %d\n", ppoint->security);

}
}

#ifdef __USAGE
Copyright (C) Cogent Real-Time Systems Inc., 1996-1997

%C [-b] [-d domain] pointname

-b brief output (only the point name and value)
-d domain, replaces the default

Read pointname from the Cascade datahub, the domain
can be specified with -d, or by qualifying the pointname,
as in "domain:thepointname" (the latter technique overriding
the former).
#endif

const char* UT_USAGE =
"Usage: %s [-b] [-d domain] pointname\n"
;

const char* UT_HELP =
"\n"
"Help:\n"
" -b Brief output (only the point name and value).\n"
" -d Domain, replaces the default.\n"
"\n"
"Read pointname from the Cascade datahub, the domain\n"
"can be specified with -d, or by qualifying the pointname,\n"
"as in \"domain:thepointname\" (the latter technique overriding\n"
"the former).\n"
;

int main (int argc, char** argv)
{

IP_Msg *hmsg;
ST_STATUS status;
PT_stCPOINT point;
char *ptname = NULL, *domain = NULL, *myname;
int opt;
int brief = 0;
IP_Task *htask;

/*
* Parse the input arguments. The only interesting argument is an
* alternate datahub domain name. We really do not need this, as
* we could specify the point name as domain:name
*/

while ((opt = getopt(argc, argv, "hbd:")) != -1)
{

switch (opt)
{

18

Chapter 5. Communicating with the Cascade DataHub

case ’h’:
UT_Help(argv[0], UT_USAGE, UT_HELP);

exit(0);

case ’d’:
domain = optarg;
if (strlen(domain) > 15)

domain[15] = ’\0’;
break;

case ’b’:
brief = 1;
break;

default:
UT_Usage (argv[0], UT_USAGE, stderr);
exit(1);

}
}

if (!argv[optind])
{

UT_Usage(argv[0], UT_USAGE, stderr);
exit(1);

}

/*
* Initialize communication through the Cascade IPC library. We do
* not want other tasks to be notified of the start and stop of
* this task, so we do not use IP_NserveInit. The name server
* will never know about this task, so notifications will not be
* passed on. Tasks that attempt to look up their clients in the
* name server will treat this task as non-existent. For example,
* Cascade DataHub would not be able to send point exceptions to
* this task.
*/

if ((myname = strrchr(argv[0], ’/’)))
myname++;

else
myname = argv[0];

if (!(htask = IP_TaskCreateMe (IP_GetChannelID(), myname, domain,
NULL, 0)))

{
fprintf (stderr, "Could not initialize Cascade IPC subsystem\n");
exit (1);

}

/*
* Create a pre-allocated message structure for use with all
* IPC calls. This includes the DH_* functions. The API could have
* created its own internal message structure, but this would have
* left us with no way to control its size or be efficient about
* allocation. This way we do a little more work, but have more
* control of what is being allocated.
*/

hmsg = IP_MsgCreate (NULL, IP_MsgDefaultSize(), 0);

while((ptname = argv[optind++]))
{

/*
* Zero the point structure. If we do not do this, the address
* field could be non-zero, and then the API will take that to be a
* cached datahub address. That might cause a crash.
*/

memset (&point, 0, sizeof(point));

19

Chapter 5. Communicating with the Cascade DataHub

/*
* Provide a point name buffer separately from the rest of the point
* structure. There is no way for the API to know what the allocation
* status of a point name is, so it will never attempt to free this
* buffer, nor write into it.
*/

point.name = ptname;

if ((status = DH_ReadPoint (htask, &point, hmsg, NULL)) != ST_OK)
{

fprintf (stderr, "Read \"%s\" failed: %s\n",
point.name, ST_StatusName (status));

exit(1);
}
else
{

print_point (&point, brief);
}

}

return 0;
}

5.7.2. Writing data to the Cascade DataHub
/*

* Cascade DataHub point writer: writept
*
* (C) Copyright Cogent Real-Time Systems Inc., 1997. All rights reserved.
*
* This program writes a point to the Cascade DataHub.
*
* This program is supplied with the Cascade DataHub programming API. It
* may be copied or modified, in whole or in part, for the sole purpose of
* creating applications to be used with the Cascade DataHub.
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <errno.h>

#include <cogent.h>

#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif

const char* UT_USAGE =
"Usage: %s [-d domain] [-r|-f|-i|-l|-s] [-S security] pointname pointvalue\n"
;

const char* UT_HELP =
"\n"
"Help:\n"
" -d domain Set the domain for the operation.\n"
" -r Write as a real (floating point) number.\n"
" -i Write as a short integer.\n"
" -l Write as a long integer.\n"
" -s Write as a character string.\n"
" -S Set security level for write.\n"
"\n"
"Write a point to the Cascade datahub in the given domain.\n"
"\n"
"Notes:\n"
"- Strings containing spaces and special characters must be escaped\n"

20

Chapter 5. Communicating with the Cascade DataHub

" from the shell appropriately.\n"
"\n"
"- The type will be guessed if not specified, the order of guessing is:\n"

" 1) long\n"
" 2) float\n"
" 3) string (the default)\n"

" The guess is considered correct if the entire argument is converted.\n"
"\n"
"- A long can be given in standard C style, 0x5f (hex), 0647 (oct), etc.\n"
;

int main (int argc, char** argv)
{

IP_Msg *hmsg;
ST_STATUS status;
PT_stCPOINT point;
char *ptname = NULL, *ptvalue = NULL, *domain=NULL, *myname;
short type = PT_TYPE_VOID;
int security=0;
IP_Task *htask;
int opt;

/*
* Parse the command line
*/

while((opt = getopt(argc, argv, "hd:rilsS:")) != -1)
{

switch (opt)
{

case ’h’:
UT_Help(argv[0], UT_USAGE, UT_HELP);

exit(0);
case ’d’:

domain = optarg;
if (strlen(domain) > 15)

domain[15] = ’\0’;
break;

case ’r’:
type = PT_TYPE_REAL;
break;

case ’i’:
case ’l’:

type = PT_TYPE_INT32;
break;

case ’s’:
type = PT_TYPE_STRING;
break;

case ’S’:
security = atoi (optarg);
break;

default:
UT_Usage (argv[0], UT_USAGE, stderr);
exit (1);
break;

}
}

/* the last two args better be the point and value */

if (!argv[optind] || !argv[optind+1])
{

UT_Usage(argv[0], UT_USAGE, stderr);
exit(1);

}
ptname = argv[optind];
ptvalue = argv[optind+1];

/*

21

Chapter 5. Communicating with the Cascade DataHub

* Initialize communication through the Cascade IPC library. We do
* not want other tasks to be notified of the start and stop of
* this task, so we do not use IP_NserveInit. The name server
* will never know about this task, so notifications will not be
* passed on. Tasks that attempt to look up their clients in the
* name server will treat this task as non-existent. For example,
* Cascade DataHub would not be able to send point exceptions to
* this task.
*/

if ((myname = strrchr(argv[0], ’/’)))
myname++;

else
myname = argv[0];

if (!(htask = IP_TaskCreateMe (IP_GetChannelID(), myname, domain,
NULL, 0)))

{
fprintf (stderr, "Could not initialize Cascade IPC subsystem\n");
exit (1);

}

/*
* Set this task’s security level. This level must be greater than or
* equal to the security level of the point in the datahub in order
* for the write to succeed. The datahub does not know whether this
* task has the right to claim this security level. That enforcement
* is up to the programmer of the user task.
*/

IP_TaskSetSecurity (htask, security);

/*
* Create a pre-allocated message structure for use with all
* IPC calls. This includes the DH_* functions. The API could have
* created its own internal message structure, but this would have
* left us with no way to control its size or be efficient about
* allocation. This way we do a little more work, but have more
* control of what is being allocated.
*/

hmsg = IP_MsgCreate (NULL, IP_MsgDefaultSize(), 0);

/*
* Zero the point structure. If we do not do this, the address
* field could be non-zero, and then the API will take that to be a
* cached datahub address. That might cause a crash.
*/

memset (&point, 0, sizeof(point));

/*
* Provide a point name buffer separately from the rest of the point
* structure. There is no way for the API to know what the allocation
* status of a point name is, so it will never attempt to free this
* buffer, nor write into it.
*/

point.name = ptname;
point.type = type;
point.conf = 100;

/*
* Set the time on the point. If this is not set, then the datahub
* will show a zero time.
*/

#ifdef __QNX__
{

struct timespec tp;

clock_gettime (CLOCK_REALTIME, &tp);
point.seconds = tp.tv_sec;

22

Chapter 5. Communicating with the Cascade DataHub

point.nanoseconds = tp.tv_nsec;
}

#else
{

struct timeval tp;
gettimeofday (&tp, NULL);
point.seconds = tp.tv_sec;
point.nanoseconds = tp.tv_usec * 1000;

}
#endif /* __QNX__ */

/*
* Set the value of the point based on the type.
*/

switch (point.type)
{

case PT_TYPE_INT32:
point.value.i = strtol(ptvalue, 0, 0);

break;

case PT_TYPE_REAL:
point.value.r = strtod (ptvalue, NULL);
break;

case PT_TYPE_STRING:
point.value.s = ptvalue;
break;

case PT_TYPE_VOID:
default:
{

/* try to autodetect type of point */
char* eos = 0;

/* it’s a long if conversion goes to end of string */
eos = 0;
point.value.i = strtol(ptvalue, &eos, 0);
if(*eos == ’\0’)
{

point.type = PT_TYPE_INT32;
break;

}

/* it’s a double if conversion goes to end of string */
eos = 0;
point.value.r = strtod(ptvalue, &eos);
if(*eos == ’\0’)
{

point.type = PT_TYPE_REAL;
break;

}

/* else it’s a string */

point.type = PT_TYPE_STRING;
point.value.s = ptvalue;
break;

}
}

/*
* Write the point. We need a IP_Msg structure and a IP_hTASK in
* to provide buffer space and sender identification respectively.
*/

if ((status = DH_WritePoint (htask, &point, hmsg, NULL)) != ST_OK)
printf ("Write point failed: %s\n", ST_StatusName (status));

return (0);

23

Chapter 5. Communicating with the Cascade DataHub

}

5.7.3. Registering for exceptions from the Cascade DataHub
/*

* Cascade DataHub point waiter: waiter.c
*
* (C) Copyright Cogent Real-Time Systems Inc., 1997. All rights reserved.
*
* This program registers for exceptions on all or selected points
* in the Cascade DataHub.
*
* The program waits in an infinite receive loop for exceptions.
* Upon receipt of a message the program checks that the message is
* a Casacde DataHub exception and then parses and prints the point
* to stdout.
*
* Since this program can be made to register for exceptions on multiple
* points a linked-list facility is used to create a list of point names
* from the passed args. This linked list is then walked to register
* for exceptions on each point individually.
*
* This program is supplied with the Cascade DataHub programming API. It
* may be copied or modified, in whole or in part, for the sole purpose of
* creating applications to be used with the Cascade DataHub.
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <time.h>

#include <cogent.h>

#ifdef HAVE_SYS_KERNEL_H
#include <sys/kernel.h>
#endif

/*
* millisecs function converts nanoseconds (10E-9) to milliseconds (10E-3).
*/

static int millisecs(PT_pCPOINT ppoint)
{

return (ppoint->nanoseconds / 1000000);
}

/*
* Generate an ASCII representation of the date and time for a given point,
* truncating the nanoseconds to the next lowest millisecond. If the time
* values are 0,0, then generate the string "none".
*/

static char* timeof(PT_pCPOINT ppoint)
{

static char ctm[64], msec[16];
char *thetime;
time_t tm;

if (ppoint->seconds)
{

tm = ppoint->seconds;
thetime = ctime (&tm);
strncpy (ctm, thetime, 11);
strncpy (&ctm[11], &thetime[20], 4);
strncpy (&ctm[15], &thetime[10], 9);
ctm[24]=’\0’;
sprintf (msec, ".%03d", millisecs(ppoint));

24

Chapter 5. Communicating with the Cascade DataHub

strcat (ctm, msec);
}
else
{

strcpy (ctm, "none");
}
return (ctm);

}

/*
* Print point name, value and information to the standard output
*/

void print_point (PT_pCPOINT ppoint)
{

printf ("Point: %s\n", ppoint->name);
switch (ppoint->type)
{

case PT_TYPE_INT32:
printf ("Value: %ld\n", (long)ppoint->value.i);
break;

case PT_TYPE_REAL:
printf ("Value: %.20g\n", ppoint->value.r);
break;

case PT_TYPE_STRING:
printf ("Value: %s\n", ppoint->value.s);
break;

default:
printf ("Value: Unknown\n");
break;

}
printf ("Conf: %d, Lock: %s, Time: %s, Security: %d\n",

ppoint->conf, (ppoint->locked ? "yes" : "no"), timeof(ppoint),
ppoint->security);

}

#ifdef __USAGE
%C [-d domain] [-q queuename] pointname...

-d domain - set the domain for the operation
-q - name of queue for point changes
-v - print debugging information

Points in another domain may be watched by
texplicitly naming the domain followed by a colon
and the point name.

e.g.,
waiter mixer:Mixer_1_Weight

is the same as
waiter -d mixer Mixer_1_Weight

#endif

const char* UT_USAGE =
"Usage: %s [-d domain] [-q queuename] pointname...\n"
;

const char* UT_HELP =
"\n"
"Help:\n"
" -h Print this helpful message.\n"
" -d domain Set the domain for the operation.\n"
" -q Name of queue for point changes.\n"
" -v Print debugging information.\n"
"\n"
" Points in another domain may be watched by\n"
" texplicitly naming the domain followed by a colon\n"
" and the point name.\n"
" e.g.,\n"
" waiter mixer:Mixer_1_Weight\n"
" is the same as\n"

25

Chapter 5. Communicating with the Cascade DataHub

" waiter -d mixer Mixer_1_Weight\n"
;

int main (int argc, char** argv)
{

IP_Msg *hmsg;
ST_STATUS status;
PT_stCPOINT point;
char *ptname = NULL, *qname = NULL, *domain=NULL;
char *s, namebuf[256], *name = NULL, *msgend, *myname;
int opt;
int debugging=0;
IP_Task *htask=NULL;
IP_MsgInfo msginfo;
int type;
LL_LIST names;
LL_stITERATOR it;

hmsg = IP_MsgCreate (NULL, IP_MsgDefaultSize(), 0);

/*
* Create an empty link list

*/
names = LL_New();

while ((opt = getopt(argc, argv, "hd:q:v")) != -1)
{

switch (opt)
{

case ’h’:
UT_Help(argv[0], UT_USAGE, UT_HELP);

exit(0);
case ’d’:

domain = optarg;
if (strlen(domain) > 15)

domain[15] = ’\0’;
break;

case ’q’:
qname = optarg;
break;

case ’v’:
debugging = 1;
break;

default:
UT_Usage (argv[0], UT_USAGE, stderr);
exit(1);

}
}
for(;optind < argc; optind++)
{

/* Adds the arg to the end of the linked list */
LL_AddTail (names, argv[optind]);

}

/*
* If a queue name is not specified then generate one based on the
* process pid
*/

if (!qname)
{

sprintf (namebuf, "sc/wait%d", getpid());
qname = strdup (namebuf);

}
if ((s = strrchr (argv[0], ’/’)))

s++;
else

s = argv[0];

26

Chapter 5. Communicating with the Cascade DataHub

/*
* Generate a registered name based on the process pid
*/

if (!name)
{

sprintf (namebuf, "sc/wait%d", getpid());
name = strdup (namebuf);

}

/*
* Initialize this process with the name server and queue server
*/

if ((myname = strrchr(argv[0], ’/’)))
myname++;

else
myname = argv[0];

if (!(htask = IP_NserveInit (myname, domain, qname, 0, 0)))
{

printf("IP_NserveInit() failed: are qserve and nserve running?\n");
exit(1);

}

memset (&point, 0, sizeof(point));

/*
* Traverse the link list of points (if passed) and register for
* exceptions on each. Otherwise register for all exceptions.
*/

if (LL_Count(names))
{

LL_TRAVERSE (names, char*, ptname, it)
{

printf ("Register %s\n", ptname);
point.name = ptname;
point.conf = 0;
point.address = NULL;
if ((status = DH_RegisterPoint (htask, &point, hmsg, NULL))

!= ST_OK)
printf ("Register point failed: %d\n", status);

}
}
else
{

if ((status = DH_RegisterAllPoints (htask, NULL, 1,
hmsg, NULL)) != ST_OK)

{
printf ("Register all points failed: %d\n", status);
exit (-1);

}
}

/*
* Provide a point name buffer separately from the rest of the point
* structure. There is no way for the API to know what the allocation
* status of a point name is, so it will never attempt to free this
* buffer, nor write into it.
*/

point.name = namebuf;

/*
* Infinite event loop
*/

for (;;)
{

/*
* Sit receive blocked
*/

27

Chapter 5. Communicating with the Cascade DataHub

type = IP_Receive (htask, hmsg, &msginfo);
if (debugging)

printf ("Received: %s\n", (char*)IP_MsgData (hmsg));

/*
* If the message is an exception notice from the Cascade DataHub
* then parse and print the point. We could get messages from other
* sources as well, which we effectively ignore. If any process
* attempts to Send a message to this task, we just send back a nil
* response.
*/

switch (type)
{

case IP_ASYNC: /* DataHub point, probably */
switch (IP_MsgSubtype (hmsg))
{

case ST_DH_EXCEPTION:
/* Deal with exceptions by parsing and printing the result */
for (msgend = IP_MsgData(hmsg); *msgend;)
{

DH_ParsePointString (&point, point.name, msgend,
&msgend, NULL);

print_point (&point);
}
break;

case ST_DH_ECHO:
/* We never write a point, so ECHO is impossible in this

* app. If we expected echoes, we could handle them in
* the same way as exceptions. The message contents are
* identical for both. */

break;
default:

/* Async general ASCII message, sent by another task using
* the Cascade DataHub API. One such task is the Cascade
* name server, nserve. It will send taskstarted and
* taskdied messages when other tasks start and stop:
* (taskstarted <name> <domain> <queue> <node> <pid> <chid>)
* (taskdied <name> <domain> <queue> <node> <pid> <chid>)
*/

break;
}
break;

case IP_ERROR:
/* Receive returned zero, which should never happen. */
break;

case IP_SYSTEM:
/* A task death message that can only be received by a task

* that has set its QNX INFORMED bit. You should avoid this,
* and use the taskdied and taskstarted messages in the
* IP_ASYNC section if possible. */

break;
case IP_SIGNAL:

/* A signal caused the Receive to exit prematurely. No message
* was received. The value of sender is not defined. */

break;
case IP_NONE:

/* The queue reported a message waiting, but none was available.
* This happens if the application intentionally drains the queue,
* which is generally a bad idea. */

break;
case IP_SYNC:

/* Synchronous general ASCII message, sent by another task using
* the Cascade DataHub API. */

IP_MsgCascade (hmsg, "Unsupported", 12, IP_NONE, ST_ERROR);
IP_MsgInfoReply (&msginfo, hmsg);
break;

case IP_RAW:
/* Message sent using QNX Send command, not through the

28

Chapter 5. Communicating with the Cascade DataHub

* Cascade DataHub API. This is also where a proxy would
* be delivered if we had set up a proxy within this task,
* for example, a periodic timer. In that case, the proxy
* ID would be (pid_t)sender, and we would not Reply to it. */

IP_MsgInfoReplyRaw (&msginfo, "Unsupported", 12);
break;

}
}

return 0;
}

5.7.4. A sample makefile definition
COGLIB = -l cogdb
CFLAGS = -Oneatx -Q

all: readpt writept waiter

readpt: readpt.c
cc -o $@ $< $(COGLIB)

writept: writept.c
cc -o $@ $< $(COGLIB)

waiter: waiter.c
cc -o $@ $< $(COGLIB)

clean:
rm -f *.o readpt writept waiter

.PHONY: clean

.IGNORE: clean

29

Chapter 6. The Cascade Historian
The Cogent C API for the Cascade Historian consists of C functions that are wrappers around the
Cascade Historian command set. The C syntax for these functions is documented in theCascade
Historian Functionsreference section of this manual, while the command syntax is documented in the
Cascade Historian manual. Please refer to that document for general information on the Cascade
Historian.

6.1. Command/Function Correspondence
The following table shows all the commands and functions available in the Cascade Historian and the
corresponding Cogent C API functions, illustrating how they correspond to each other. This table is also
available in the Command/Function Correspondence section of the Cascade Historian manual.

Table 6-1. Cascade Historian Commands and Functions

Command API Function DLL Function

add HI_Add -

apropos - -

aproposSyntax - -

bufferIdData HI_BufferIDRead hist_buffer_id_read

bufferIdDataAscii - -

bufferIdDestroy HI_BufferIDDestroy hist_buffer_id_destroy

bufferIdLength HI_BufferIDLength hist_buffer_id_length

bufsize HI_Bufsize hist_bufsize

count HI_Count hist_count

deadband HI_Deadband hist_deadband

delete HI_Delete hist_delete

describe HI_Describe hist_describe

disable HI_Disable hist_disable

earliest HI_Earliest hist_earliest

enable HI_Enable hist_enable

exit - -

flag - -

filebase HI_FileBase hist_filebase

flush HI_Flush hist_flush

histdb - -

history HI_History hist_history

include - -

interpolate HI_Interpolate hist_interpolate

- HI_InterpolateData hist_interpolate_data

interpolatorDescribe - -

interpolatorList - -

latest HI_Latest hist_latest

length HI_Length hist_length

30

Chapter 6. The Cascade Historian

Command API Function DLL Function

list HI_List hist_list

register HI_Register hist_register

unregister HI_Unregister hist_unregister

version HI_Version hist_version

6.2. Binary Data Buffer Functions
The following table lists a set of functions for accessing and performing some commonly needed
transformations on the binary data buffers in the Cascade Historian. This table is also available in the
Binary Data Buffer Functions section of the Cascade Historian manual.

Table 6-2. Cascade Historian Binary Data Buffer Functions

API Function DLL Function

- hist_access_buffer

- hist_buffer2array

HI_ClipBuffer hist_clip_buffer

HI_ExchangeBuffer hist_exchange_buffer

HI_GapCountBuffer
HI_GapFillBuffer

hist_gap_buffer

- hist_length_buffer

HI_ScaleBuffer hist_scale_buffer

HI_StatBuffer hist_stat_buffer

31

Chapter 7. Cogent Driver Specifications
The Cogent Driver API functions can be grouped according to their purpose, as shown below. All these
functions are described in detail in the Reference. They are intended to be quite generic, to provide a
consistent interface for different types of cards. However each specific driver has its own
protocol-specific parameters, which are detailed in this chapter.

7.1. Cogent Driver Functions

Connection and Command Functions
DR_ApInitIPC
DR_ApConnectIPC
DR_ApCloseIPC
DR_ApCommand

Point Interface
DR_ApReadPoint
DR_ApWritePoint
DR_ApListPoints
DR_ApDescribePnt
DR_ApPointBufAddress

Block Interface

The number, type and length of the blocks accessed by this interface depends on the specific driver.

DR_ApReadBlock
DR_ApWriteBlock
DR_ApListBuffers
DR_ApDescribeBuffer
DR_ApUpdateBuffers
DR_ApReadStatus
DR_ApReadControl
DR_ApWriteControl

7.2. Hilscher Fieldbus CIF Card
For more information on the CIF Driver, please refer to the Cogent CIF Driver for Hilscher Fieldbus CIF
Cards manual.

7.2.1. I/O Block Functions

TheDR_ApReadBlock andDR_ApWriteBlock functions access the process I/O data area of the
card. The offset and size parameters specify what portion of the buffer area to transfer, and is dependent
on the field configuration. Typically, field data is always mapped to the beginning of the block (offset of
0) and is continguous up to the number of bytes defined by the field device (slave) configuration. The
output process data buffer is mapped as buffer0, while 1 will access the input process data buffer.

7.2.2. Control Block Functions

TheDR_ApReadControl andDR_ApWriteControl functions access the control parameter blocks
of the card. Only buffer 2 is valid for CIF cards, which provides access to the protocol parameters.

The control parameters for the Hilscher Fieldbus card use the following structure (see filecif_api.h):

typedef struct {
unsigned char Mode;

32

Chapter 7. Cogent Driver Specifications

unsigned char reserved1;
unsigned char Format;
unsigned short WatchdogTime;
unsigned char reserved5[3];
unsigned char reserved8[8];

} cif_ApParms_t;

The control parameters do vary with the specific fieldbus protocol and additional structure definitions can
be found in thecif_api.h file.

Access to the control data is accomplished via buffer 2 with a length of 16, using the functions
DR_ApReadControl andDR_ApWriteControl , as follows:

DR_ApReadControl (dev, 2, 0, 16, &control, &error)
DR_ApWriteControl (dev, 2, 0, 16, &control, &error)

It is recommended that reserved bytes be set to0. Most protocols reserve the last 11 bytes, so the length
may be shortened to5, depending on the protocol. Note that a read of the control parameters may return
only zero data from some cards.

The components of the control structure are defined as follows:

Parameter Description Length

Mode Type of handshake mechanism for process data delivery. byte

Cycle_time Cycle time of the fieldbus cycle (hwere applicable). byte

Format Storage format of word data. byte

WatchdogTime HOST-supervision time in multiples of a msec. short

The handshake modes available are:

Mode Name (see cif_api.h) Description

0 IOMODE_DEV_UNBUF card controlled, bus synchronous data transfer

1 IOMODE_DEV_BUF card controlled, buffered data transfer

2 IOMODE_NO_CTL no handshake

3 IOMODE_HOST_BUF HOST controlled, buffered data transfer

4 IOMODE_HOST_UNBUF HOST controlled, bus synchronous data transfer

Not all modes are available for all protocols.

The available storage formats are:

Format Name (see cif_api.h) Description

0 FORMAT_INTEL Intel; little-endian; low-byte, high-byte

1 FORMAT_MOTORLA Motorola; big-endian; high-byte, low-byte

After writing the control block, the system must do a WARM reset before the changes will take effect
(see thecardResetcommand in the Device Driver for Hilscher CIF Cards manual).

7.2.3. Status Block Functions

TheDR_ApReadStatus function accesses the status blocks of the card. Only buffer2 is valid for CIF
cards, which provides master status as well as field device (slave) status and diagnostic information.

The status of the Hilscher Fieldbus Card is read from buffer 2 with a length of 64, using the function
DR_ApReadStatus , as follows:

33

Chapter 7. Cogent Driver Specifications

DR_ApReadStatus (dev, 2, 0, 64, &status, &error)

The offset and length are ignored. Status is a structure of type cif_ApState_t (see the filecif_api.h)
and is defined as follows:

typedef struct {
unsigned char global_bits;
unsigned char bus_status;
unsigned char err_rem_addr;
unsigned char err_rem_event;
unsigned char reserved[28];
unsigned char state [16];
unsigned char diag [16];

} cif_ApState_t;

where:

State Element Description Length

global_bits Error bits, as follows:
bit 0: Ctrl, parameterization error
bit 1: Aclr, slave error causing AutoClear mode
bit 2: Ndata: at least one slave not in data exchange mode or
reporting an error
bit 3-7: reserved

byte

bus_status Main state of the master system:
0x00 OFFLINE
0x40 STOP
0x80 CLEAR
0xC0 OPERATE

byte

err_rem_addr Remote address of error source byte

err_rem_event Error number byte

state A bitfield classifying every slave as active (1) or inactive (0) 16 x byte

diag A bitfield showing diagnostic bit of every slave 16 x byte

34

Appendix A. GNU General Public License

GNU General Public License
Version 2, June 1991

Copyright ©1989, 1991 byFree Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

* Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public License is intended to guarantee your freedom to share and change
free software - to make sure the software is free for all its users. This General Public License applies to
most of the Free Software Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by the GNU Library General Public
License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps:

1. copyright the software, and

2. offer you this license which gives you legal permission to copy, distribute and/or modify the
software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want
its recipients to know that what they have is not the original, so that any problems introduced by others
will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

Section 0

This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The “Program”,

35

Appendix A. GNU General Public License

below, refers to any such program or work, and a “work based on the Program” means either the Program
or any derivative work under copyright law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another language. (Hereinafter, translation
is included without limitation in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made
by running the Program). Whether that is true depends on what the Program does.

Section 1

You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and give any other recipients of the Program a copy of this License along
with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

Section 2

You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a.You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this License. (Exception: If the Program itself
is interactive but does not normally print such an announcement, your work based on the Program is
not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole which is a work based on
the Program, the distribution of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

36

Appendix A. GNU General Public License

Section 3

You may copy and distribute the Program (or a work based on it, under Section 2 in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the
following:

a.Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place counts as distribution of the
source code, even though third parties are not compelled to copy the source along with the object code.

Section 4

You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

Section 5

You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Program (or any
work based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

Section 6

Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these
terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

Section 7

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or

37

Appendix A. GNU General Public License

otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

Section 8

If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

Section 9

The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published
by the Free Software Foundation.

Section 10

If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY Section 11

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK
AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

38

Appendix A. GNU General Public License

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

Section 12

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best
way to achieve this is to make it free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright (C) <year> <name of
author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY
NO WARRANTY; for details type “show w”. This is free software, and you are welcome to redistribute
it under certain conditions; type “show c” for details.

The hypothetical commands “show w” and “show c” should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than “show w” and
“show c”; they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
“copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program “Gnomovision” (which makes
passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

39

Appendix A. GNU General Public License

This General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary
applications with the library. If this is what you want to do, use the GNU Library General Public License
instead of this License.

40

Appendix B. GNU Lesser General Public
License

GNU Lesser General Public License
Version 2.1, February 1999

Copyright ©1991, 1999 byFree Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

* Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages--typically libraries--of the Free Software Foundation and other authors who decide to use it.
You can use it too, but we suggest you first think carefully about whether this license or the ordinary
General Public License is the better strategy to use in any particular case, based on the explanations
below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software (and
charge for this service if you wish); that you receive source code or can get it if you want it; that you can
change the software and use pieces of it in new free programs; and that you are informed that you can do
these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to
ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the
recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide complete object files to the recipients, so
that they can relink them with the library after making changes to the library and recompiling it. And you
must show them these terms so they know their rights.

We protect your rights with a two-step method:

1. we copyright the library, and

2. we offer you this license, which gives you legal permission to copy, distribute and/or modify the
library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library.
Also, if the library is modified by someone else and passed on, the recipients should know that what they
have is not the original version, so that the original author’s reputation will not be affected by problems
that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make
sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive
license from a patent holder. Therefore, we insist that any patent license obtained for a version of the
library must be consistent with the full freedom of use specified in this license.

41

Appendix B. GNU Lesser General Public License

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License.
This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite
different from the ordinary General Public License. We use this license for certain libraries in order to
permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combination of
the two is legally speaking a combined work, a derivative of the original library. The ordinary General
Public License therefore permits such linking only if the entire combination fits its criteria of freedom.
The Lesser General Public License permits more lax criteria for linking other code with the library.

We call this license theLesserGeneral Public License because it does Less to protect the user’s freedom
than the ordinary General Public License. It also provides other free software developers Less of an
advantage over competing non-free programs. These disadvantages are the reason we use the ordinary
General Public License for many libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a
certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free library does the same job as widely used
non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so
we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of
people to use a large body of free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU operating system, as well as its
variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does ensure that
the user of a program that is linked with the Library has the freedom and the wherewithal to run that
program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to
the difference between a “work based on the library” and a “work that uses the library”. The former
contains code derived from the library, whereas the latter must be combined with the library in order to
run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

Section 0

This License Agreement applies to any software library or other program which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the terms of this
Lesser General Public License (also called “this License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked
with application programs (which use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these
terms. A “work based on the Library” means either the Library or any derivative work under copyright
law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications
and/or translated straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a
library, complete source code means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and installation of the library.

42

Appendix B. GNU Lesser General Public License

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running a program using the Library is not restricted, and output from such a
program is covered only if its contents constitute a work based on the Library (independent of the use of
the Library in a tool for writing it). Whether that is true depends on what the Library does and what the
program that uses the Library does.

Section 1

You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

Section 2

You may modify your copy or copies of the Library or any portion of it, thus forming a work based on
the Library, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a.The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating that you changed the files and
the date of any change.

c. You must cause the whole of the work to be licensed at no charge to all third parties under the terms
of this License.

d. If a facility in the modified Library refers to a function or a table of data to be supplied by an
application program that uses the facility, other than as an argument passed when the facility is
invoked, then you must make a good faith effort to ensure that, in the event an application does not
supply such function or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely
well-defined independent of the application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must be optional: if the application does
not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Library, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole which is a work based on
the Library, the distribution of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work
based on the Library) on a volume of a storage or distribution medium does not bring the other work
under the scope of this License.

43

Appendix B. GNU Lesser General Public License

Section 3

You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a
given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they
refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer
version than version 2 of the ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General
Public License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a
library.

Section 4

You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the
complete corresponding machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the source along with the object code.

Section 5

A program that contains no derivative of any portion of the Library, but is designed to work with the
Library by being compiled or linked with it, is called a “work that uses the Library”. Such a work, in
isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a
derivative of the Library (because it contains portions of the Library), rather than a “work that uses the
library”. The executable is therefore covered by this License. Section 6 states terms for distribution of
such executables.

When a “work that uses the Library” uses material from a header file that is part of the Library, the object
code for the work may be a derivative work of the Library even though the source code is not. Whether
this is true is especially significant if the work can be linked without the Library, or if the work is itself a
library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small
macros and small inline functions (ten lines or less in length), then the use of the object file is
unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object
code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work
under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or
not they are linked directly with the Library itself.

Section 6

As an exception to the Sections above, you may also combine or link a “work that uses the Library” with
the Library to produce a work containing portions of the Library, and distribute that work under terms of
your choice, provided that the terms permit modification of the work for the customer’s own use and
reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the
Library and its use are covered by this License. You must supply a copy of this License. If the work

44

Appendix B. GNU Lesser General Public License

during execution displays copyright notices, you must include the copyright notice for the Library among
them, as well as a reference directing the user to the copy of this License. Also, you must do one of these
things:

a.Accompany the work with the complete corresponding machine-readable source code for the
Library including whatever changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete
machine-readable “work that uses the Library”, as object code and/or source code, so that the user
can modify the Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions files in the Library
will not necessarily be able to recompile the application to use the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one
that (1) uses at run time a copy of the library already present on the user’s computer system, rather
than copying library functions into the executable, and (2) will operate properly with a modified
version of the library, if the user installs one, as long as the modified version is interface-compatible
with the version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the same user the
materials specified in Subsection 6a, above, for a charge no more than the cost of performing this
distribution.

d. If distribution of the work is made by offering access to copy from a designated place, offer
equivalent access to copy the above specified materials from the same place.

e.Verify that the user has already received a copy of these materials or that you have already sent this
user a copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility
programs needed for reproducing the executable from it. However, as a special exception, the materials
to be distributed need not include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that
do not normally accompany the operating system. Such a contradiction means you cannot use both them
and the Library together in an executable that you distribute.

Section 7

You may place library facilities that are a work based on the Library side-by-side in a single library
together with other library facilities not covered by this License, and distribute such a combined library,
provided that the separate distribution of the work based on the Library and of the other library facilities
is otherwise permitted, and provided that you do these two things:

a.Accompany the combined library with a copy of the same work based on the Library, uncombined
with any other library facilities. This must be distributed under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

Section 8

You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the
Library is void, and will automatically terminate your rights under this License. However, parties who

45

Appendix B. GNU Lesser General Public License

have received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

Section 9

You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Library or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any
work based on the Library), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Library or works based on it.

Section 10

Each time you redistribute the Library (or any work based on the Library), the recipient automatically
receives a license from the original licensor to copy, distribute, link with or modify the Library subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties with this License.

Section 11

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by all those who
receive copies directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply, and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

Section 12

If the distribution and/or use of the Library is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

Section 13

The Free Software Foundation may publish revised and/or new versions of the Lesser General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

46

Appendix B. GNU Lesser General Public License

Each version is given a distinguishing version number. If the Library specifies a version number of this
License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Library does not specify a license version number, you may choose any version ever published by the
Free Software Foundation.

Section 14

If you wish to incorporate parts of the Library into other free programs whose distribution conditions are
incompatible with these, write to the author to ask for permission. For software which is copyrighted by
the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY Section 15

BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE
LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

Section 16

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE
WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public, we
recommend making it free software that everyone can redistribute and change. You can do so by
permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General
Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.> Copyright (C) <year> <name of
author>

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.

47

Appendix B. GNU Lesser General Public License

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if
not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
“copyright disclaimer” for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library ’Frob’ (a library for tweaking
knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990 Ty Coon, President of Vice

That’s all there is to it!

48

II. Reference
Table of Contents

I. Utilities ..50

II. Data Types...58

III. Cascade DataHub Functions..63

IV. Cogent Driver Functions ..88

V. Cascade Historian Functions...117

VI. Inter-Process Communication Functions..159

VII. Cascade TextLogger Functions...249

VIII. Point Manipulation Functions ..272

I. Utilities

Table of Contents
lsend, gsend...51

nsnames...53

nserve..55

qserve..57

These utilities are commonly available to Cogent software.

lsend, gsend
lsend , gsend — send commands to Cogent and Gamma programs.

Synopsis

lsend [-ghlVX] [task]
gsend [-ghlVX] task

Arguments

task

A Cogent or Gamma program name (as a string, previously attached byname_attach ,
init_ipc , or qnx_name_attach), or a process ID (which is O/S dependent).

-g

Accept Gamma input. This is generally used fromlsend, and is the equivalent of runninggsend. It
is the default forgsend.

-h

Print a help message and exit.

-l

Accept Lisp input. This is generally used fromgsend, and is the equivalent of runninglsend. It is
the default forlsend.

-V

Print the version number.

-X

Exit immediately (usually used with-V).

Returns

A prompt with thetask name displayed.

Description

The lsendutility attaches to a running Gamma program and allows the user to send commands without
exiting the event loop of the attached process. Any statement may be issued, including changing the
definitions of existing functions.lsendstatements use Lisp syntax, which consists of the name of the
command or function, followed by a space-separated list of arguments, all enclosed in parentheses, like
this:

(command arg
1

arg
2

arg
3

...)
(function arg

1
arg

2
arg

3
...)

Thegsendutility is simply a symbolic link tolsend, and is the equivalent of callinglsendwith the-g
option.gsendstatements use Gamma syntax, which is slightly different from Lisp syntax. The command
or function name is outside the parentheses, and the arguments are separated by commas, like this:

command (arg
1
, arg

2
, arg

3
, ...)

function (arg
1
, arg

2
, arg

3
, ...)

51

lsend, gsend

To exit lsendor gsend, useCtrl -C or Ctl -D. Anything else you type will be parsed and passed on to the
task you have been communicating with.

Event processing stops in the Gamma program for the duration of either of these commands.

Example

Sending a Lisp command to an example Gamma process namedOtherProcess :

[sh]$ lsend "OtherProcess"
OtherProcess> (cos 5.5)
0.70866977429126
OtherProcess>

Sending a Gamma command to the same process:

[sh]$ gsend "OtherProcess"
OtherProcess> cos (5.5)
0.70866977429126
OtherProcess>

The example process:

Gamma>init_ipc ("OtherProcess");
t
Gamma>while(t) next_event();

It is possible to send several commands at once, by typing them one after another. Here is an example
usinglsendwith the Cascade Historian, running under the task nameHist :

[sh]$ lsend Hist
Hist> (disable p*)(enable ptbogus)(history p6)
t
Hist> (error "histdb: enable: No history found for: ptbogus")
Hist> t
Hist>

lsendsends commands and shows the return values until all the commands have been attempted. Each
command is processed separately by the Cascade Historian.lsenddisplays a prompt and the return value
for each command separately.

See the Sending Commands section of the Cogent Tools Demo for another example of this command in
use.

52

nsnames
nsnames — queries the Cascade NameServer.

Synopsis

nsnames [-DhNQsSUVX] [-d domain] [-e node] [-p pid] [-q queue] [-t task]

Arguments

-d domain

Report only on domains matching this shell expression.

-D

Sort by domain.

-e node

Report only on this node.

-h

Print this helpful message and exit.

-N

Sort by node.

-p pid

Report only on this process ID.

-q queue

Report only on queues matching this shell expression.

-Q

Sort by queue name.

-s

Supress headers.

-S

Sort by name (default).

-t task

Report only on tasks matching this shell expression.

-U

Unsorted output.

-V

Print the version number.

-X

Exit immediately (normally used with-V).

Returns

The specified information, listed to the console.

53

nsnames

Description

This module retrieves name information fromnserve, according to optional criteria. Apid or node of
0 matches any process ID or node ID. Thedomain , qname, andtask match on substrings, so
"/cogent/ll " and "/cogent/hl " would both be matched by:-t cogent .

Dependencies

nserve

See Also

Using the Cascade DataHub,nserve

54

nserve
nserve — starts the Cascade NameServer.

Syntax

nserve [-DhirvVX] [-p freqncy] [-s freqncy]

Arguments

-D

Do not detach from the console. Run in the foreground.

-h

Print a help message and exit.

-i

Run in isolation. Refuse tasks from other nodes. If-r is not specified, other nodes will still see
tasks on this node.

-p freqncy

Poll for dead network nodes everyfreqncy seconds (default is 5).

-r

Do not run a network redirector. No other name server on the network will see tasks on this node.
This name server will still see tasks on other nodes.

-s freqncy

Check for dead name servers on live nodes everyfreqncy polls (default is 1).

-v

Generate debugging output. Implies-D .

-V

Print version number.

-X

Exit immediately (normally used with-V).

Returns

On success, nothing; on error, a message.

Description

This module provides a network-wide name service for Cogent tasks. These tasks include, but are not
limited to, Cascade DataHub, Cascade Historian, Cascade TextLogger, SCADALisp, and Gamma. This
module is started automatically by them, after theqservemodule.

This module should be run before the TCP/IPSocketcommand is run. IfSocketis started beforenserve
then a race condition may occur where a MS-Windows node connects via TCP but sees nonserve
module running and incorrectly assumes that it is running without a Cascade DataHub. Normallyqserve
andnserveare placed in thesysnit.N file of the server. Names give tasks a method of identification
on one or many PCs. Thenservetask is an active name server, and (unlike QNX’s passivenameloc
module) notifies all its tasks of start and stop events which occur in other registered tasks.

Thenserveprogram also allows access to other registered tasks’ queues.

55

nserve

Dependencies

qserve

See also

Cascade NameServer, Using the Cascade DataHub,nsnames

56

qserve
qserve — starts the Cascade QueueServer.

Synopsis

qserve [-DhvVX]

Arguments

-D

Do not detach from the console. Run in the foreground.

-h

Print a help message and exit.

-v

Generate debugging information. (Implies the use of-D).

-V

Print the version number.

-X

Exit immediately (usually used with-V).

Returns

On success, nothing; on error, a message.

Description

Theqserveutility is an asynchronous queue manager for Cogent applications such as the Cascade
DataHub, Cascade Historian, Cascade TextLogger, and Gamma. Theqserveutility is started
automatically by any of these programs when they start up. It must be the first IPC-related task to be
started, followed bynserve.

It is possible for a task to have the same queue open for both read and write (only one open of each type)
without interfering with one another.

Dependencies

none

See Also

Using the Cascade DataHub, datahub

57

II. Data Types

Table of Contents
HI_stVALUE ...59

PT_stCPOINT ...60

PT_TYPE, PT_uVALUE...61

ST_STATUS..62

These are data types and structures commonly referenced in the Cascade DataHub API.

58

HI_stVALUE
HI_stVALUE — contains an (x,y) data tuple used by the Cascade Historian.

Synopsis
typedef struct HI_stVALUE
{

double xaxis;
double value;

} HI_stVALUE;

Members
xaxis X data value of the tuple, typically time expressed in seconds.

value Y data value of the tuple, typically the historical data of interest.

Description

This simple structure provides a generalized (x,y) data pair from which histories and queries are built. A
history, being a time-series of data, uses time as the x axis and therefore interprets the structure as (time,
value). Queries may also provide data vs. time, but may also provide data against some other variable.

This structure is analogous to the Cascade Historian classHI_stVALUE .

59

PT_stCPOINT
PT_stCPOINT — holds information about a Cascade DataHub point.

Synopsis
typedef struct PT_stCPOINT
{
short type;
PT_uVALUE value;
short conf;
char *name;
short locked;
short security;
void *address;
int32 seconds;
int32 nanoseconds;
void *userdata;
} PT_stCPOINT;

typedef PT_stCPOINT *PT_pCPOINT;

Members

At least the following fields are defined:

type

The type of the DataHub point’s data. This can be one of:

PT_TYPE_INT32

An integer.

PT_TYPE_REAL

A floating point number.

PT_TYPE_STRING

A character string.

Description

Holds information about a point in the Cascade DataHub.

See Also

Point Structure, Storage, and Manipulation

60

PT_TYPE, PT_uVALUE
PT_TYPE, PT_uVALUE— holds the type and value a Cascade DataHub point.

Synopsis
/* A point type can be at least one of the following: */
enum PT_TYPE
{
PT_TYPE_STRING,
PT_TYPE_REAL,
PT_TYPE_INT32,
};

/* A points value is stored in the following union: */
typedef union

{
ptreal r;
int32 i;
char *s;
} PT_uVALUE;

typedef PT_uVALUE *PT_pVALUE;

Members

At least the following fields are defined:

r

Either a single-precision or a double-precision floating point number.

i

A 32-bit signed integer regardless of the machine architecture or compiler.

s

A C-style (null-terminated) string of characters.

See Also

Point Structure, Storage, and Manipulation

61

ST_STATUS
ST_STATUS— contains return values for some Cogent C API functions.

Synopsis
typedef enum
{

ST_OK = 0, ST_ERROR, ST_NO_TASK, ST_NO_MSG, ST_WOULDBLOCK, ST_INTR,
ST_FULL, ST_LOCKED, ST_SECURITY, ST_NO_POINT, ST_INSIG, ST_UNKNOWN,
ST_NO_QUEUE, ST_CMD_SYNTAX_ERROR, ST_REPLIED, ST_WRONG_TYPE,
ST_TOO_LARGE, ST_NO_MEMORY, ST_OLD_DATA, ST_TIMEOUT

} ST_STATUS;

Members

The following descriptions are general, and should be interpreted in the context of the specific function
and circumstances.

ST_OK The function executed without error.

ST_ERROR An error occurred.

ST_NO_TASK A required task does not exist.

ST_NO_MSG There is no message available.

ST_WOULDBLOCK This action would block, and is not permitted.

ST_INTR An interrupt occurred.

ST_FULL The queue is full.

ST_LOCKED A Cascade DataHub point is locked.

ST_SECURITY The security level is insufficient.

ST_NO_POINT A required Cascade DataHub point does not exist.

ST_INSIG A change in a Cascade DataHub point’s value is insignificant. This is not
really an error, but a notification that no exception will be generated by the
datahub.

ST_UNKNOWN There is an unknown error.

ST_NO_QUEUE A target task has no queue, orqserveis absent.

ST_CMD_SYNTAX_ERRORThe command was not found, or there was a syntax error.

ST_REPLIED The reply was complete.

ST_WRONG_TYPE The type of a point or variable was wrong.

ST_TOO_LARGE A value to be written to memory is larger than the available buffer.

ST_NO_MEMORY There is insufficient memory available.

ST_OLD_DATA Time-significant data is out of date.

ST_TIMEOUT A timeout occurred in poll mode.

Description

This structure contains return values for some Cogent C API functions.

62

III. Cascade DataHub Functions

Table of Contents
DH_AppendString ...64

DH_CreatePoint ..65

DH_FindPointAddress ..66

DH_FormatPoint ..67

DH_ParsePointMsg ...69

DH_ParsePointString ..71

DH_PointAdd , DH_PointDivide , DH_PointMultiply ...73

DH_ReadPoint , DH_ReadExistingPoint ...75

DH_RegisterAllPoints ...77

DH_RegisterPoint , DH_RegisterExistingPoint ...78

DH_SendPointMessage ..80

DH_SetLock , DH_SetSecurity ..81

DH_SetReceiveFormat ..82

DH_SetTransmitFormat ...84

DH_UnregisterPoint ..85

DH_WritePoint , DH_WriteExistingPoint , DH_WriteExistingPoints86

63

DH_AppendString
DH_AppendString — appends a string to a point.

Syntax

#include <cogent.h>
ST_STATUS DH_AppendString (

IP_Task* myself ,
PT_pCPOINT ppoint ,
char* str ,
IP_Msg* hmsg,
ER_hLIST elist

);

Arguments

myself

The task handle associated with this task. This should always be the return value from
IP_NserveInit .

ppoint

A pointer to a Cascade DataHub point structure. All fields are valid, and will be treated by the write,
but in the first call on a point the address field must be zero. It will be filled in automatically. This
address will be valid so long as the point exists in the DataHub, and if, in subsequentDH_*
functions, the address is provided for this point, the function will run slightly faster.

str

The string of characters to be appended to the existing point value.

hmsg

A handle to a previously allocated message structure (usingIP_MsgCreate) providing enough
buffer space to handle the inter-process communication associated with the DataHub transaction.

elist

A return value containing error information. This is unimplemented in this version, and should be
NULL.

Returns

ST_OKon success,ST_ERRORon failure, or some other value ofST_STATUS.

Description

This function appends a string to the value of a point. It is an atomic function that operates in one step,
without reading or evaluating the existing value of the point. This provides a way to modify the value
quickly, without interference or serialization problems.

See Also

DH_PointAdd

64

DH_CreatePoint
DH_CreatePoint — constructs a point.

Syntax

#include <cogent.h>
ST_STATUS DH_CreatePoint (

IP_Task* myself ,
PT_pCPOINT ppoint ,
IP_Msg* hmsg,
ER_hLIST elist

);

Arguments

myself

The task handle associated with this task. This should always be the return value from
IP_NserveInit .

ppoint

A pointer to a Cascade DataHub point structure. All fields are valid, and will be treated by the write,
but in the first call on a point the address field must be zero. It will be filled in automatically. This
address will be valid so long as the point exists in the DataHub, and if, in subsequentDH_*
functions, the address is provided for this point, the function will run slightly faster.

hmsg

A handle to a previously allocated message structure (usingIP_MsgCreate) providing enough
buffer space to handle the inter-process communication associated with the DataHub transaction.

elist

A return value containing error information. This is unimplemented in this version, and should be
NULL.

Returns

ST_OKon success,ST_ERRORon failure, or some other value ofST_STATUS.

Description

This function constructs a point in the Cascade DataHub. The value and confidence assigned to the point
are both0.

See Also

DH_ReadPoint, DH_RegisterPoint, DH_WritePoint

65

DH_FindPointAddress
DH_FindPointAddress — is for internal use only.

Syntax

#include <cogent.h>
ST_STATUS DH_FindPointAddress (

IP_Task* myself ,
PT_pCPOINT ppoint ,
ER_hLIST elist

);

Description

This function is for internal use only.

66

DH_FormatPoint
DH_FormatPoint — puts point data in ASCII format.

Syntax

#include <cogent.h>
int DH_FormatPoint (

char* command,
IP_Task* myself ,
PT_pCPOINT ppoint ,
char* buf ,
int len ,
int flags

);

Arguments

command

The first word in the command string. It can’t beNULL, but it can be blank.

myself

The task handle associated with this task. This should always be the return value from
IP_NserveInit .

ppoint

A pointer to a Cascade DataHub point structure, which must contain at leastname. All other fields
in the point structure should be0 if this is the first call on this point, because they will be filled in by
this call. Subsequent calls on the same point do not require zeroing any fields. If one point structure
is used with several point names, the address field must be zeroed each time a different name is used
in a call to this function.

buf

The buffer to be written into.

len

The length ofbuf .

flags

One or none of these:

PT_FMT_ASCII Constructs a humanly readable ASCII string (the default).

PT_FMT_BINARY Encodes data as a raw binary representation, efficient for
parsing.

PT_FMT_HEX Encodes data as ASCII encoded hex. (This is not a valuable
format since it is more difficult to parse and less space
efficient than binary, and it is more difficult for humans to read
than regular ASCII.)

PT_FMT_POINT_SECURITY Takes a security value from the point structure, not a task
structure.

Returns

The length of the buffer.

67

DH_FormatPoint

Description

This function takes a point structure and creates an ASCII representation of data for the point in thebuf
buffer. The data is represented as a list, in this format:

(command pointname type value conf security locked seconds nanoseconds)

The resulting buffer can be passed back toDH_ParsePointString , which would parse it
back out. It infers the flag.

See Also

PT_stCPOINT, Point Structure, Storage, and Manipulation

68

DH_ParsePointMsg
DH_ParsePointMsg — parses a point message from the Cascade DataHub.

Syntax

#include <cogent.h>
ST_STATUS DH_ParsePointMsg (

PT_pCPOINT ppoint ,
char* name,
IP_hMSG hmsg,
ER_hLIST elist

);

Arguments

ppoint

A pointer to a point structure which will be filled in by this function. Thename element of the
structure is not filled in, but is placed in thename argument instead.

All other fields are valid, and will be treated by the write, but in the first call on a point the address
field must be zero. It will be filled in automatically. This address will be valid so long as the point
exists in the DataHub, and if, in subsequentDH_* functions, the address is provided for this point,
the function will run slightly faster.

name

A pointer to a buffer which will be filled in with the point’sname by this function.

hmsg

A handle to a previously allocated message structure (usingIP_MsgCreate) providing enough
buffer space to handle the inter-process communication associated with the DataHub transaction.

elist

A return value containing error information. This is unimplemented in this version, and should be
NULL.

Returns

ST_OKon success,ST_ERRORon failure, or some other value ofST_STATUS. ST_ERRORmeans the
buffer did not contain a valid point specification.

Description

This function parses the return value fromDH_ReadPoint , DH_RegisterPoint , or a message
received through an asynchronous message (exception) from the DataHub, and places the result in the
provided point structure.

The name of the point is not modified in the point structure, as there is no clear manner in which the
name should be handled. This leaves it up to the programmer to perform the memory allocation and
deallocation of the point name storage as required. This function will only treat a single point
specification in the message, ignoring all points after the first.

69

DH_ParsePointMsg

See Also

Communicating with the Cascade DataHub, DH_ParsePointString

70

DH_ParsePointString
DH_ParsePointString — parses the return ofDH_ReadPoint andDH_RegisterPoint .

Syntax

#include <cogent.h>
ST_STATUS DH_ParsePointString (

PT_pCPOINT ppoint ,
char* name,
char* msgdata ,
char** msgend,
ER_hLIST elist

);

Arguments

ppoint

A pointer to a point structure which will be filled in by this function. Thename element of the
structure is not filled in, but is placed in thename argument instead.

All other fields are valid, and will be treated by the write, but in the first call on a point the address
field must be zero. It will be filled in automatically. This address will be valid so long as the point
exists in the DataHub, and if, in subsequentDH_* functions, the address is provided for this point,
the function will run slightly faster.

name

A pointer to a buffer which will be filled in with the point name by this function.

msgdata

A pointer to a character string which contains one or more point specifications. This can be the
buffer portion of anIP_hMSG, available using the IP_MsgBuffer function.

msgend

Returns a pointer to a (char*) variable which will point to the character following the end of the
point specification parsed by this call. This pointer may be passed back to a subsequent call to
DH_ParsePointString to handle more than one point specification in a single incoming
message, as may occur for a point exception.

elist

A return value containing error information. This is unimplemented in this version, and should be
NULL.

Returns

ST_OKon success,ST_ERRORon failure, or some other value ofST_STATUS. ST_ERRORmeans the
msgdata did not contain a valid point specification.

Description

This function parses the return value fromDH_ReadPoint andDH_RegisterPoint , or a message
received through an asynchronous message (exception) from the DataHub, and places the result in the
provided point structure.

71

DH_ParsePointString

The name of the point is not modified in the point structure, as there is no clear manner in which the
name should be handled. This leaves it up to the programmer to perform the memory allocation and
deallocation of the point name storage as required. Themsgend argument allows the programmer to
deal with more than one point definition in a single message, which is typical of DataHub exception
messages. When the last point definition in the message has been parsed, thenmsgend will point to a
zero length string(**msgend == ’\0’) .

See Also

Communicating with the Cascade DataHub, DH_ParsePointMsg

72

DH_PointAdd , DH_PointDivide , DH_PointMultiply
DH_PointAdd, DH_PointDivide, DH_PointMultiply — modify a point in place, with one
message.

Syntax

#include <cogent.h>
ST_STATUS DH_PointAdd (

IP_Task* myself ,
PT_pCPOINT ppoint ,
double value ,
IP_Msg* hmsg,
ER_hLIST elist

);
ST_STATUS DH_PointDivide (

IP_Task* myself ,
PT_pCPOINT ppoint ,
double value ,
IP_Msg* hmsg,
ER_hLIST elist

);
ST_STATUS DH_PointMultiply (

IP_Task* myself ,
PT_pCPOINT ppoint ,
double value ,
IP_Msg* hmsg,
ER_hLIST elist

);

Arguments

myself

The task handle associated with this task. This should always be the return value from
IP_NserveInit .

ppoint

A pointer to a Cascade DataHub point structure. All fields are valid, and will be treated by the write,
but in the first call on a point the address field must be zero. It will be filled in automatically. This
address will be valid so long as the point exists in the DataHub, and if, in subsequentDH_*
functions, the address is provided for this point, the function will run slightly faster.

value

The value to be used to modify the value of the point.

hmsg

A handle to a previously allocated message structure (usingIP_MsgCreate) providing enough
buffer space to handle the inter-process communication associated with the DataHub transaction.

elist

A return value containing error information. This is unimplemented in this version, and should be
NULL.

Returns

ST_OKon success,ST_ERRORon failure, or some other value ofST_STATUS.

73

DH_PointAdd , DH_PointDivide , DH_PointMultiply

Description

These functions give an atomic way to modify a value in the DataHub in place, using a single message.
Normally a value is modified in three steps: read, modify, and write. This functions offers a way to
modify a value without interference or serialization problems.

The operations provided are as follows:

DH_PointAdd Adds thevalue to the point.

DH_PointDivide Divides the point by thevalue .

DH_PointMultiply Multiplies the point by thevalue .

See Also

DH_AppendString

74

DH_ReadPoint , DH_ReadExistingPoint
DH_ReadPoint, DH_ReadExistingPoint — read a point from the Cascade DataHub.

Syntax

#include <cogent.h>
ST_STATUS DH_ReadPoint (

IP_hTASK myself ,
PT_pCPOINT ppoint ,
IP_hMSG hmsg,
ER_hLIST elist

);
ST_STATUS DH_ReadExistingPoint (

IP_hTASK myself ,
PT_pCPOINT ppoint ,
IP_hMSG hmsg,
ER_hLIST elist

);

Arguments

myself

The task handle associated with this task. This should always be the return value from
IP_NserveInit .

ppoint

A pointer to a Cascade DataHub point structure, which must contain at leastname. All other fields
in the point structure should be0 if this is the first call on this point, because they will be filled in by
this call. Subsequent calls on the same point do not require zeroing any fields. If one point structure
is used with several point names, the address field must be zeroed each time a different name is used
in a call to this function.

hmsg

A handle to a previously allocated message structure (usingIP_MsgCreate) providing enough
buffer space to handle the inter-process communication associated with the DataHub transaction.

inter

Process communication associated with the DataHub transaction.

elist

A return value containing error information. This is unimplemented in this version, and should be
NULL.

Returns

ST_OKon success,ST_ERRORon failure, or some other value ofST_STATUS.

Description

This function reads a point from the DataHub. If the named point does not exist thenDH_ReadPoint
will create it on the DataHub with a confidence factor of zero andDH_ReadExistingPoint will
return the errorST_NO_POINT.

75

DH_ReadPoint , DH_ReadExistingPoint

See Also

Communicating with the Cascade DataHub, DH_CreatePoint, DH_WritePoint, DH_RegisterPoint

76

DH_RegisterAllPoints
DH_RegisterAllPoints — registers with the Cascade DataHub for all points.

Syntax

#include <cogent.h>
ST_STATUS DH_RegisterAllPoints (

IP_hTASK myself ,
char* domain ,
int future ,
IP_hMSG hmsg,
ER_hLIST elist

);

Arguments

myself

The task handle associated with this task. This should always be the return value from
IP_NserveInit .

domain

The DataHub domain on which to register. If the domain is NULL, then the current domain is used
and all exceptions will be transmitted with unqualified names. If a valid domain is specified, then all
exceptions will be transmitted with qualified names, even if the domain is the current domain for the
application.

future

A flag indicating whether points which are created on the DataHub subsequent to this call should
also be registered automatically. 0 = do not automatically register future points. 1 = automatically
register future points

hmsg

A handle to a previously allocated message structure (usingIP_MsgCreate) providing enough
buffer space to handle the inter-process communication associated with the DataHub transaction.

elist

A return value containing error information. This is unimplemented in this version, and should be
NULL.

Returns

ST_OKon success,ST_ERRORon failure, or some other value ofST_STATUS.

Description

This function informs the DataHub that this task should receive exceptions on all points. If the future flag
is set, then the DataHub will automatically begin to inform the task of any points which are created on
the DataHub subsequent to this call. This call will cause an exception to be generated from the DataHub
for every point, specifically to this task (not to other tasks that may also be registered).

See Also

Communicating with the Cascade DataHub, DH_RegisterPoint

77

DH_RegisterPoint , DH_RegisterExistingPoint
DH_RegisterPoint, DH_RegisterExistingPoint — register with the Cascade DataHub for
a point.

Syntax

#include <cogent.h>
ST_STATUS DH_RegisterPoint (

IP_hTASK myself ,
PT_pCPOINT ppoint ,
IP_hMSG hmsg,
ER_hLIST elist

);
ST_STATUS DH_RegisterExistingPoint (

IP_hTASK myself ,
PT_pCPOINT ppoint ,
IP_hMSG hmsg,
ER_hLIST elist

);

Arguments

myself

The task handle associated with this task. This should always be the return value from
IP_NserveInit .

ppoint

A pointer to a Cascade DataHub point structure, which must contain at leastname. All other fields
in the point structure should be0 if this is the first call on this point, because they will be filled in by
this call. Subsequent calls on the same point do not require zeroing any fields. If one point structure
is used with several point names, the address field must be zeroed each time a different name is used
in a call to this function.

hmsg

A handle to a previously allocated message structure (usingIP_MsgCreate) providing enough
buffer space to handle the inter-process communication associated with the DataHub transaction.

elist

A return value containing error information. This is unimplemented in this version, and should be
NULL.

Returns

ST_OKon success,ST_ERRORon failure, or some other value ofST_STATUS.

Description

This function informs the DataHub that this task should receive exceptions (value change notifications)
for the named point. The DataHub will not generate an initial exception on the point, but instead returns
the current value of the point in theppoint structure. Subsequent exceptions will be transmitted to the
task as type=IP_ASYNCmessages with command=ST_EXCEPTIONor command=ST_ECHO.
DH_RegisterPoint will create the point on the DataHub if it does not exist.
DH_RegisterExistingPoint will return an error if the point does not exist.

78

DH_RegisterPoint , DH_RegisterExistingPoint

See Also

Communicating with the Cascade DataHub, DH_UnregisterPointDH_CreatePoint, DH_ReadPoint,
DH_WritePoint, andDH_ParsePointMsg

79

DH_SendPointMessage
DH_SendPointMessage — is for internal use only.

Syntax

#include <cogent.h>
ST_STATUS DH_SendPointMessage (

IP_Task* myself ,
PT_pCPOINT ppoint ,
IP_Msg* hmsg,
ER_hLIST elist

);

Description

This function is for internal use only.

80

DH_SetLock , DH_SetSecurity
DH_SetLock, DH_SetSecurity — set the lock or security according to point status.

Syntax

#include <cogent.h>
ST_STATUS DH_SetLock (

IP_Task* myself ,
PT_pCPOINT ppoint ,
IP_Msg* hmsg,
ER_hLIST elist

);
ST_STATUS DH_SetSecurity (

IP_Task* myself ,
PT_pCPOINT ppoint ,
IP_Msg* hmsg,
ER_hLIST elist

);

Arguments

myself

The task handle associated with this task. This should always be the return value from
IP_NserveInit .

ppoint

A pointer to a Cascade DataHub point structure, which must contain at leastname. All other fields
in the point structure should be0 if this is the first call on this point, because they will be filled in by
this call. Subsequent calls on the same point do not require zeroing any fields. If one point structure
is used with several point names, the address field must be zeroed each time a different name is used
in a call to this function.

hmsg

A handle to a previously allocated message structure (usingIP_MsgCreate) providing enough
buffer space to handle the inter-process communication associated with the DataHub transaction.

elist

A return value containing error information. This is unimplemented in this version, and should be
NULL.

Returns

ST_OKon success,ST_ERRORon failure, or some other value ofST_STATUS.

Description

These functions set or unset the Cascade DataHub lock or security for a point according to the status of
the point itself. They look at the point structure, and set the lock or security status in the DataHub to be
the same as the point’slocked or security value.

81

DH_SetReceiveFormat
DH_SetReceiveFormat — sets DataHub-to-client transmissions to binary or ASCII.

Syntax

#include <cogent.h>
ST_STATUS DH_SetReceiveFormat (

IP_Task* myself ,
IP_Msg* hmsg,
char* domain ,
int flag ,
ER_hLIST elist

);

Arguments

myself

The task handle associated with this task. This should always be the return value from
IP_NserveInit .

hmsg

A handle to a previously allocated message structure (usingIP_MsgCreate) providing enough
buffer space to handle the inter-process communication associated with the DataHub transaction.

domain

The name of the Cascade DataHub domain.

flag

One of these:

PT_FMT_ASCII Constructs a humanly readable ASCII string (the default).

PT_FMT_BINARY Encodes data as a raw binary representation, efficient for parsing.

PT_FMT_HEX Encodes data as ASCII encoded hex. This is not a valuable format since it
is more difficult to parse and less space efficient than binary, and it is more
difficult for humans to read than regular ASCII.

elist

A return value containing error information. This is unimplemented in this version, and should be
NULL.

Returns

ST_OKon success,ST_ERRORon failure, or some other value ofST_STATUS.

Description

This function sets a global variable that determines whether transmissions from the Cascade DataHub to
a client will be in binary or ASCII format. It instructs the DataHub to transmit all messages to the custom
client using the specified format. This call will fail withST_NO_TASKif the custom client has never
successfully called one ofDH_RegisterPoint, DH_RegisterExistingPointor DH_RegisterAllPoints. This
is because the Cascade DataHub does not maintain internal state information for clients that are not
registered to receive point exceptions.

82

DH_SetReceiveFormat

See Also

DH_SetTransmitFormat

83

DH_SetTransmitFormat
DH_SetTransmitFormat — sets client-to-DataHub transmissions to binary or ASCII.

Syntax

#include <cogent.h>
int DH_SetTransmitFormat (

int msgformat
);

Arguments

msgformat

One of these:

PT_FMT_ASCII Constructs a humanly readable ASCII string (the default).

PT_FMT_BINARY Encodes data as a raw binary representation, efficient for parsing.

PT_FMT_HEX Encodes data as ASCII encoded hex. This is not a valuable format since it
is more difficult to parse and less space efficient than binary, and it is more
difficult for humans to read than regular ASCII.

Returns

ST_OKon success,ST_ERRORon failure, or some other value ofST_STATUS.

Description

This function sets a global variable that determines whetherDH_WritePoint will attempt to use
binary or ASCII format in transmissions from a client to the Cascade DataHub. It instructs the API to
transmit all point change messages from the custom client to the DataHub using the specified message
format.

See Also

DH_SetReceiveFormat

84

DH_UnregisterPoint
DH_UnregisterPoint — unregisters a point from the Cascade DataHub.

Syntax

#include <cogent.h>
ST_STATUS DH_UnregisterPoint (

IP_Task* myself ,
PT_pCPOINT ppoint ,
IP_Msg* hmsg,
ER_hLIST elist

);

Arguments

myself

The task handle associated with this task. This should always be the return value from
IP_NserveInit .

ppoint

A pointer to a Cascade DataHub point structure, which must contain at leastname. All other fields
in the point structure should be0 if this is the first call on this point, because they will be filled in by
this call. Subsequent calls on the same point do not require zeroing any fields. If one point structure
is used with several point names, the address field must be zeroed each time a different name is used
in a call to this function.

hmsg

A handle to a previously allocated message structure (usingIP_MsgCreate) providing enough
buffer space to handle the inter-process communication associated with the DataHub transaction.

elist

A return value containing error information. This is unimplemented in this version, and should be
NULL.

Returns

ST_OKon success,ST_ERRORon failure, or some other value ofST_STATUS.

Description

This function stops the Cascade DataHub from transmitting exceptions for theppoint .

See Also

DH_RegisterPoint

85

DH_WritePoint , DH_WriteExistingPoint ,
DH_WriteExistingPoints
DH_WritePoint, DH_WriteExistingPoint, DH_WriteExistingPoints — write
points to the Cascade DataHub.

Syntax

#include <cogent.h>
ST_STATUS DH_WritePoint (

IP_hTASK myself ,
PT_pCPOINT ppoint ,
IP_hMSG hmsg,
ER_hLIST elist

);
ST_STATUS DH_WriteExistingPoint (

IP_hTASK myself ,
PT_pCPOINT ppoint ,
IP_hMSG hmsg,
ER_hLIST elist

);
ST_STATUS DH_WriteExistingPoints (

IP_hTASK myself ,
PT_pCPOINT ppoints ,
int npoints ,
IP_hMSG hmsg,
ER_hLIST elist

);

Arguments

myself

The task handle associated with this task. This should always be the return value from
IP_NserveInit

ppoint

A pointer to a Cascade DataHub point structure. All fields are valid, and will be treated by the write,
but in the first call on a point the address field must be zero. It will be filled in automatically. This
address will be valid so long as the point exists in the DataHub, and if, in subsequentDH_*
functions, the address is provided for this point, the function will run slightly faster.

ppoints

A pointer to an array of DataHub points. Each of the points in the array must already exist in the
DataHub.

npoints

The number of points in the array of points.

hmsg

A handle to a previously allocated message structure (usingIP_MsgCreate) providing enough
buffer space to handle the inter-process communication associated with the DataHub transaction.

elist

A return value containing error information. This is unimplemented in this version, and should be
NULL.

86

DH_WritePoint , DH_WriteExistingPoint , DH_WriteExistingPoints

Returns

ST_OKon success,ST_ERRORon failure, or some other value ofST_STATUS.

Description

This function writes a point into the DataHub. If the named point does not exist thenDH_WritePoint
will create it on the DataHub andDH_WriteExistingPoint will return the errorST_NO_POINT.

DH_WriteExistingPoints writes values to an array of existing points. It reduces processing time
by sending as many points as possible in one message.

See Also

Communicating with the Cascade DataHub, DH_CreatePoint, DH_ReadPoint, DH_RegisterPoint

87

IV. Cogent Driver Functions

Table of Contents
DR_ApCloseIPC ..89

DR_ApCommand...90

DR_ApConnectIPC ...91

DR_ApDescribeBuffer ..92

DR_ApDescribePnt ...94

DR_ApInitIPC ...96

DR_ApListBuffers ...97

DR_ApListPoints ...99

DR_ApPointBufAddress ...101

DR_ApReadBlock ..103

DR_ApReadControl ...105

DR_ApReadPoint ..107

DR_ApReadStatus ...109

DR_ApUpdateBuffers ..111

DR_ApWriteBlock ...112

DR_ApWriteControl ...114

DR_ApWritePoint ...116

88

DR_ApCloseIPC
DR_ApCloseIPC — closes the IPC link.

Syntax

#include <cogent.h>
int DR_CloseIPC (

);

Arguments

none

Returns

An integer value0 if the IPC system terminated successfully, otherwise the following error may be
reported:

DR_API_ERROR

Description

This function closes the IPC link to the driver.

Example

DR_ApCloseIPC ();

89

DR_ApCommand
DR_ApCommand— sends ASCII commands and returns replies.

Syntax

#include <cogent.h>
int DR_ApCommand(

char* command,
char* reply ,
int max_length ,
char** error

);

Arguments

command

A string containing the command to be sent.

reply

A pointer to the buffer to receive the reply from the driver.

max_length

The length of the reply buffer in bytes.

error

The address of a string pointer. In case of error (non-zero return), the string pointer is set to the
corresponding error description string. The error string is contained in a static buffer and remains
valid only until the next API call. The parameter may beNULL if no error string is required.

Returns

The integer value0 if the command exchange was successful, otherwise the following errors may be
reported:

DR_API_STATUS_ERRORS
DR_API_IPC_ERRORS

Description

This function sends an ASCII script command to the driver, returning the ASCII reply. You will need to
interpret the response (see Configuration File in the CIF Driver manual). This function provides an
all-purpose interface to the driver and is required infrequently.

Example

int result;
char data[1024];
char *error_str;

if (!(result = DR_ApCommand ("(apropos *)", data, 1024,
&error_str)))

printf (" Driver commands available:\n%s\n", data);
else

printf (" Error@ApCommand (%d, %s)\n",
result, error_str);

90

DR_ApConnectIPC
DR_ApConnectIPC — connects to Cogent products via IPC.

Syntax

#include <cogent.h>
int DR_ApConnectIPC (

char* taskname ,
IP_hTASK my_task ,
IP_hMSG send_msg ,
IP_hMSG reply_msg ,
char* admin_name

);

Arguments

taskname

The name of the user’s application; it can be any unique name in the system’s namespace.

my_task

The task structure required to establish inter-process communication (IPC) with another Cogent
product. IfNULL is specified, then this function will create the required internal task structure. The
process of creating the task structure will automatically publish the taskname to the Cascade
NameServer (nserve) if it is running.

send_msg, reply_msg

The message structures required to send and receive IPC messages to another Cogent product. If
NULL is specified, then this function will create the required internal structures with a maximum
buffer size of 2048 bytes. Messages greater than 2048 bytes in length will be truncated.

admin_name

Taskname or PID of the driver (see drcif_ad in the respective Cogent Driver manual).

Returns

The integer value0 (DR_API_OK) if the IPC system initialized successfully, otherwise the following
error may be reported:

DR_API_ERROR

Description

This function permits users familiar with the Cogent library to connect to the driver using already
defined task and/or message buffers. This is the underlying function inDR_ApInitIPC , which simply
calls this function withNULL task and message buffer parameters.

91

DR_ApDescribeBuffer
DR_ApDescribeBuffer — gets segment attribute information.

Syntax

#include <cogent.h>
int DR_ApDescribeBuffer (

int card_id ,
int buffer_id ,
int initial_seg ,
int max_attr ,
int* num_attr ,
DR_ApSegAttributes_t* attributes ,
char** error

);

Arguments

card-id

The card ID of the requested buffer.

buffer_id

The buffer ID of the requested buffer.

initial_seg

The ID of the first segment to be described. This parameter, in combination withmax_attr ,
permits only a portion of the segments to be listed. This is useful if there are a large number of
segments and limited memory space to contain them. Segments can be referenced as0 to n-1 .

max_attr

The maximum number of segments to be described, which must be less than or equal to the length
of the array ofDR_ApSegAttributes_t structures.

attributes

A pointer to an array ofDR_ApSegAttributes_t structures, of length at leastmax_attr , that
will receive the segment attribute information. Each element in the array (a segment attribute
structure) describes a segment of the buffer with a particular data type and r/w capability. Multiple
segments can exist in a buffer, so that more than one set of attributes may be returned for each
buffer. Each segment description includes an offset in the buffer and length in bytes, the segment
type and the readable and writeable attributes.

error

The address of a string pointer. In case of error (non-zero return), the string pointer is set to the
corresponding error description string. The error string is contained in a static buffer and remains
valid only until the next API call. The parameter may beNULL if no error string is required.

Returns

The integer value0 if the function was successful, otherwise one of the following error codes:

DR_API_IPC_ERRORS
DR_API_STATUS_ERRORS
DR_ERR_CARD_INVALID
DR_ERR_BLK_INVALID
DR_ERR_BLK_NOT_FOUND
DR_ERR_NO_USER_OBJECT

92

DR_ApDescribeBuffer

Description

This function gets information on the segment attributes of the specified buffer.

Example
int i, j, n_attr, num_blks;
DR_ApSegAttributes_t seg_attr[4][32];

/* continued from example of DR_ApListBuffers */

for (i=0; i<num_blks; i++)
{

if (!(result = DR_ApDescribeBuffer (0, i, 0, 32, &n_attr,
&(seg_attr[i][0]), &error_str)))

{
printf (" Buffer %d:\n", i);
for (j=0; j<n_attr; j++)
{

printf ("[%d] %s%s %s data from %d for %d bytes\n",
(seg_attr[i][j].buf_id),
(seg_attr[i][j].readable?"reads":""),
(seg_attr[i][j].writeable?"writes":""),
((DR_API_BIT_TYPE == seg_attr[i][j].type)

?"digital":
((DR_API_INT16_TYPE ==seg_attr[i][j].type)

?"analog":"unknown")),
seg_attr[i][j].offset,
seg_attr[i][j].size);

}
}
else

printf (" Error@DescribeBuffer (%d,%s)\n",
result, error_str);

}

printf (" Digital read requires blocks: ");
for (i=0; i<num_blks; i++)

for (j=0; j<n_attr; j++)
{

if (seg_attr[i][j].readable &&
seg_attr[i][j].type==DR_API_BIT_TYPE)

{
printf(" %d[%d] for %d, ",
seg_attr[i][j].buf_id,
seg_attr[i][j].offset,
seg_attr[i][j].size);

}
}

printf ("\n");

printf (" Analog write requires blocks: ");
for (i=0; i<num_blks; i++)

for (j=0; j<n_attr; j++)
{

if (seg_attr[i][j].writeable &&
seg_attr[i][j].type==DR_API_INT16_TYPE)

{
printf(" %d[%d] for %d, ",

seg_attr[i][j].buf_id,
seg_attr[i][j].offset,
seg_attr[i][j].size);

}
}

printf ("\n");

93

DR_ApDescribePnt
DR_ApDescribePnt — gives a description of a point.

Syntax

#include <cogent.h>
int DR_ApDescribePnt (

char* pnt_name ,
int* pnt_type ,
int* enabled ,
int* readable ,
int* writeable ,
char* address ,
int addr_len ,
char** error

);

Arguments

pnt_name

A string containing the name of the required point.

pnt_type

If not NULLand the point is defined, then the type of the point is returned here. The following point
types are defined (seedr_api.h):

* DR_API_DOUBLE_TYPE
* DR_API_INT16_TYPE
* DR_API_BIT_TYPE

enabled

If not NULLand the point is defined, then the status of the point is returned here, 1 if enabled, 0 if
disabled.

readable

If not NULLand the point is defined, then 1 is returned if the point is configured as readable.

writeable

If not NULLand the point is defined, then 1 is returned if the point is configured as writeable.

address

If not NULL, the address of a string to be set to the point’s address string, as specified during the
configuration.

addr_len

The maximum length of the address string. Although addressing requirements vary with the type of
driver and point, 16 characters is usually sufficient.

error

Address of a string pointer, in case of error (non-zero return), the string pointer is set to the
corresponding error description string. The error string is contained in a static buffer and remains
valid only until the next API call. The parameter may beNULL if no error string is required.

94

DR_ApDescribePnt

Returns

The integer value0 if the point was accessed successfully, otherwise one of the following error codes:

DR_ERR_PNT_NOT_FOUND
DR_ERR_PNT_NOT_ENABLED
DR_ERR_PNT_NOT_READABLE
DR_ERR_PNT_TYPE_NO_REP
DR_API_STATUS_ERRORS
DR_API_IPC_ERRORS

Description

This function gets a description of the named point.

Example

int enabled, readable, writeable, type;
char *name = "counter";
char address[16];
char *error_str;

if result = DR_ApDescribePoint (name, &type, &enabled,
&readable, &writeable,
address, sizeof(address), &error_str))

{
printf (" Error@DescribePoint (%d, %s)\n",

result, error_str);
}
else
{

printf (" Point %s: type %d, %s%s, addr: %s\n",
test_pnt, type, (readable?"R":""),
(writeable?"W":""), address);

}

95

DR_ApInitIPC
DR_ApInitIPC — opens the connection to the driver.

Syntax

#include <cogent.h>
int DR_ApInitIPC (

char* taskname ,
char* admin_name

);

Arguments

taskname

The name of the user’s application. It can be any unique name in the system’s namespace.

admin_name

The taskname of the driver (see drcif_ad in the respective Cogent Driver manual). The driver PID
can also be used.

Returns

The integer value0 (DR_API_OK) if the IPC system initialized successfully, otherwise the following
error may be reported:

DR_API_ERROR

Description

This function opens the connection to the driver. If the Cascade NameServer (nserve) is available, then it
is used to locate the driver by name, otherwise the QNXnamelocservice is used. Send and reply
message buffers are created with a default size of 2048 bytes. Subsequent IPC messages greater than
2048 bytes in length will be truncated.

Example:
char *taskname = "dr_test";
char *admin_name = "/dr/cif";

if (argc > 1)
{

taskname = argv[1];
if (argc > 2)

admin_name = argv[2];
}

if (!DR_ApInitIPC (taskname, admin_name))
{

printf ("Successfully connected %s to %s\n\n",
taskname, admin_name);

}
else

printf ("Failed to connect %s to %s\n", argv[0], argv[1]);

96

DR_ApListBuffers
DR_ApListBuffers — lists blocks defined to the driver.

Syntax

#include <cogent.h>
int DR_ApListBuffers (

int card_id ,
int max_bufs ,
int* num_bufs ,
unsigned short* size ,
char** error

);

Arguments

card_id

The card ID of the requested block of data.

max_bufs

The maximum number of buffers to be listed.

num_bufs

If not NULL, the address of the variable to return the actual number of buffers associated with the
specified card.

size

If not NULL, a pointer to an array at leastmax_bufs long, that will be filled with the size (in bytes)
of each of thenum_bufs blocks.

error

The address of a string pointer. In case of error (non-zero return), the string pointer is set to the
corresponding error description string. The error string is contained in a static buffer and remains
valid only until the next API call. The parameter may beNULL if no error string is required.

Returns

The integer value0 if the function was successful, otherwise one of the following error codes:

DR_API_IPC_ERRORS
DR_API_STATUS_ERRORS
DR_ERR_CARD_INVALID
DR_ERR_BLK_INVALID
DR_ERR_BLK_NOT_FOUND
DR_ERR_NO_USER_OBJECT

Description

This function provides a list of the blocks currently defined to the driver. This information may then be
used to get further block attribute information and read or write the blocks.

97

DR_ApListBuffers

Example
int i, num_blks, result;
unsigned short buf_size[4];
char *error_str;

num_blks = 0;
if (!(result = DR_ApListBuffers (0, 4, &num_blks, buf_size,

&error_str)))
{

printf (" Device 0 has %d buffers with sizes ", num_blks);
for (i=0; i<num_blks; i++)

printf ("%d%s", buf_size[i],
((i+1==num_blks)?".":", "));

printf ("\n");
}
else

printf (" Error@ListBuffers (%d,%s)\n",
result, error_str);

}

98

DR_ApListPoints
DR_ApListPoints — lists points defined to the driver.

Syntax

#include <cogent.h>
int DR_ApListPoints (

char* filter ,
int* num_names,
char** pnt_names ,
int max_names,
char* data ,
int max_data_length ,
char** error

);

Arguments

filter

A string containing a filter specification for the points, including name pattern, and point status and
type. If NULL is provided, then all points will be requested (the equivalent of using a filter pattern of
"*"). The filter syntax is as follows:

name_pattern [w][r][e][d][t type]

where:

• name_pattern is required and supports wildcard characters* and?.

• The optional status filtersw, r , e, andd correspond to the points writeable, readable, enabled,
and disabled status respectively.

• The optional type filtert must be followed by a valid type name:digital , integer , group ,
string , heartbeat or real .

num_names

If not NULL, then the number of names found is returned here.

pnt_names

If not NULL, a pointer to an array ofchar pointers (at leastmax_names long), to be filled with
pointers to the name strings returned by the driver in the data buffer. The pointers will point to
parsed data contained in the buffer specified by thedata parameter (if provided). Otherwise the
data will remain in the internal message buffers (referenced by thechar pointers) and can only be
guaranteed to remain valid until the next API function call.

max_names

The length of thepnt_names array (maximum number of names that can be returned).

data

If not NULL, then the string of point names returned by the driver is copied to this buffer, prior to
parsing and assigning name pointers. Since the point names are returned as an array of pointers to a
parsed buffer, this parameter provides a mechanism to ensure the contents ofpnt_names will
continue to be valid beyond the next API function call. In some cases, you may wish to simply
check or explicitly copy out just a few names, and not require that thenames data persist. In these
cases, copying the data is not required, and aNULLcan be supplied for this parameter.

99

DR_ApListPoints

max_data_length

The length of the data buffer in bytes.

error

The address of a string pointer. In case of error (non-zero return), the string pointer is set to the
corresponding error description string. The error string is contained in a static buffer and remains
valid only until the next API call. The parameter may beNULL if no error string is required.

Returns

The integer value0 if the function was successful, otherwise one of the following error codes:

DR_API_IPC_ERRORS
DR_API_STATUS_ERRORS

Description

This function provides a list of the points currently defined to the driver. The result can be used to
determine the individual point characteristics.

Example

int j, nargs, type, result;
char data[1024];
char *nargv[128];
char *error_str;

result = DR_ApListPoints (NULL, &nargs, nargv, 128, data, 1024,
&error_str);

if (!result)
{

for (j = 1; j<nargs; j++)
{

DR_ApReadPoint(nargv[j], &type, &value, &error_str);
/* process point */

}
}

100

DR_ApPointBufAddress
DR_ApPointBufAddress — deletes a point’s image buffer address.

Syntax

#include <cogent.h>
int DR_ApPointBufAddress (

char* pnt_name ,
int* card_id ,
int* buf_id ,
unsigned short* offset ,
unsigned short* bit ,
char** error

);

Arguments

pnt_name

A string containing the name of the required point.

card_id

If not NULLand the point is defined, returns the number of the card providing access to the point
data.

buf_id

If not NULLand the point is defined, returns the ID of the buffer containing the point data.

offset

If not NULLand the point is defined, returns the byte offset into the buffer for the point data.

bit

If not NULL, the point is defined, and the point is of digital (bit) type, returns the bit value of the
word corresponding to the point data.

error

The address of a string pointer. In case of error (non-zero return), the string pointer is set to the
corresponding error description string. The error string is contained in a static buffer and remains
valid only until the next API call. The parameter may beNULL if no error string is required.

Returns

The integer value0 if the function is successful, otherwise one of the following error codes:

DR_ERR_PNT_NOT_FOUND
DR_API_IPC_ERRORS
DR_API_STATUS_ERRORS

Description

This function determines the image buffer address associated with the named point.

101

DR_ApPointBufAddress

Example

int card, buffer;
unsigned short offset, bit;
char *name = "counter";
char *error_str;

if (result = DR_ApPointBufAddress (name, &card, &buffer,
&offset, &bit, &error_str))

printf (" Error@PointBufAddress (%d, %s)\n",
result, error_str);

else
{

printf (" Maps to: card %d, buffer %d, offset: %d",
card, buffer, offset);

printf (", bit: %d\n", bit);
}

102

DR_ApReadBlock
DR_ApReadBlock — reads a block.

Syntax

#include <cogent.h>
int DR_ApReadBlock (

int card_id ,
int buf_id ,
unsigned short offset ,
unsigned short size ,
void* data ,
char** error

);

Arguments

card_id

The card ID of the requested block of data.

buf_id

The buffer ID of the requested block of data.

offset

The starting (byte) address of the requested block of data into the specified card buffer.

size

The number of bytes to be read.

data

The address of memory area, at leastsize byes long, to receive data.

error

The address of a string pointer. In case of error (non-zero return), the string pointer is set to the
corresponding error description string. The error string is contained in a static buffer and remains
valid only until the next API call. The parameter may beNULL if no error string is required.

Returns

The integer value0 if the function was successful, otherwise one of the following error codes:

DR_API_IPC_ERRORS
DR_ERR_CARD_INVALID
DR_ERR_BLK_INVALID
DR_ERR_BLK_OFS_INVALID
DR_ERR_BLK_SIZE_INVALID
DR_ERR_CMD_INVALID

Description

This function reads the specified block.

103

DR_ApReadBlock

Example

char data[1024];
int result, i;
char *error_str;

printf (" Reading output block\n");
if (result = DR_ApReadBlock (0, 0, 0, 64, data, &error_str))

printf (" Error@ReadBlock (%d,%s)\n",
result, error_str);

else
{

dump_data (6, data, 8, 16);
}

104

DR_ApReadControl
DR_ApReadControl — gets card control parameters.

Syntax

#include <cogent.h>
int DR_ApReadControl (

int card_id ,
int buffer ,
unsigned short offset ,
unsigned short size ,
void* status ,
char** error

);

Arguments

card_id

The ID of the card to be read for control parameters.

buffer

The ID of the target control parameter buffer (if applicable).

offset

The starting (byte) address for the specified data within the card buffer (if applicable).

size

The maximum number of bytes to be written.

status

A pointer to a card-dependent structure (at leastsize bytes long) that contains the control
parameter information for the card.

error

The address of a string pointer. In case of error (non-zero return), the string pointer is set to the
corresponding error description string. The error string is contained in a static buffer and remains
valid only until the next API call. The parameter may beNULL if no error string is required.

Returns

The integer value0 if the function was successful, otherwise one of the following error codes:

DR_API_IPC_ERRORS
DR_ERR_CARD_INVALID
DR_ERR_BLK_INVALID
DR_ERR_BLK_OFS_INVALID
DR_ERR_BLK_SIZE_INVALID
DR_ERR_CMD_INVALID

Description

This function obtains the current card control parameters. The control parameter data is dependent on the
card.

105

DR_ApReadControl

Example

cif_ApParms_t control;

if (result = DR_ApReadControl (0, 2, 0, sizeof (cif_ApParms_t),
&control, &error_str))

printf ("Error@ReadControl (%d,%s)\n", result, error_str);
else
{

printf ("Mode = %X, cycleTime = %d, Storage format = %d\n",
control.Mode, control.CycleTime, control.Format);

}

See Also

Hilscher Fieldbus CIF Cardin the Cogent C API manual.

106

DR_ApReadPoint
DR_ApReadPoint — reads the value of a point.

Syntax

#include <cogent.h>
int DR_ApReadPoint (

char* pnt_name ,
int* pnt_type ,
DR_ApValue_t* pnt_value ,
char** error

);

Arguments

pnt_name

A string containing the name of the required point.

pnt_type

A pointer to an integer to return the point type code. This is needed to access thepnt_value . The
list of defined driver data point types is described in the Overview section of the Device Driver for
Hilscher Fieldbus Cards manual. This parameter can beNULL if the type of point is already known.

pnt_value

A pointer to the memory area to receive the point value.pnt_value is a union of the different
types, andpnt_type is used to access the data.

error

The address of a string pointer. In case of error (non-zero return), the string pointer is set to the
corresponding error description string. The error string is contained in a static buffer and remains
valid only until the next API call. The parameter may beNULL if no error string is required.

Returns

The integer value0 if the point was accessed successfully, otherwise one of the following error codes is
returned:

DR_ERR_PNT_NOT_FOUND
DR_ERR_PNT_NOT_ENABLED
DR_ERR_PNT_NOT_READABLE
DR_ERR_PNT_TYPE_NO_REP
DR_API_STATUS_ERRORS
DR_API_IPC_ERRORS

Description

This function reads the current value of the named point.

Example

int type, result;
DR_ApValue_t value;
char *error_str, *name = "Pushbutton";

result = DR_ApReadPoint (name, &type, &value, &error_str);
if (result == 0)
{

107

DR_ApReadPoint

printf (" Pnt: %s ", name);
switch(type)
{

case DR_API_DOUBLE_TYPE:
printf ("(real) = %f\n", value.d);
break;

case DR_API_INT32_TYPE:
printf ("(int) = %d\n", value.i);
break;

case DR_API_INT16_TYPE:
printf ("(short) = %d\n", value.s);
break;

case DR_API_BIT_TYPE:
printf ("(bit) = %1X\n", value.s);
break;

default:
printf ("(%d) = %X\n", type, value.i);

}
}
else

printf (" Error@ListPoints:%s (%d, %s): \n",
name, result, error_str);

108

DR_ApReadStatus
DR_ApReadStatus — gets card status information.

Syntax

#include <cogent.h>
int DR_ApReadStatus (

int card_id ,
int buffer ,
unsigned short offset ,
unsigned short size ,
void* status ,
char** error

);

Arguments

card_id

The ID of the card to be read for status.

buffer

The ID of the requested status buffer (if applicable).

offset

The starting (byte) address of the required data within the specified card buffer (if applicable).

size

The maximum number of bytes to be read.

status

A pointer to a card-dependent structure (at leastsize bytes long) that will contain the status
information for the card.

error

The address of a string pointer. In case of error (non-zero return), the string pointer is set to the
corresponding error description string. The error string is contained in a static buffer and remains
valid only until the next API call. The parameter may beNULL if no error string is required.

Returns

The integer value0 if the function was successful, otherwise one of the following error codes:

DR_API_IPC_ERRORS
DR_ERR_CARD_INVALID
DR_ERR_BLK_INVALID
DR_ERR_BLK_OFS_INVALID
DR_ERR_BLK_SIZE_INVALID
DR_ERR_CMD_INVALID

Description

This function obtains the card status information. The status data is dependent on the card.

109

DR_ApReadStatus

Example

cif_ApState_t status;

if (result = DR_ApReadStatus (0, 2, 0, sizeof (cif_ApState_t),
&status, &error_str))

printf ("Error@ReadStatus (%d,%s)\n", result, error_str);
else
{

printf (" GlobalState = %s, %s, %s\n",
(status.GlobalBits & STATE_GLOBAL_CTRL ?

"Parm error" : "Parms OK"),
(status.GlobalBits & STATE_GLOBAL_ACLR ?

"AutoClear/Slave error" : "Mode/Slaves OK"),
(status.GlobalBits & STATE_GLOBAL_NDATA ?

"Slave Fatal error" : "Slaves OK"));
printf (" DPMState = %2.2X %s\n", status.DPMState,

(status.DPMState ?
(status.DPMState & STATE_OPERATE ? "OPERATING":
(status.DPMState & STATE_STOP ?"STOPPED":
(status.DPMState & STATE_CLEAR ? "CLEAR" :

"Unknown state"))):"OFFLINE"));
printf (" Error status: (%d, %d)\n",

status.ErrorRemoteAddr, status.ErrorEvent);
printf (" Slaves state: ");
for (i=0; i<16; i++)

printf ("%2.2X", status.SlaveState[i]);
printf ("\n");
printf (" Slaves diagnostic bits: ");
for (i=0; i<16; i++)

printf ("%2.2X", status.SlaveDiags[i]);
printf ("\n");

}

See Also

Hilscher Fieldbus CIF Cardin the Cogent C API manual.

110

DR_ApUpdateBuffers
DR_ApUpdateBuffers — forces an I/O cycle of the image buffers.

Syntax

#include <cogent.h>
int DR_ApUpdateBuffers (

);

Arguments

none

Returns

The integer value0 if the function was successful, otherwise one of the following error codes:

DR_API_IPC_ERRORS
DR_API_STATUS_ERRORS

Description

This function forces an I/O cycle of the image buffers to and from the field cards. The output buffers are
written to the output field cards, and the input buffers are updated with data from the input field cards.

Example

DR_ApUpdateBuffers ();

111

DR_ApWriteBlock
DR_ApWriteBlock — writes data to a block.

Syntax

#include <cogent.h>
int DR_ApWriteBlock (

int card_id ,
int buf_id ,
unsigned short offset ,
unsigned short size ,
void* data ,
char** error

);

Arguments

card_id

The card ID of the requested block of data.

buf_id

The buffer ID of the requested block of data.

offset

The starting (byte) address of the requested block of data into the specified card buffer.

size

The number of bytes to be written.

data

The address of memory area, at leastsize byes long, containing the data.

error

The address of a string pointer. In case of error (non-zero return), the string pointer is set to the
corresponding error description string. The error string is contained in a static buffer and remains
valid only until the next API call. The parameter may beNULL if no error string is required.

Returns

The integer value0 if the function was successful, otherwise one of the following error codes:

DR_API_IPC_ERRORS
DR_ERR_CARD_INVALID
DR_ERR_BLK_INVALID
DR_ERR_BLK_OFS_INVALID
DR_ERR_BLK_SIZE_INVALID
DR_ERR_CMD_INVALID

Description

This function writes data to the specified block.

112

DR_ApWriteBlock

Example

/* continued from example in DR_ApReadBlock */
printf (" Write Block Bit Cycle:\n", 1);
data[32] = 0;
for (i=0; i<=8 && result==0; i++)
{

if (data[32] == 0)
data[32] = 1;

else
data[32] *= 2;

printf ("\r %4X ", data[32]);
fflush (stdout);
if (result = DR_ApWriteBlock (0, 0, 0, 64, data,

&error_str))
printf (" Error@WriteBlock (%d,%s)\n",

result, error_str);
delay (250);

}
printf ("\n");

113

DR_ApWriteControl
DR_ApWriteControl — sends card control information to the driver.

Syntax

#include <cogent.h>
int DR_ApWriteControl (

int card_id ,
int buffer ,
unsigned short offset ,
unsigned short size ,
void* control ,
char** error

);

Arguments

card_id

The ID of the card to be written with status.

buffer

The ID of the target status buffer (if applicable).

offset

The starting (byte) address of the status data within the specified card buffer (if applicable).

size

The maximum number of bytes to be written.

control

A pointer to a card-dependent structure (at leastsize bytes long) that contains the status
information for the card.

error

The address of a string pointer. In case of error (non-zero return), the string pointer is set to the
corresponding error description string. The error string is contained in a static buffer and remains
valid only until the next API call. The parameter may beNULL if no error string is required.

Returns

The integer value0 if the function was successful, otherwise one of the following error codes:

DR_API_IPC_ERRORS
DR_ERR_CARD_INVALID
DR_ERR_BLK_INVALID
DR_ERR_BLK_OFS_INVALID
DR_ERR_BLK_SIZE_INVALID
DR_ERR_CMD_INVALID

Description

This function sends card control information to the driver. The control data is dependent on the card.

114

DR_ApWriteControl

Example

cif_ApParms_t control;

control.Mode = mode;
control.CycleTime = ms;
control.Format = fmt;
DR_ApWriteControl (0, 2, 0, sizeof (cif_ApParms_t),

&control_parms, NULL);

See Also

Hilscher Fieldbus CIF Cardin the Cogent C API manual.

115

DR_ApWritePoint
DR_ApWritePoint — writes a new value to a point.

Syntax

#include <cogent.h>
int DR_WritePoint (

char* pnt_name ,
int pnt_type ,
DR_ApValue_t* pnt_value ,
char** error

);

Arguments

pnt_name

A string containing the name of the required point.

pnt_type

The point type code. The list of defined driver data point types is described in the Overview section
of the Device Driver for Hilscher Fieldbus Cards manual.

pnt_value

A pointer to the memory area containing the point value, of the same type as specified in
pnt_type .

error

The address of a string pointer. In case of error (non-zero return), the string pointer is set to the
corresponding error description string. The error string is contained in a static buffer and remains
valid only until the next API call. The parameter may beNULL if no error string is required.

Returns

The integer value0 if the point was updated successfully, otherwise the following error code is returned:

DR_ERR_PNT_NOT_WRITEABLE

Description

This function writes a new value to the named point. The field I/O is updated immediately, unless the
point is a member of a writeable group, in which case it is updated when the group is processed.

Example

int result;
DR_ApValue_t value;
char *error_str, *name = "Red_Light1";

value.s = 1;
result = DR_ApWritePoint (name, DR_API_BIT_TYPE, &value,

&error_str);

See Also

DR_ApReadPoint

116

V. Cascade Historian Functions

Table of Contents
HI_Add ...118

HI_BufferIDDestroy ..120

HI_BufferIDLength ...121

HI_BufferIDRead ...122

HI_Bufsize ...124

HI_ClipBuffer ..126

HI_Count ..127

HI_Deadband ...128

HI_Delete ..131

HI_Describe ...132

HI_Disable ...134

HI_Earliest ...135

HI_Enable ..136

HI_ExchangeBuffer ...137

HI_FileBase ...138

HI_Flush ..140

HI_GapCountBuffer ...141

HI_GapFillBuffer ...142

HI_History ...143

HI_Interpolate ..145

HI_InterpolateData ..148

HI_Latest ..150

HI_Length ..151

HI_List ...152

HI_ScaleBuffer ..154

HI_StatBuffer ..155

HI_Register ...156

HI_Unregister ..157

HI_Version ...158

117

HI_Add
HI_Add — adds a single value at a specified time.

Syntax

#include <cogent.h>
ST_STATUS HI_Add (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histname ,
double value ,
time_t seconds ,
time_t nanoseconds

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histname

The name of a history.

value

The value to be added to the history.

seconds

The time in seconds, normally seconds since Jan 1, 1970, GMT.

nanoseconds

The nanoseconds within the second.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function lets you add points and their values manually to the Cascade Historian. It injects a single
value at the specified time, in seconds and nanoseconds. This is useful for sending data directly to the
historian (without using Cascade Datahub) as well as for testing and debugging, where one or more
points’ values can be changed in a controlled way.

In order to guarantee the time-series data is ordered, the time of the previous data point is checked and if
a time reversal is detected (i.e., the current timestamp preceeds that of the last one) then the timestamp of
the data is modified to a small increment (1 micro-second) relative to the previous timestamp. This

118

HI_Add

situation should only occur when there is more than one source of the same data, a situation that is never
recommended.

The value for the point is stored internally as aHI_stVALUE structure, whereHI_stVALUE .xaxis is
the time, represented as a double-precision floating point number, andHI_stVALUE .value is the
value.

Since the Cascade Historian handles points sequentially on a time-stamped basis, if you call this function
several times on the same point each call should have increasingseconds and/ornanoseconds
parameters.

This function corresponds to the Cascade Historianadd command.

119

HI_BufferIDDestroy
HI_BufferIDDestroy — destroys an interpolation buffer.

Syntax

#include <cogent.h>
ST_STATUS HI_BufferIDDestroy (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
int bufferid

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

bufferid

The buffer identifier, as created by a call toHI_Interpolate.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function destroys the temporary internal buffer associated with an interpolation request. The
memory allocated by an interpolation request can be very large, and will persist until it is explicitly
destroyed.

This function corresponds to the Cascade HistorianbufferIdDestroy command and the
hist_buffer_id_destroy dynamic library function.

120

HI_BufferIDLength
HI_BufferIDLength — gives the length of an interpolation buffer.

Syntax

#include <cogent.h>
ST_STATUS HI_BufferIDLength (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
int bufferid ,
int* length

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

bufferid

The buffer identifier, as created by a call toHI_Interpolate.

length

Return value containing the number of values in an interpolation buffer.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function determines the exact number of values in the interpolation buffer identified bybufferid ,
and returns that number inlength .

This function corresponds to the Cascade HistorianbufferIdLength command and two dynamic library
functions:hist_buffer_id_length andhist_length_buffer .

121

HI_BufferIDRead
HI_BufferIDRead — reads an interpolation buffer.

Syntax

#include <cogent.h>
ST_STATUS HI_BufferIDRead (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
int bufferid ,
int start ,
int count ,
HI_stVALUE* value

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

bufferid

The buffer identifier, as returned by a call toHI_Interpolate.

start

An offset into the buffer for the returned data.

count

The number of values to be read.

values

An array ofHI_stVALUE s with at leastcount elements.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function is used for reading the contents of a buffer created byHI_Interpolate . You are
responsible for defining an array (or allocating the memory) to contain thevalues read. The length of
this array can be determined withHI_BufferIDLength .

Some queries can result in large buffers whose size makes it impractical to read with a single IPC
message. The default IPC message buffer used by the Cogent C API sets a limit of about 200 values. For
higher numbers of values, thestart andcount parameters can be used to read the buffer in segments.

122

HI_BufferIDRead

This function corresponds to the Cascade HistorianbufferIdData command and the
hist_buffer_id_read dynamic library function.

123

HI_Bufsize
HI_Bufsize — sets the history buffer size.

Syntax

#include <cogent.h>
ST_STATUS HI_Bufsize (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histname ,
int numvalues ,
int size

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histname

The name of a history.

numvalues

The new maximum number of value/time (or y/x) pairs that can be buffered for this history. If0 is
specified, then the function is treated as a query, the buffer size is not modified, and the current
value is returned insize .

size

A pointer to an integer variable that is set to the current maximum number of value/time (or y/x)
pairs that can be buffered for this history.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function sets the number of data values that will be buffered for the specified history. (There are
actually up to twice this number stored at any time, as the Cascade Historian double-buffers its data
storage.) When a buffer is full, the data is flushed to disk, as long as an associated file has been assigned
(with filebaseor HI_FileBase). A larger buffer will retain more data in memory and increase the
speed of queries on that data if it is within the range of the data in the buffer.

The history data is flushed to disk whenever this function is called. Until this function is used, the history
buffer size is set to the initial default value (100).

124

HI_Bufsize

This function corresponds to the Cascade Historianbufsizecommand and thehist_bufsize
dynamic library function.

125

HI_ClipBuffer
HI_ClipBuffer — clipsY values to fit within a range.

Syntax

#include <cogent.h>
ST_STATUS HI_ClipBuffer (

int nvalues ,
HI_stVALUE* values ,
double min ,
double max

);

Arguments

nvalues

The number of values in thevalues array.

values

An array ofHI_stVALUE structures.

min

The minimum of the clipping range (Y values less than this value will be set to this value).

max

The maximum of the clipping range (Y values greater than this value will be set to this value)

Returns

t (true) if the function completed successfully, otherwisenil .

Description

This function clips theY-value data in a buffer to lie within the range specified. TheX-value data is
ignored. The buffer is modified in place (i.e., a new buffer is not created, and the old values cannot be
recovered). This function is useful during graphing to ensure the data trace does not go outside the
desired graph boundaries.

This function corresponds to the Cascade Historianhist_clip_buffer dynamic library function.

Example
HI_ClipBuffer (20, test, target + range, target - range);

126

HI_Count
HI_Count — counts the number of histories that match a pattern.

Syntax

#include <cogent.h>
ST_STATUS HI_Count (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histpattern ,
int* count

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histpattern

A globbing pattern specifying a group of histories.

count

Return value containing the number of histories.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function queries the Cascade Historian for the total number of histories currently being kept that
match the given pattern.

This function corresponds to the Cascade Historiancount command and thehist_count dynamic
library function.

127

HI_Deadband
HI_Deadband — sets the history value deadband.

Syntax

#include <cogent.h>
ST_STATUS HI_Deadband (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histname ,
char* flag | type ,
double setting

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histname

The name of a history.

flag

A deadband flag, any of:enable or prior , as described below.

type

A deadband type, any of:absolute , percent , timelimit , or countlimit , as described
below.

setting

A setting (possibly optional) corresponding to the specifiedtype or flag . Settings forflag s are
0 (0.0) for true and any non-zero value for false.

Returns

ST_OKon success, and theretbuf may be parsed to extract the complete response from the Cascade
Historian (see thedeadbandcommand). OtherwiseST_ERROR, and theretbufa will contain a
NULL-terminated character string with an error message.

Description

This function sets a deadband on a history, such that new values falling within that deadband are not
recorded.

A deadband is used to reduce the amount of data stored by only storing data if there is a significant
change in value. This approach is superior to simply reducing the sampling frequency, which will lose
information when data changes quickly, and will waste storage by saving the same values when data

128

HI_Deadband

doesn’t change. The deadband approach defines a resolution below which changes in data are deemed to
be ’noise’ and therefore ignored.

Flags

• enable turns the deadband on and off without affecting its configuration.

In order for this flag to be set to true, at least onetype must be set to a non-zero value.
Otherwise, it will return false.

• prior records the value prior to any value that exceeds the deadband. If set to true (the default),
when a value is encountered that exceeds the deadband, the value immediately prior to that is also
recorded in the data set. This is done so that plotted data will be approximately correct. For example, if
a value remains in a stable range for a long time, and then suddenly spikes to a large number, it is
appropriate to keep the last known value within the deadband range before adding the spike value to
the data set. When this data is plotted, the spike will actually show as a spike, rather than a gradual
ramp.

Types

• absolute sets the deadband range to a single value. Any value differing from the baseline by less
thanabsolute will not be recorded. If a value’s difference from the baseline is greater than or equal
to absolute , that value is recorded and it becomes the new baseline for theabsolute deadband.

• percent sets the deadband range to be a percent of the last logged data value. Every new value is
compared to that value, and if their percentage difference is less thanpercent , the new value will
not be recorded. If the difference is greater than or equal topercent , the value is recorded and that
value becomes the new baseline for thepercent deadband.

If absolute andpercent are used together there is an AND relationship between them. The
Cascade Historian will ignore any value falling withineitherdeadband. Only those values falling
outside all deadbands (or equal to the outermost) will be recorded.

• timelimit sets the maximum time period (in seconds, a real number) to deadband. When the
timelimit is reached, the next new value received will be recorded, even if its value doesn’t exceed
the deadband. Note that the system does not automatically generate and insert a value when the
timelimit is reached; it waits for the next new value. Whenever a new value is recorded the
timelimit is restarted. If thetimelimit parameter is not used, there is no time limit on how
many values are ignored within a deadband.

• countlimit sets a maximum number of received values to deadband. When thecountlimit is
reached, the next new value will be recorded, even if it doesn’t exceed the deadband. Whenever a new
value is recorded thecountlimit is restarted. If thecountlimit parameter is not used, there is
no count limit on how many values are ignored within a deadband.

129

HI_Deadband

This function corresponds to the Cascade Historiandeadbandcommand and thehist_deadband
dynamic library function.

130

HI_Delete
HI_Delete — removes a history from memory only.

Syntax

#include <cogent.h>
ST_STATUS HI_Delete (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histpattern

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histpattern

A globbing pattern specifying a group of histories.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function removes all memory associated with a given history, but does not remove any files on disk.
It flushes the history to disk.

This function corresponds to the Cascade Historiandeletecommand and thehist_delete dynamic
library function.

131

HI_Describe
HI_Describe — describes a history’s current configuration.

Syntax

#include <cogent.h>
ST_STATUS HI_Describe (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histname

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

A requiredbuffer containing an error message.

buflen

The length in bytes ofretbuf , with a minimum as described below.

histname

The name of a history.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message.

Description

This function returns a description of the current configuration of a history inretbuf , which is not
optional.

The information returned will be truncated at 1000 bytes.

The format of the return is:

(describe " histname " " directory " " basename " " extension " ndigits
" full_filename " flags deadband maxvalues)

Any undefined string values are returned as"" , not the string "nil ". The following values apply
specifically:

• Thehistname as previously set with thehistory command, or theHI_History function.

• Thedirectory , basename , extension andndigits as previously set with thefilebase
command, or theHI_FileBase function.

• Thefull_filename indicates the pathname of the current file to which the data will be written, as
set up by the fourfilebaseparameters mentioned above.

• Theflags are given in hexadecimal format (ie.0x0064). The following constants define the
individual flag bits and may be used to test the flags value:

132

HI_Describe

Constant Comment

HIST_DISABLED Indicates history logging state.

HIST_REGISTERED Indicates history is registered with the Cascade DataHub for
value updates.

HIST_DEADBAND Overall deadband state (on /off)

HIST_DEADBAND_FORCE Internal state bit.

HIST_DEADBAND_PRIOR IndicatesPRIORmode is set.

HIST_DEADBAND_PERCENT IndicatesPERCENTdeadband is set.

HIST_DEADBAND_ABSOLUTE IndicatesABSOLUTEdeadband is set.

HIST_DEADBAND_TIMELIMIT IndicatesTIMELIMIT deadband is set.

HIST_DEADBAND_COUNTLIMIT IndicatesCOUNTLIMITdeadband is set.

HIST_DEADBAND_TYPES Bit-ORof the deadband type flags (PERCENT, ABSOLUTE,
TIMELIMIT , andCOUNTLIMIT, useful for testing if any
deadband type is set.

• The status of thedeadband , t (indicating on) ornil (indicating off). Thedeadbandcommand (or
HI_Deadband API function orhist_deadband DLL function) should be used to determine the
actual deadband configuration.

• Themaxvalues as previously set with thebufsizecommand, or theHI_Bufsize function.

• Thepoint associated with the history, as previously set with thehistory command, or the
HI_History function.

Thebuflen must be at least the sum of:

strlen(histname)
+ (strlen(directory) * 2)
+ (strlen(basename) * 2)
+ (strlen(extension) * 2)
+ (strlen(full_filename) * 2)
+ 64

This function corresponds to the Cascade Historiandescribecommand and thehist_describe
dynamic library function..

133

HI_Disable
HI_Disable — stops data recording.

Syntax

#include <cogent.h>
ST_STATUS HI_Disable (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histpattern

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histpattern

A globbing pattern specifying a group of histories.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function flushes one or more histories to disk and causes each of them to ignore all subsequent
values until eitherenable, hist_enable , or HI_Enable is called on it.

This function corresponds to the Cascade Historiandisablecommand and thehist_disable
dynamic library function.

134

HI_Earliest
HI_Earliest — gives the earliest value in a history.

Syntax

#include <cogent.h>
ST_STATUS HI_Earliest (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histname ,
HI_stVALUE* data

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histname

The name of a history.

data

The value and time of the first data item in the history.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function returns the value for the first data item in the history. This item may be either in a file or in
memory.

This function corresponds to the Cascade Historianearliestcommand and thehist_earliest
dynamic library function.

135

HI_Enable
HI_Enable — activates data recording.

Syntax

#include <cogent.h>
ST_STATUS HI_Enable (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histpattern

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histpattern

A globbing pattern specifying a group of histories.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function reverses the effect of a previousdisable, hist_disable , or HI_Disable call, so that
new data values will be accepted and logged.

This function corresponds to the Cascade Historianenablecommand and thehist_enable dynamic
library function.

136

HI_ExchangeBuffer
HI_ExchangeBuffer — swapsX andY values.

Syntax

#include <cogent.h>
ST_STATUS HI_ExchangeBuffer (

int nvalues ,
HI_stVALUE* values

);

Arguments

nvalues

The number of values in thevalues array.

values

An array ofHI_stVALUE structures.

Returns

t (true) if the transformation was performed with no errors, otherwisenil .

Description

This function swaps theX andY values for each data pair in the buffer. The buffer is modified in place
(i.e., a new buffer is not created, and the old values cannot be recovered).

This function is used to obtain certain data queries that are not directly supported by the Cascade
Historian’s interpolation services. For example, if we want to interpolatex (typically time or position) at
all actual (non-interpolated) values ofy , the Cascade Historian does not directly support this, since the
interpolator services only interpolate theY value. The desired result can be obtained by making the
inverse query and exchanging the buffer results.

This function corresponds to the Cascade Historianhist_exchange_buffer dynamic libary
function.

137

HI_FileBase
HI_FileBase — associates the history with a file for data storage.

Syntax

#include <cogent.h>
ST_STATUS HI_FileBase (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histname ,
char* dir ,
char* basename ,
char* ext ,
int numdigits

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histname

The name of a history.

dir

The name of an existing directory, either absolute or relative to the directory in whichhistdb was
started.

basename

The base file name, without an extension or directory.

ext

The file extension.

numdigits

An integer that specifies how the filename is augmented for multiple files, described in detail below.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

138

HI_FileBase

Description

This command associates a file with a history. Without an associated file, data received by the Cascade
Historian will be lost when the buffer is full, or when the Cascade Historian is shut down. A history
without a file (and with a sufficiently large buffer) could be used for temporary storage and analysis of
data.

A history is potentially logged to multiple files. These can be numbered sequentially, or based on date, as
specified by thenumdigits parameter. The filename specified by the user is automatically augmented
as each new file is opened, and the Cascade Historian understands that these files all belong together as a
single history.

Whenfilebaseor HI_FileBase is first called for a history, it sets the pattern for all file names to be
created for the history. Once this has been done, the Cascade Historian will be able to find the files
relating to that history at any time, and will begin numbering from the next file number as necessary.

The possible values for thenumdigits parameter, with their implications, are as follows:

• < 0 : Use the date to generate the unique suffix.

• = 0 : No sequential digits are added to the name. This is the default.

• > 0 : Specifies the number of decimal digits to be added to the filebase.

For example, the call:

HI_FileBase (hist, NULL, 0, "hist1", "/tmp/histories", "test.", ".dat", 2);

would create files of the form:

/tmp/histories/test.01.dat /tmp/histories/test.02.dat
/tmp/histories/test.03.dat ...

This function corresponds to the Cascade Historianfilebasecommand and thehist_filebase
dynamic library function.

139

HI_Flush
HI_Flush — writes buffered data to disk.

Syntax

#include <cogent.h>
ST_STATUS HI_Flush (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histpattern

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histpattern

A globbing pattern specifying a group of histories.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function removes the data for the specified history or histories from the buffer and writes them to
the associated files. IfNULLor * are passed forhistpattern , all buffers are flushed to file.

This function corresponds to the Cascade Historianflush command and thehist_flush dynamic
library function.

140

HI_GapCountBuffer
HI_GapCountBuffer — identifies and counts large gaps in data.

Syntax

#include <cogent.h>
ST_STATUS HI_GapCountBuffer (

int nvalues ,
HI_stVALUE* values ,
double gap

);

Arguments

nvalues

The number of values in thevalues array.

values

An array ofHI_stVALUE structures.

gap

The threshold difference between adjacentX values that determines the existence of a gap.

Returns

The number of gaps, or(error) .

Description

This function identifies and counts gaps for theHI_GapFillBuffer function. These two functions,
when used together, correspond to the Cascade Historianhist_gap_buffer dynamic library
function.

Example

SeeHI_GapFillBuffer

141

HI_GapFillBuffer
HI_GapFillBuffer — fills in data gaps found byHI_GapCountBuffer .

Syntax

#include <cogent.h>
ST_STATUS HI_GapFillBuffer (

int nvalues ,
HI_stVALUE* values ,
int n2 ,
HI_stVALUE* new_values ,
double gap

);

Arguments

nvalues

The number of values in thevalues array.

values

An array ofHI_stVALUE structures.

n2

The size of thenew_values array.

new_values

A new array ofHI_stVALUE s to contain the data fromvalues , with duplicate values inserted
where the difference in time exceedsgap .

gap

The threshold difference between adjacentX values that determines the existence of a gap.

Returns

t (true) if the function completed successfully, otherwisenil .

Description

This function inserts duplicateY-value points into the buffer when theX-axis gap between a pair of
values exceeds the specified gap threshold. This will cause the graph of the data to show a constant value
spanning the gap, rather than a misleading ramp between the points.

This function requires the return value fromHI_GapCountBuffer to calculate and allocate the size
of the new array that will contain the additional data. These two functions, when used together,
correspond to the Cascade Historianhist_gap_buffer dynamic library function.

Example
ngaps = HI_GapCountBuffer(n, values, gap);
n2 = n + ngaps;
new_values = ME_ZMalloc(n2 * sizeof (HI_stVALUE));
HI_GapFillBuffer (n, values, n2, new_values, gap);

142

HI_History
HI_History — creates a new history.

Syntax

#include <cogent.h>
ST_STATUS HI_History (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histname

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histname

The name of the new history. It can be any valid Cascade DataHub point name.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function creates a new history and assigns it a name. This is required before any other commands or
functions on the specified history can be applied. The history will be enabled as soon as it is created. A
history can be associated with a Cascade DataHub point, so that the history is updated whenever the
datahub point is updated. (See theregister command or theHI_Register function.)

Typically, the point and history names are the same, and thepoint argument need not be specified. By
using thepoint argument, it becomes possible to associate more than one history to the same datahub
point. In this case, a single datahub point update will cause all the associated histories to be updated.
This can be useful if you need histories of the same data but with different deadband settings. (This could
provide, for example, both a high-resolution history as well as a more compact history using the
deadband filters). Thepoint name can be completely different from the history name, or can be the
same as one of the histories.

143

HI_History

When multiple histories are associated with the same point, registering or unregistering one of
the histories will do the same to all the other histories sharing the same point. This applies when
defining a new history: if a point is associated with a history that has already registered, then the
new history is also automatically registered. If control is required over which histories (that share
a common point) receive data, then theenable/disablecommands (or their corresponding
functions) must be used.

If the history already exists, this function does nothing.

This function corresponds to the Cascade Historianhistory command and thehist_history
dynamic library function.

144

HI_Interpolate
HI_Interpolate — queries history data for interpolation.

Syntax

#include <cogent.h>
ST_STATUS HI_Interpolate (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histname ,
char* interpolator ,
double start ,
double duration ,
int nxargs ,
char** xargs ,
int* bufferid

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histname

The name of a history.

interpolator

The name of the interpolator to use, as described below.

start

The start of the time range of interest for query. If this value is0, it defaults to the time of the first
data value available for the history.

duration

The amount of time, in seconds, over which to perform the interpolation. If this value is0, it
defaults to the length of time between that specified bystart and the time of the last data value
available for the history.

nxargs

The number of extra arguments to the interpolator.

xargs

The array of extra arguments to the interpolator, as strings.

bufferid

A query ID number for the interpolation. This is a return argument.

145

HI_Interpolate

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function performs a query on history data, placing the result in a buffer for subsequent transfer. It
generates a unique, sequentially numbered ID ’handle’ for each query that is made, so clients can access
the resulting buffer. The IDs have no meaning outside the Cascade Historian, and are only valid after a
query and until the buffer is freed with thebufferIdDestroy command, the
HIBufferIDDestroy Cogent C API function, or thehist_buffer_id_destroy dynamic
library function, as appropriate.

This is the first of four steps (which can be done as commands, dynamic libary functions, or API
functions) required to make an interpolation:

1. A call to interpolate, hist_interpolate , or HI_Interpolate performs a query on history
data, placing the result in a buffer for subsequent transfer.

2. A call to bufferIdLength , hist_buffer_id_length , or HI_BufferIDLength gets the
length of the interpolation buffer.

3. A call to bufferIdData , bufferIdDataAscii , hist_buffer_id_read , or HI_BufferIDRead
brings in the data from the interpolation buffer.

4. A call to bufferIdDestroy , hist_buffer_id_destroy , or HI_BufferIDDestroy destroys
the interpolation buffer. This should always be done to free up memory.

This task has been divided into four steps for convenience and performance. A buffer, once created,
remains available to be read as required, potentially by multiple users, until it is no longer needed and
can be destroyed. The buffers can also be very large, exceeding typical IPC message sizes, and requiring
a relatively long time to transfer. That problem can be addressed by transferring the data in
predictably-sized portions, allowing other processing to be done in between. The multi-step process
defined above provides the flexibility needed for just such tailoring to the user’s requirements. To run all
four steps with one function call, seeHI_InterpolateData in the Cogent C API manual or the
hist_interpolate_data dynamic library function.

The following choices are available for theinterpolator argument:

TheNoInterpolator function is currently the only one that requires no additional
parameters, making it possible to not supplystart or duration . For the other interpolator
functions, settingstart or duration to 0 forces the default values.

• NoInterpolator simply returns all data that falls within the specified time range. No other
processing is performed. When calling theHI_Interpolate function, this interpolator requires no
extra arguments (nxargs = 0, xargs = NULL).

• PeriodicInterpolator generates data asY vs. time on an even time interval. The first extra
argument is a double-precision float indicating the time interval in seconds. The second (optional)
extra argument is a double-precision float indicating the maximum gap time: if provided and the time
between two data samples exceeds this threshold, then data cannot be interpolated between the points.
This suppresses generating interpolated data during ’gaps’ in the data.

• RelativeInterpolator generatesY vs.X at all known values ofX. The first extra argument is a
string indicating the history name forX. Thehistory argument provided tointerpolate command
(or thehistname argument provided toHI_Interpolate function) is used as theY history.

146

HI_Interpolate

• FixedRelativeInterpolator generatesY vs.X on an even time interval. The first extra
argument is a string indicating the history name forX. The second extra argument is a double
specifying the time interval. Thehistory argument provided tointerpolate command (or the
histname argument provided toHI_Interpolate function) is used as theY history.

This function corresponds to the Cascade Historianinterpolate command and the
hist_interpolate dynamic library function.

Example

The following example is the code for theHI_InterpolateDatafunction. It demonstrates how
HI_Interpolateis used withHI_BufferIDLength, HI_BufferIDRead, andHI_BufferIDDestroy.

ST_STATUS HI_InterpolateData (IP_hTASK historian, char* histname,
char* interpolator,
double start, double duration,
int nxargs, char** xargs,
HI_stVALUE** values, int *nvalues)

{
static char retbuf[256];
ST_STATUS status;
int n, bufid;
HI_stVALUE *hvalues;

status = HI_Interpolate (historian, retbuf, sizeof(retbuf),
histname, interpolator, start, duration,
nxargs, xargs, &bufid);

if (status == ST_OK)
{

status = HI_BufferIDLength (historian, NULL, 0, bufid, &n);
if (status == ST_OK)

{
hvalues = (HI_stVALUE*) ME_ZMalloc (n * sizeof(HI_stVALUE));
if (hvalues)

{
status = HI_BufferIDRead (historian, NULL, 0,

bufid, 0, n, hvalues);
if (status == ST_OK)

{
*values = hvalues;
*nvalues = n;

}
else

{
ME_Free (hvalues);
*values = NULL;

}
}

}
HI_BufferIDDestroy (historian, NULL, 0, bufid);

}
return (status);

147

HI_InterpolateData
HI_InterpolateData — interpolates a history and returns data.

Syntax

#include <cogent.h>
ST_STATUS HI_InterpolateData (

IP_hTASK historian ,
char* histname ,
char* interpolator ,
double start ,
double duration ,
int nxargs ,
char** xargs ,
HI_stVALUE** values ,
int* nvalues

);

Arguments

historian

The task pointer to the Cascade Historian program.

histname

The name of a history.

interpolator

The name of the interpolator to use, as described below.

start

The start of the time range of interest for query. If this value is0, it defaults to the time of the first
data value available for the history.

duration

The amount of time, in seconds, over which to perform the interpolation. If this value is0, it
defaults to the length of time between that specified bystart and the time of the last data value
available for the history.

nxargs

The number of extra arguments to the interpolator.

xargs

The array of extra arguments to the interpolator, as strings.

values

A pointer to anHI_stVALUE* . This is a return argument.

nvalues

The number of elements in values. This is a return argument.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

148

HI_InterpolateData

Description

This is a convenience function that combinesHI_Interpolate , HI_BufferIDLength ,
HI_BufferIDRead , andHI_BufferIDDestroy . It causes the Cascade Historian to perform an
interpolation on its history data, producing a new, temporary, un-named history, which is then copied to
the client program. The resulting data is returned invalues , and isnvalues in length.

The code for this function can be viewed in theExamplefor HI_Interpolate.

You are responsible for freeing thevalues , using the functionME_Free . Thexargs array is an array
of NULL-terminated strings. Numeric arguments are passed as strings containing their printable ASCII
representations.

The following choices are available for theinterpolator argument:

TheNoInterpolator function is currently the only one that requires no additional
parameters, making it possible to not supplystart or duration . For the other interpolator
functions, settingstart or duration to 0 forces the default values.

• NoInterpolator simply returns all data that falls within the specified time range. No other
processing is performed. When calling theHI_Interpolate function, this interpolator requires no
extra arguments (nxargs = 0, xargs = NULL).

• PeriodicInterpolator generates data asY vs. time on an even time interval. The first extra
argument is a double-precision float indicating the time interval in seconds. The second (optional)
extra argument is a double-precision float indicating the maximum gap time: if provided and the time
between two data samples exceeds this threshold, then data cannot be interpolated between the points.
This suppresses generating interpolated data during ’gaps’ in the data.

• RelativeInterpolator generatesY vs.X at all known values ofX. The first extra argument is a
string indicating the history name forX. Thehistory argument provided tointerpolate command
(or thehistname argument provided toHI_Interpolate function) is used as theY history.

• FixedRelativeInterpolator generatesY vs.X on an even time interval. The first extra
argument is a string indicating the history name forX. The second extra argument is a double
specifying the time interval. Thehistory argument provided tointerpolate command (or the
histname argument provided toHI_Interpolate function) is used as theY history.

This function corresponds to the Cascade Historianhist_interpolate_data dynamic library
function.

149

HI_Latest
HI_Latest — gives the latest value in a history.

Syntax

#include <cogent.h>
ST_STATUS HI_Latest (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histname ,
HI_stVALUE* data

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histname

The name of a history.

data

The value and time of the last data item in the history.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function returns the value for the last data item in the history. This item may be either in a file or in
memory.

This function corresponds to the Cascade Historianlatestcommand and thehist_latest dynamic
library function.

150

HI_Length
HI_Length — finds the total number of values in a history.

Syntax

#include <cogent.h>
ST_STATUS HI_Length (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histname ,
int* length

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histname

The name of a history.

length

The return value containing the number of values in the history.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function queries the history for the total number of values available. It returns the result inlength .

This function corresponds to the Cascade Historianlength command and thehist_length dynamic
library function.

151

HI_List
HI_List — finds the name of available histories.

Syntax

#include <cogent.h>
ST_STATUS HI_List (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histpattern ,
int offset ,
int maxcount ,
char** histories ,
int* count

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

A required buffer containing an error message.

buflen

The length in bytes ofretbuf . This must be a valid non-zero length.

histpattern

A globbing pattern specifying a group of histories.

offset

An integer specifying a starting point in the list generated byhistpattern .

maxcount

The maximum number of history names to be returned.

histories

An array ofchar* at leastmaxcount long, to contain up tomin(count , maxcount) history
names.

count

The return value containing the number of histories (same asHI_Count).

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain aNULL-terminated character
string with an error message. If the return value isST_OK, theretbuf will contain the list of history
names, parsed intoNULL-terminated string, and pointed to by thehistories array (see the note in
Description).

Description

This function queries the Cascade Historian for the names of the histories currently being kept that match
thehistpattern . You must supply an array to contain the pointers to the name strings.

152

HI_List

The history names are returned as strings inretbuf , and the pointers returned inhistories
point to the parsed contents ofretbuf . To preserve the history names, a reserved buffer should
be used, or no further historian API calls should be made until the strings are no longer needed.

In cases where the number of histories, or the length of their names, is such that the combination
exceedsbuflen or the length of the inter-process communication buffer, not all histories will
be listed, and thecount argument will be less than the value obtained fromHI_Count . In
these cases, theoffset parameter can be used to receive a portion of the list. Startingoffset
at0, count can then be used to incrementoffset , enabling arbitrarily long lists of names to
be obtained without concern for the length ofretbuf , the IPC buffer, or the size of the
histories array (see Example).

This function corresponds to the Cascade Historianlist command and thehist_list dynamic library
function.

Example
void ListAllHistories (IP_hTASK historian)
{

ST_STATUS status;
char *histpattern = "*";
char *histories[100];
int nHist, start, count;
/* assume retbuf, buflen are globals */

status = HI_Count(historian, retbuf, buflen, histpattern, &nHist);
/* loop querying for names until all have been received */
for (start=0; start < nHist && status == ST_OK; start += count)

{
status = HI_List(historian, retbuf, buflen, histpattern,

100, histories, &count);
/* process the subset of names */
for (i=0; i<count; i++)

printf ("%s\n", histories[i]);
}

}

153

HI_ScaleBuffer
HI_ScaleBuffer — performs offset and scaling operations.

Syntax

#include <cogent.h>
ST_STATUS HI_ScaleBuffer (

int nvalues ,
HI_stVALUE* values ,
double xscale ,
double xoff ,
double yscale ,
double yoff

);

Arguments

nvalues

The number of values in thevalues array.

values

An array ofHI_stVALUE structures.

xscale, xoff

TheX value of the data pairs is transformed as follows:

x’ = x * xscale + xoffset

yscale, yoff

TheY value of the data pairs is transformed as follows:

y’ = y * yscale + yoffset

Returns

t (true) if the transformation was performed with no errors, otherwisenil .

Description

This function performs an offset and scaling transformation on a binary buffer ofX-Y data pairs. The
buffer is modified in place (i.e., a new buffer is not created, and the old values cannot be recovered). This
function can be used to adjust data for graphing.

This function corresponds to the Cascade Historianhist_scale_buffer dynamic library function.

154

HI_StatBuffer
HI_StatBuffer — generates summary statistics on Y-values.

Syntax

#include <cogent.h>
ST_STATUS HI_StatBuffer (

int nvalues ,
HI_stVALUE* values ,
double* minptr ,
double* maxptr ,
double* meanptr ,
double* stddevptr

);

Arguments

nvalues

The number of values in thevalues array.

values

An array ofHI_stVALUE structures.

minptr

A pointer to the minimum Y-value.

maxptr

A pointer to the maxium Y-value.

meanptr

A pointer to the mean Y-value.

stddevptr

A pointer to the standard deviation of the Y-values.

Returns

t (true) if the function completed successfully, otherwisenil .

Description

This function generates a set of summary statistics on the Y-value data in a buffer: minimum value,
maximum value, mean, and standard deviation. TheX-value data is ignored. The buffer data would
typically represent the result of a query for all values of a specific history (previously retrieved with the
Cascade Historianhist_read_buffer function). The summary statistics can then be used to provide
some idea of the nature of the data, or could be used to automatically scale the display of the data.

This function corresponds to the Cascade Historianhist_stat_buffer dynamic library function.

155

HI_Register
HI_Register — registers histories with the Cascade DataHub.

Syntax

#include <cogent.h>
ST_STATUS HI_Register (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histpattern

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histpattern

A globbing pattern specifying a group of histories.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function causes the Cascade Historian to register each history matching the pattern with the
Cascade DataHub point of the same name. Any subsequent value changes transmitted by the Cascade
DataHub will be treated exactly the same as ifadd or HI_Add were called with that history, value and
timestamp. If a history has already been registered, this function does nothing. If the Cascade DataHub is
not running, no registration occurs. If multiple histories are associated with the same point, registering or
unregistering one of the histories will do the same to all the other histories sharing the same point.

A Cascade DataHub point is a unit of storage in the datahub. Points have a name (a string), a value (real,
integer, or string), and a time associated with them. They can be written to the Cascade DataHub in a
number of ways, including for example the Cascade DataHubwritept command and the Gamma
write_point function. The Cascade Historian receives a point’s data from the Cascade DataHub by
registering for it with theregister command orHI_Register function.

This function corresponds to the Cascade Historianregister command and thehist_register
dynamic library function.

156

HI_Unregister
HI_Unregister — unregisters histories with the Cascade DataHub.

Syntax

#include <cogent.h>
ST_STATUS HI_Unregister (

IP_hTASK historian ,
char* retbuf ,
int buflen ,
char* histpattern

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

An optional buffer containing an error message.

buflen

The length in bytes ofretbuf . If retbuf is non-NULL, this must be a valid non-zero length. If
retbuf is NULL, this parameter is ignored.

histpattern

A globbing pattern specifying a group of histories.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function causes the Cascade Historian to unregister each history matching the pattern from the
Cascade DataHub. The history will cease to receive exceptions when the point value data changes. If
multiple histories are associated with the same point, registering or unregistering one of the histories will
do the same to all the other histories sharing the same point.

If the history is not currently registered with the Cascade DataHub, this function does nothing.

This function corresponds to the Cascade Historianunregister command and thehist_unregister
dynamic library function.

157

HI_Version
HI_Version — gets the version number of the Cascade Historian.

Syntax

#include <cogent.h>
ST_STATUS HI_Version (

IP_hTASK historian ,
char* retbuf ,
int buflen

);

Arguments

historian

The task pointer to the Cascade Historian program.

retbuf

A requiredbuffer containing an error message.

buflen

The length in bytes ofretbuf . This must be a valid non-zero length.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a NULL-terminated character
string with an error message. If the return value isST_OK, theretbuf may not contain useful
information.

Description

This function returns the version number of the Cascade Historian inretbuf . Theretbuf and
buflen parameters are not optional in this case.buflen must be at least 32 characters.

This function corresponds to the Cascade Historianversioncommand and thehist_version
dynamic library function.

158

VI. Inter-Process Communication
Functions

Table of Contents
IP_AddFDHandler ...162

IP_AttachPhoton ...163

IP_AttachPhotonMainloop ..164

IP_ConnectToPort ...165

IP_ConnectToService ..166

IP_DetachPhotonMainloop ..167

IP_GetChannelID ...168

IP_GetConnectionID ..169

IP_IsPulse ...170

IP_ListenToPort ...171

IP_ListenToService ..172

IP_MsgCascade ..173

IP_MsgCreate ...174

IP_MsgData ...175

IP_MsgDefaultSize ...176

IP_MsgDestroy ..177

IP_MsgInfoReply ...178

IP_MsgInfoReplyRaw ..179

IP_MsgLisp ...180

IP_MsgRaw..181

IP_MsgRawData ..182

IP_MsgResize ...183

IP_NserveAdd ...184

IP_NserveClose ..185

IP_NserveInit ..186

IP_NserveInitMyself ..187

IP_NserveLookup ...188

IP_NserveLookupId ...189

IP_NserveLookupName ..190

IP_NservePackTaskInfo ...191

IP_NserveQueryNameCount ..193

IP_NserveQueryNames ..194

IP_NserveReattach ...195

IP_NserveRemove ...196

IP_NserveSetDomain ..197

IP_pfTaskComp ..198

IP_PhotonGUIFilter ..199

159

HI_Version

IP_PhotonGUIHandler ..200

IP_ProcessMessage ...201

IP_PulseDestroy ...202

IP_PulseNew ...203

IP_PulseTimed ..204

IP_PulseTrigger ...205

IP_QueueClose ..206

IP_QueueOpen ...207

IP_QueueRead ...208

IP_QueueStrerror ...209

IP_QueueWait ...210

IP_QueueWrite ..212

IP_Receive ...213

IP_ReceiveNonblock ..215

IP_RemoveFDHandler ..216

IP_Reply ..217

IP_ReplyRaw ...218

IP_SelectFD ...219

IP_SetChannelID ...220

IP_SetConnectionID ..221

IP_SetGUIHandler ...222

IP_TaskCloseAsync ...223

IP_TaskCloseSync ...224

IP_TaskConnect ..225

IP_TaskCopy ...226

IP_TaskCreate ..227

IP_TaskCreateMe ...228

IP_TaskDefaultDomain ...229

IP_TaskDestroy ..230

IP_TaskFindID ..231

IP_TaskFindName ...232

IP_TaskInitAsync ...233

IP_TaskInitAsyncWrites ...234

IP_TaskIntern ..235

IP_TaskNew ...236

IP_TaskSendAsync ...237

IP_TaskSendRaw ..238

IP_TaskSendSync ...239

IP_TaskSetDomain ...240

IP_TaskSetInfo ..241

IP_TaskSetQname ...243

IP_TaskUnintern ...244

IP_TaskWaitAsync ...245

160

HI_Version

IP_TaskZero ...246

IP_TimerTime ...247

IP_UnselectFD ..248

161

IP_AddFDHandler
IP_AddFDHandler — tells IP_Receive to accept file input.

Syntax

#include <cogent.h>
int IP_AddFDHandler (

int fd
);

Arguments

fd

An open file descriptor.

Returns

-1 on failure anderrno is set, or an arbitrary number other than-1 on success.

Description

This function tellsIP_Receive that it should accept input from the given file descriptor, and return
IP_FD whenever a read event occurs on that descriptor.

See Also

Receiving Messages and Events, IP_RemoveFDHandler

162

IP_AttachPhoton
IP_AttachPhoton — not fully documented.

Syntax

#include <cogent.h>
int IP_AttachPhoton (

void
);

Arguments

Not yet documented.

Returns

Not yet documented.

Description

Not yet documented.

See Also

Photon Functions, IP_AttachPhotonMainloop

163

IP_AttachPhotonMainloop
IP_AttachPhotonMainloop — not fully documented.

Syntax

#include <cogent.h>
int IP_AttachPhotonMainloop (

IP_pfMessageHandler handler
);

Arguments

Not yet documented.

Returns

Not yet documented.

Description

Not yet documented.

See Also

Photon Functions, IP_DetachPhotonMainloop

164

IP_ConnectToPort
IP_ConnectToPort — resolves a host name and connects to a port.

Syntax

#include <cogent.h>
int IP_ConnectToPort (

char* host ,
int port

);

Arguments

host

A host name.

port

A port number.

Returns

A file descriptor (socket) on success, or-1 on failure anderrno is set.

Description

This function resolves the host name, which may be either a fully qualified host name or an IP address as
an ASCII string containing a dotted quad. It then attempts to connect to the specified port on that host.

See Also

Working with TCP/IP, IP_ListenToService , IP_ConnectToService

165

IP_ConnectToService
IP_ConnectToService — like IP_ConnectToPort , but uses the service name.

Syntax

#include <cogent.h>
int IP_ConnectToService (

char* host ,
char* service

);

Arguments

host

A host name.

service

The service name, as found in/etc/services .

Returns

A file descriptor (socket) on success, or -1 on failure anderrno is set.

Description

This function looks up the service name, resolving it to a port number before calling
IP_ConnectToPort .

See Also

Working with TCP/IP, IP_ListenToService , IP_ConnectToPort

166

IP_DetachPhotonMainloop
IP_DetachPhotonMainloop — not fully documented.

Syntax

#include <cogent.h>
int IP_DetachPhotonMainloop (

void
);

Arguments

Not yet documented.

Returns

Not yet documented.

Description

Not yet documented.

See Also

Photon Functions, IP_AttachPhotonMainloop

167

IP_GetChannelID
IP_GetChannelID — returns the channel ID for IP library use.

Syntax

#include <cogent.h>
int IP_GetChannelID (

void
);

Arguments

None.

Returns

The channel ID being used by the IP library, or-1 if no channel could be created.

Description

This function returns the channel ID to be used by the IP library functions. If there is no current channel
set, then this function creates a new channel and returns that. Subsequent calls to this function will return
the same channel.

See Also

Connections and Channels, IP_SetChannelID

168

IP_GetConnectionID
IP_GetConnectionID — returns the connection ID for IP library use.

Syntax

#include <cogent.h>
int IP_GetConnectionID (

void
);

Arguments

None.

Returns

The connection ID being used by the IP library, or-1 if no connection could be created.

Description

This function returns the connection ID to be used by the IP library functions. If there is no current
connection, then this function creates a new connection and returns that. This function calls
IP_GetChannelID , possibly also creating a new channel.

See Also

Connections and Channels, IP_SetConnectionID

169

IP_IsPulse
IP_IsPulse — validates a received message against a pulse ID.

Syntax

#include <cogent.h>
int IP_IsPulse (

int pulse ,
int rcvid ,
void* msg

);

Arguments

pulse

A pulse ID as generated byIP_PulseNew .

rcvid

Thercvid field from anIP_MsgInfo structure.

msg

The pointer to a message received throughIP_Receive .

Returns

0 if thepulse does not correspond to thercvid andmsg, or non-zero if thercvid andmsg do
represent thepulse .

Description

This function compares thercvid andmsg to thepulse , and determines whether they really
represent an occurrence of thepulse .

See Also

Pulses and Timers

170

IP_ListenToPort
IP_ListenToPort — is a wrapper forlisten .

Syntax

#include <cogent.h>
int IP_ListenToPort (

int port ,
int backlog

);

Arguments

port

A port number.

backlog

The number of connection requests that are allowed to be simultaneously pending.

Returns

The file descriptor (socket), or -1 anderrno is set.

Description

This function wraps thelisten library call, and registers the resulting file descriptor with the
IP_Receive function.

See Also

Working with TCP/IP, IP_ListenToService , IP_ConnectToPort

171

IP_ListenToService
IP_ListenToService — like IP_ListenToPort , but uses the service name.

Syntax

#include <cogent.h>
int IP_ListenToService (

char* service ,
int backlog

);

Arguments

service

The service name, as found in/etc/services .

backlog

The number of connection requests that are allowed to be simultaneously pending.

Returns

The file descriptor (socket), or -1 anderrno is set.

Description

This function wraps thelisten library call, and registers the resulting file descriptor with the
IP_Receive function. Prior to callinglisten , this function looks up the service name to produce a
port number which is given toIP_ListenToPort .

See Also

Working with TCP/IP, IP_ListenToPort , IP_ConnectToService

172

IP_MsgCascade
IP_MsgCascade — writes message data to anIP_MsgBuffer .

Syntax

#include <cogent.h>
int IP_MsgCascade (

IP_Msg* message ,
void* data ,
int len ,
int subtype ,
int status

);

Arguments

message

A pointer to a message.

data

Data to copy intomessage->msg->data .

len

The amount of data to copy.

subtype

The message subtype to be set.

status

The message status to be set.

Returns

0 on success, or-1 if the message could not be resized, anderrno is set:

• ENOSYS - the message is either not resizable or not dynamic.

• ENOMEM - the memory reallocation returnedNULL.

Themsg portion of message is set toNULL.

Description

This function assumes that the message points to anIP_MsgBuffer , and writesdata into its data
portion for len bytes. Iflen is greater than the currently allocated message length, the message is
resized. If thedata argument points to the same location as the message’s data, then no copy is
performed. The message’s length, status and subtype are all updated regardless. The message type is set
to IP_MSG_COGENT.

See Also

Messages, IP_MsgResize

173

IP_MsgCreate
IP_MsgCreate — creates anIP_Msg structure.

Syntax

#include <cogent.h>
IP_Msg* IP_MsgCreate (

void* data ,
int datalen ,
int noresize

);

Arguments

data

The initial data in the message, orNULL.

datalen

The length of the allocated data buffer.

noresize

If non-zero, indicates thatdatalen is fixed.

Returns

A pointer to a newIP_Msg .

Description

This function creates a newIP_Msg structure whose message is anIP_MsgBuffer with a data buffer
that isdatalen bytes in length.

If data is non-NULL, thendatalen bytes are copied into the newly allocated data buffer in the
IP_MsgBuffer component of theIP_Msg . If noresize is 0, then the IP library may enlarge the
data buffer in the future to accomodate requests larger thandatalen . If datalen is 0, then
IP_MsgDefaultSize is used. The message is marked as dynamic.

See Also

Messages, IP_MsgDestroy

174

IP_MsgData
IP_MsgData — returns a pointer to the data payload of anIP_Msg structure.

Syntax

#include <cogent.h>
char* IP_MsgData (

IP_Msg* msg
);

Arguments

msg

A pointer to anIP_Msg structure.

Returns

A pointer to the data portion of a message.

Description

This function returns the data portion of anIP_Msg structure. This is the buffer of characters to be
transmitted, excluding any message header information.

IP_MsgData(message) is equivalent tomessage->msg->data .

See Also

Messages

175

IP_MsgDefaultSize
IP_MsgDefaultSize — gets the default size of interprocess messages.

Syntax

#include <cogent.h>
int IP_MsgDefaultSize (

void
);

Arguments

None.

Returns

The value of the environment variableIP_MSG_DEFAULT_SIZEif it is set, or4096 . If
IP_MSG_DEFAULT_SIZE <= 0then4096 is returned. IfIP_MSG_DEFAULT_SIZE > 65400,
then65400 is returned.

Description

This function returns the default message size for interprocess messages. The messaging primitives
(Send/Receive /Reply) do not easily provide a sender information about the amount of space
allocated by the receiver. By using theIP_MsgDefaultSize , all processes can agree on the message
sizes being transmitted. The default size normally refers to the number of bytes in the data portion of the
IP_MsgBuffer pointed to by anIP_Msg .

See Also

Messages, IP_MsgResize

176

IP_MsgDestroy
IP_MsgDestroy — frees memory associated with a message.

Syntax

#include <cogent.h>
void IP_MsgDestroy (

IP_Msg* message
);

Arguments

message

A pointer to a message.

Returns

Nothing.

Description

This function cleans up all memory associated with themessage . If the message is marked as
dynamic, then themsg portion of theIP_Msg is also freed.

See Also

Messages, IP_MsgCreate

177

IP_MsgInfoReply
IP_MsgInfoReply — replies to anIP_SYNC message usingIP_MsgInfo .

Syntax

#include <cogent.h>
int IP_MsgInfoReply (

IP_MsgInfo* orig ,
IP_Msg* rmsg

);

Arguments

orig

The originalmsginfo as filled byIP_Receive .

rmsg

The reply message.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function replies to a previously receivedIP_SYNC message by using the information in the
IP_MsgInfo structure filled byIP_Receive . Thermsg contains the information to be transmitted
as the reply.

See Also

Replying to Messages, IP_Reply

178

IP_MsgInfoReplyRaw
IP_MsgInfoReplyRaw — replies to anIP_RAWmessage usingIP_MsgInfo .

Syntax

#include <cogent.h>
int IP_MsgInfoReplyRaw (

IP_MsgInfo* orig ,
char* msg,
int len

);

Arguments

orig

The original msginfo as filled byIP_Receive .

msg

The message buffer to be transmitted.

len

The length of the message buffer.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function replies to a previously receivedIP_RAWmessage by using the information in the
IP_MsgInfo structure filled byIP_Receive . len bytes ofmsg are transmitted as the reply
message.

See Also

Replying to Messages, IP_ReplyRaw

179

IP_MsgLisp
IP_MsgLisp — constructs a formatted text message.

Syntax

#include <cogent.h>
int IP_MsgLisp (

IP_Msg* message ,
int status ,
char* format ...

);

Arguments

message

A pointer to a message.

status

The message status to be set.

format

A UT_LispString style format string followed by a variable number of arguments.

Returns

0 on success; or-1 if the message could not be resized, anderrno is set:

• ENOSYS - the message is either not resizable or not dynamic.

• ENOMEM - the memory reallocation returnedNULL.

Themsg portion of message is set toNULL.

Description

This function constructs a formatted text message in the data portion of the message by calling
UT_LispString . If the message data is too short to hold the formatted text, then the message size is
increased by progressive factors of two and the format attempt is repeated until the message can be
written or until a call toIP_MsgResize fails. The resulting message is submitted to
IP_MsgCascade with a subtype ofIP_SUB_LISP and the status as supplied in the status argument
to IP_MsgLisp .

See Also

Messages, IP_MsgResize

180

IP_MsgRaw
IP_MsgRaw — like IP_MsgCascade , with IP_SUB_RAWfor its subtype .

Syntax

#include <cogent.h>
int IP_MsgRaw (

IP_Msg* message ,
void* data ,
int len

);

Arguments

message

A pointer to a message.

data

Data to copy intomessage->msg->data .

len

The amount of data to copy.

Returns

0 on success; or-1 if the message could not be resized, anderrno is set:

• ENOSYS - the message is either not resizable or not dynamic.

• ENOMEM - the memory reallocation returnedNULL.

Themsg portion of message is set toNULL.

Description

This function is equivalent to:IP_MsgCascade (message , data , len , IP_SUB_RAW, 0)

See Also

Messages, IP_MsgCascade

181

IP_MsgRawData
IP_MsgRawData — gives a pointer toIP_RAWmessage data.

Syntax

#include <cogent.h>
IP_MsgRawData (

msg
);

Arguments

msg

A pointer to anIP_Msg structure.

Returns

A void pointer to the raw message data, defined as:

((void*)((msg)->msg))

Description

This is a macro that finds and returns the correct pointer to message data—if and only if the message
type (as returned byIP_Receive) is IP_RAW.

See Also

Messages

182

IP_MsgResize
IP_MsgResize — resizes theIP_MsgBuffer , if possible.

Syntax

#include <cogent.h>
int IP_MsgResize (

IP_Msg* message ,
int datalen

);

Arguments

message

A pointer to a message.

datalen

The new length of the data portion of theIP_MsgBuffer , pointed to asmessage->msg .

Returns

0 on success,-1 on failure anderrno is set:

• ENOSYS - the message is either not resizable or not dynamic.

• ENOMEM - the memory reallocation returnedNULL.

Themsg portion of message is set toNULL.

Description

This function assumes that the message encapsulates anIP_MsgBuffer , and resizes the data portion
of thatIP_MsgBuffer to datalen bytes through a call toME_Realloc .

See Also

Messages, IP_MsgDefaultSize

183

IP_NserveAdd
IP_NserveAdd — adds an entry tonserve.

Syntax

#include <cogent.h>
int IP_NserveAdd (

char* name,
char* domain ,
char* qname,
int nid ,
int pid ,
int chid

);

Arguments

name

A task name.

domain

A domain name, orNULL.

qname

A queue name, orNULL.

nid

A node ID.

pid

A process ID.

chid

A channel ID.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function adds an entry tonserve, associating thename with domain , qname, nid , pid and
chid .

If domain is NULL, then the default domain is used. Ifqname is NULL, then a blank queue name is
used. The actualnid /pid /chid combination need not actually exist. The resultingnserveentry will be
removed when the process that created it exits. A single process may add any number of names.

See Also

The Cascade NameServer, Cascade NameServer Functions, nserve, IP_NserveRemove

184

IP_NserveClose
IP_NserveClose — closes the channel tonserve.

Syntax

#include <cogent.h>
int IP_NserveClose (

IP_Task* task
);

Arguments

task

A task structure referring tonserve.

Returns

0

Description

This function closes the channel tonserve, which produces exactly the same result as if the process had
died.nservewill generate a task death notice for each of the names associated with this process.

See Also

The Cascade NameServer, Cascade NameServer Functions, nserve, IP_NserveReattach

185

IP_NserveInit
IP_NserveInit — creates a task structure and informsnserve.

Syntax

#include <cogent.h>
IP_Task* IP_NserveInit (

char* name,
char* domain ,
char* qname,
int qsize ,
int flags

);

Arguments

name

A public name for this task. This must be unique system-wide.

domain

A Cascade DataHub domain name, orNULL.

qname

A queue name, orNULL.

qsize

The number of messages in the queue, or0.

flags

A bitwise-ORof initialization flags, or0.

Returns

A task structure pointer on success, orNULLon failure, anderrno is set.

Description

This function creates a task structure for the current task, and sends the necessary information tonserve.
If the domain is NULL, the default domain is used. If theqname is null, then the task will have no input
queue. If theqsize is 0, then it will be assigned a default value (currently100). There are currently no
flags.

Task names must be unique system-wide. This restriction is enforced as much as possible bynserve, but
there are certain unavoidable situations that may allow multiple processes on different nodes to register
the same name. Some care should be taken by the programmer to ensure that this does not happen.

See Also

The Cascade NameServer, Cascade NameServer Functions, nserve, IP_NserveInitMyself

186

IP_NserveInitMyself
IP_NserveInitMyself — declares current task structure information tonserve.

Syntax

#include <cogent.h>
int IP_NserveInitMyself (

IP_Task* myself ,
int flags

);

Arguments

myself

The task structure for the current task.

flags

A bitwise-ORof initialization flags, or0.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function declares the information stored in the task structure tonserve, through a call to
IP_NserveInit . There are currently no flags.

See Also

Cascade NameServer Functions, nserve, IP_NserveInit

187

IP_NserveLookup
IP_NserveLookup — fills in a known task structure.

Syntax

#include <cogent.h>
int IP_NserveLookup (

char* name,
IP_Task* task

);

Arguments

name

A task name.

task

An empty task structure to hold the result.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function queriesnservefor the first task corresponding toname. The task structure is filled in with
all information fromnserve. Strings are allocated as necessary, and will be deallocated when the task
pointer is submitted toIP_TaskDestroy .

IP_NserveLookup assumes that the memory allocated for the task structure is uninitialized.
After you have calledIP_NserveLookup once on a given task structure, each subsequent
time you call it on the same task structure, new buffers are allocated for names, but the old
pointers are not freed. To eliminate this potential memory leak, you can use this sequence:

task = IP_TaskNew();
IP_NserveLookup (name, task);

IP_TaskDestroy (task);

or this one:
task = IP_NserveLookupName (name);

if (task) IP_TaskDestroy (task);

See Also

The Cascade NameServer, Cascade NameServer Functions, nserve, IP_NserveLookupID ,
IP_NserveLookupName

188

IP_NserveLookupId
IP_NserveLookupId — finds a task by node, process and channel ID.

Syntax

#include <cogent.h>
int IP_NserveLookupId (

int nid ,
int pid ,
int chid ,
IP_Task* task

);

Arguments

nid

A node ID.

pid

A process ID.

chid

A channel ID.

task

An empty task structure to hold the result.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function queriesnservefor the first task whosenid , pid andchid exactly match the provided
values. The task structure is filled in with all information fromnserve. Strings are allocated as necessary,
and will be deallocated when the task pointer is submitted toIP_TaskDestroy .

See Also

The Cascade NameServer, Cascade NameServer Functions, nserve, IP_NserveLookup ,
IP_NserveLookupName

189

IP_NserveLookupName
IP_NserveLookupName — allocates and fills in a new task structure.

Syntax

#include <cogent.h>
IP_Task* IP_NserveLookupName (

char* name
);

Arguments

name

A task name.

Returns

A pointer to a task structure on success, orNULLon failure anderrno is set.

Description

This function is a convenience wrapper onIP_NserveLookup that allocates a new IP_Task structure
and then attempts to fill it. If thename is not registered withnserve, the new task structure is destroyed.

See Also

The Cascade NameServer, Cascade NameServer Functions, nserve, IP_NserveLookup ,
IP_NserveLookupID

190

IP_NservePackTaskInfo
IP_NservePackTaskInfo — makes a Lisp-parseable version of task information.

Syntax

#include <cogent.h>
int IP_NservePackTaskInfo (

char* buffer ,
int maxlen ,
char* prefix ,
char* name,
char* domain ,
char* qname,
int nid ,
int pid ,
int chid

);

Arguments

buffer

A buffer used to hold the packed information.

maxlen

The maximum length of buffer.

prefix

A string to be prepended to the packed information.

name

The task name.

domain

The task’s domain name, orNULL.

qname

The task’s queue name, orNULL.

nid

The task’s node ID.

pid

The task’s process ID.

chid

The task’s input channel ID.

Returns

0 on success. -1 on failure anderrno is set:

• ENOMEM - the buffer size was too small to hold the result.

191

IP_NservePackTaskInfo

Description

This function creates a Lisp-parseable representation of the task information, suitable for transmission to
nserveand associated library functions. Ifdomain is NULL, the default domain is used. Ifqname is
NULL, then a blank queue name is used. Thenid , pid andchid parameters must all be specified.

See Also

The Cascade NameServer, Cascade NameServer Functions

192

IP_NserveQueryNameCount
IP_NserveQueryNameCount — gives the number of registered names.

Syntax

#include <cogent.h>
int IP_NserveQueryNameCount (

void
);

Arguments

None.

Returns

The number of names>= 0 on success, or-1 on failure anderrno is set.

Description

This function queriesnservefor the number of currently registered names.

See Also

The Cascade NameServer, Cascade NameServer Functions, nserve, IP_NserveQueryNames

193

IP_NserveQueryNames
IP_NserveQueryNames — fills an array withnserve’s names.

Syntax

#include <cogent.h>
int IP_NserveQueryNames (

char** names,
int maxnames

);

Arguments

names

An array of pointers to be filled in.

maxnames

The number of entries in the names array.

Returns

The number of names actually received, or-1 on error anderrno is set.

Description

This function queriesnservefor up tomaxnames names, allocates memory for each name, and adds it
to thenames array. It is the programmer’s responsibility to callME_Free on each pointer in thenames
array to clean up this memory.

See Also

The Cascade NameServer, Cascade NameServer Functions, nserve, IP_NserveQueryNameCount

194

IP_NserveReattach
IP_NserveReattach — closes and renews all task connections and queues.

Syntax

#include <cogent.h>
int IP_NserveReattach (

IP_Task* task
);

Arguments

task

A valid task pointer.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function will close all connections and queues associated with thetask , and will attempt to look
up thetask name again onnserve, replacing any new information that it acquires. This is useful if the
pointer to the task structure is widely used in an application, and the programmer wishes to re-locate a
dead task without having to visit all uses of the task pointer.

See Also

The Cascade NameServer, Cascade NameServer Functions, nserve, IP_NserveClose

195

IP_NserveRemove
IP_NserveRemove — removes an entry fromnserve.

Syntax

#include <cogent.h>
int IP_NserveRemove (

char* name
);

Arguments

name

A task name.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function removes thename entry fromnserve. No check is performed to ensure that the requesting
task in fact "owns" the name being removed. This will trigger the same response bynserveas if the
process referred to byname had exited, except that any other names associated with that process will
remain.

See Also

The Cascade NameServer, Cascade NameServer Functions, nserve, IP_NserveAdd

196

IP_NserveSetDomain
IP_NserveSetDomain — changes a task’s domain name.

Syntax

#include <cogent.h>
int IP_NserveSetDomain (

IP_Task* task ,
char* domain

);

Arguments

task

A pointer to task structure for this task.

domain

A new domain name for this task.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function modifies the domain name of thetask , and informsnserveof that change.

See Also

The Cascade NameServer, Cascade NameServer Functions, nserve

197

IP_pfTaskComp
IP_pfTaskComp — compares two tasks for equality.

Syntax

#include <cogent.h>
int IP_pfTaskComp (

const void* t1 ,
const void* t2

);

Arguments

t1

A pointer to a task structure.

t2

A pointer to a task structure.

Returns

<0 if t1 is ordinally less thant2 , 0 if the two tasks are equal, and>0 if t1 is ordinally greater thant2 .

Description

This function compares two tasks for equality by comparing theirnid , pid andchid values.

See Also

Task Structures

198

IP_PhotonGUIFilter
IP_PhotonGUIFilter — not fully documented.

Syntax

#include <cogent.h>
int IP_PhotonGUIFilter (

int rcvid ,
void* msg,
int length

);

Arguments

Not yet documented.

Returns

Not yet documented.

Description

Not yet documented.

See Also

Photon Functions, IP_PhotonGUIHandler

199

IP_PhotonGUIHandler
IP_PhotonGUIHandler — not fully documented.

Syntax

#include <cogent.h>
int IP_PhotonGUIHandler (

void* msg,
int length

);

Arguments

Not yet documented.

Returns

Not yet documented.

Description

Not yet documented.

See Also

Photon Functions, IP_PhotonGUIFilter

200

IP_ProcessMessage
IP_ProcessMessage — classifies messages forIP_Receive .

Syntax

#include <cogent.h>
int IP_ProcessMessage (

IP_Task* myself ,
int rcvid ,
void* msgbuffer ,
int length ,
IP_MsgInfo* msginfo

);

Arguments

myself

A task structure referring to the current task.

rcvid

Thercvid from the most recently received message.

msgbuffer

The most recently received message.

length

The length of msgbuffer.

msginfo

A structure to be filled with message information.

Returns

The message type.

Description

This function is used byIP_Receive to classify messages. Do not call this function directly.

See Also

Receiving Messages and Events, IP_Receive

201

IP_PulseDestroy
IP_PulseDestroy — destroys a pulse.

Syntax

#include <cogent.h>
int IP_PulseDestroy (

int pulse
);

Arguments

pulse

A pulse ID as generated byIP_PulseNew .

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function destroys a pulse, cleaning up any associated resources.

See Also

Pulses and Timers, IP_PulseNew , IP_PulseDestroy

202

IP_PulseNew
IP_PulseNew — creates a new pulse.

Syntax

#include <cogent.h>
int IP_PulseNew (

void
);

Arguments

None.

Returns

A pulse ID on success, or-1 on failure anderrno is set.

Description

This function creates a new pulse.

See Also

Pulses and Timers, IP_PulseTrigger , IP_PulseDestroy

203

IP_PulseTimed
IP_PulseTimed — sets up timers to trigger pulses.

Syntax

#include <cogent.h>
timer_t IP_PulseTimed (

int pulse ,
time_t init_sec ,
time_t init_nsec ,
time_t interval_sec ,
time_t interval_nsec

);

Arguments

pulse

A pulse ID as generated byIP_PulseNew .

init_sec

Seconds of delay prior to the first timer expiry.

init_nsec

Nanoseconds of delay prior to the first timer expiry.

interval_sec

Seconds of delay for subsequent timing intervals.

interval_nsec

Nanoseconds of delay for subsequent timing intervals.

Returns

A timer identifier on success, or -1 on failure anderrno is set.

Description

This function causes a pulse to be triggered after a given number ofinit_sec + init_nsec , and
then to trigger on a regular interval everyinterval_sec + interval_nsec thereafter.

See Also

Pulses and Timers, IP_TimerTime

204

IP_PulseTrigger
IP_PulseTrigger — immediately sends a pulse.

Syntax

#include <cogent.h>
int IP_PulseTrigger (

IP_Task* task ,
int pulse

);

Arguments

task

The task to which the pulse is sent.

pulse

The pulse ID.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function causes thepulse to be sent immediately to thetask . It is the programmer’s
responsibility to ensure that thetask andpulse are associated.

See Also

Pulses and Timers, IP_PulseNew , IP_PulseDestroy

205

IP_QueueClose
IP_QueueClose — closes a queue.

Syntax

#include <cogent.h>
int IP_QueueClose (

int qid
);

Arguments

qid

A queue ID.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function closes the queue specified byqid . If this process is the creator of the queue, then the
queue is deleted.

See Also

Cascade QueueServer Functions, IP_QueueOpen

206

IP_QueueOpen
IP_QueueOpen — opens a queue for reading or writing.

Syntax

#include <cogent.h>
int IP_QueueOpen (

char* name,
int nid ,
int max_msgs,
int mode

);

Arguments

name

A queue name.

nid

A node ID on which to open the queue.

max_msgs

The maximum number of messages if creating the queue.

mode

The open mode for the queue.

Returns

A queue ID on success, or-1 on failure anderrno is set.

Description

This function opens a queue for reading or writing, as well as possibly creating it. Themax_msgs is
ignored unless the queue is being created. The possible values formode are the same as the open modes
for theopen system call. Typically a queue should be opened for reading or writing, but not both.

See Also

Cascade QueueServer Functions, IP_QueueClose

207

IP_QueueRead
IP_QueueRead — reads a message from the queue.

Syntax

#include <cogent.h>
int IP_QueueRead (

int qid ,
void* msg,
int maxlength

);

Arguments

qid

A queue ID.

msg

A buffer to hold the new message.

maxlength

The maximum length in bytes ofmsg.

Returns

The number of bytes read on success, or-1 on failure anderrno is set.

Description

This function reads the next available message from the queue specified byqid . If no message is
available, this function returns immediately. If there is insufficient space to hold the entire message then
the result is operating-system dependent. (This will change in future releases).

See Also

Cascade QueueServer Functions, IP_QueueWrite

208

IP_QueueStrerror
IP_QueueStrerror — gives access to error strings.

Syntax

#include <cogent.h>
char* IP_QueueStrerror (

int status
);

Arguments

status

A value oferrno .

Returns

A pointer to a NUL-terminated character string.

Description

This function lets you accesserrno strings. It returns a pointer to a string that corresponds to the
errno value, as specified bystatus . This pointer must not be freed or modified by the programmer.

See Also

Cascade QueueServer Functions

209

IP_QueueWait
IP_QueueWait — requests notification of an event.

Syntax

#include <cogent.h>
int IP_QueueWait (

int qid ,
int pulse ,
int eventmask

);

Arguments

qid

The queue ID.

pulse

A pulse ID.

eventmask

The event on which to wait.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function causesqserveto trigger thepulse when a particular event occurs. The calling process
does not block waiting for the next event, but will return immediately. In order to implement a blocking
wait, the programmer should useIP_QueueWait followed byIP_Receive .

The possible values foreventmask are:

• IP_NOTIFY_MSGnotifies the caller when the next message is available. This event causes at most
one pulse trigger.

• IP_NOTIFY_EVERY_MSGnotifies the caller when every message is available. This event will cause
on pulse trigger for each message that arrives in the queue.

• IP_NOTIFY_SPACEnotifies the caller when the queue transitions from full to non-full. This event
causes at most one pulse trigger.

• IP_NOTIFY_ANY_SPACEnotifies the caller whenever the queue transitions from full to non-full.

• IP_NOTIFY_HALF_SPACEnotifies the caller when the queue transitions from half-full to less than
half-full. This event causes at most one pulse trigger.

• IP_NOTIFY_ANY_HALF_SPACEnotifies the caller whenever the queue transitions from half-full to
less than half-full.

If the condition for an event is already true at the time of the call toIP_QueueWait , then the pulse is
triggered immediately.

210

IP_QueueWait

See Also

Cascade QueueServer Functions, Pulses and Timers

211

IP_QueueWrite
IP_QueueWrite — writes a message to a queue.

Syntax

#include <cogent.h>
int IP_QueueWrite (

int qid ,
void* msg,
int length ,
int priority

);

Arguments

qid

A queue ID.

msg

The message buffer to be sent to the queue.

length

The length in bytes ofmsg.

priority

The priority of this message.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function writes a message to the queue specified byqid . Higherpriority numbers are treated
as having a higher priority. Priority ordering is not currently implemented. A single write to the queue is
limited by the operating system. Queue messages transmitted in a single write will never be broken apart
or concatenated with other messages.

See Also

Cascade QueueServer Functions, IP_QueueRead

212

IP_Receive
IP_Receive — receives any message.

Syntax

#include <cogent.h>
int IP_Receive (

IP_Task* myself ,
IP_Msg* rmsg ,
IP_MsgInfo* msginfo

);

Arguments

myself

A task structure referring to the current process.

rmsg

A message structure to hold the received message.

msginfo

A structure to be filled with extra information.

Returns

The type of the received message.

Description

This function receives message of any form, and classifies them according to type. Relevant information
about the sender is stored in themsginfo structure. A message can be one of the following types:

• IP_GUI means a GUI event occurred. No further processing is necessary.

• IP_ASYNCmeans an asynchronous message was received. No reply is necessary.

• msginfo->subtype = ST_DH_EXCEPTION , ST_DH_ECHO, or other.

• msginfo->rcvid = the queue pulse ID

• IP_SYNC means a synchronous message was received. A reply is necessary via a call to
IP_MsgInfoReply .

• msginfo->rcvid = thercvid (QNX 6) or thepid (QNX 4/Linux)

• IP_NONEmeansIP_Receive returned without receiving a message. This is possible if the queue
pulse is triggered, but the queued message is no longer available.

• IP_ERRORmeans an error occurred duringIP_Receive , but defied classification.

• msginfo->rcvid = errno

• IP_SIGNAL meansIP_Receive exited due to a signal.

213

IP_Receive

• IP_PULSE means a pulse was received. No reply is necessary.

• msginfo->rcvid = the pulse ID.

• IP_RAWmeans a message from a task not using the Cascade IPC library was received. The message
data is contained in(void*)(rmsg->msg) . A reply is required with a call to
IP_MsgInfoReplyRaw .

• msginfo->rcvid = thercvid (QNX 6) or thepid (QNX 4/Linux)

• IP_FD means activity occurred on a file descriptor. No data has been read from the file descriptor.

• msginfo->rcvid = the file descriptor.

See Also

Receiving Messages and Events, IP_ReceiveNonblock

214

IP_ReceiveNonblock
IP_ReceiveNonblock — receives any message, without blocking.

Syntax

#include <cogent.h>
int IP_ReceiveNonblock (

IP_Task* myself ,
IP_Msg* rmsg ,
IP_MsgInfo* msginfo

);

Arguments

myself

A task structure referring to the current process.

rmsg

A message structure to hold the received message.

msginfo

A structure to be filled with extra information.

Returns

The type of the received message. If no message was available then-1 is returned and
msginfo->rcvid is set toEAGAIN.

Description

This function receives a message of any type, but will not block if no message is available. See
IP_Receive for details.

See Also

Receiving Messages and Events, IP_Receive

215

IP_RemoveFDHandler
IP_RemoveFDHandler — preventsIP_Receive from accepting file input.

Syntax

#include <cogent.h>
int IP_RemoveFDHandler (

int fd
);

Arguments

fd

A file descriptor.

Returns

0

Description

This function removes the given file descriptor from consideration byIP_Receive .

See Also

Receiving Messages and Events, IP_AddFDHandler

216

IP_Reply
IP_Reply — replies to anIP_SYNC message usingrcvid .

Syntax

#include <cogent.h>
int IP_Reply (

int rcvid ,
IP_Msg* rmsg

);

Arguments

rcvid

Thercvid returned fromIP_Receive in msginfo->rcvid .

rmsg

The message to transmit as a reply.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function replies to a previously receviedIP_SYNC message by using thercvid directly. This is
sometimes simpler than using theIP_MsgInfo structure, as thercvid is a single integer that can be
easily passed to other functions.

See Also

Replying to Messages, IP_MsgInfoReply

217

IP_ReplyRaw
IP_ReplyRaw — replies to anIP_RAWmessage usingrcvid .

Syntax

#include <cogent.h>
int IP_ReplyRaw (

int rcvid ,
char* msg,
int len

);

Arguments

rcvid

The rcvid returned fromIP_Receive in msginfo->rcvid.

msg

The message buffer to be transmitted.

len

The length of the message buffer.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function replies to a previously receivedIP_RAWmessage by using thercvid directly. This is
sometimes simpler than using theIP_MsgInfo structure, as thercvid is a single integer that can be
easily passed to other functions.len bytes ofmsg are transmitted as the reply message.

See Also

Replying to Messages, IP_MsgInfoReplyRaw

218

IP_SelectFD
IP_SelectFD — is used internally only.

Syntax

#include <cogent.h>
int IP_SelectFD (

void
);

Arguments

None.

Returns

Undocumented.

Description

This is an internal function. Do not call it directly.

See Also

Receiving Messages and Events

219

IP_SetChannelID
IP_SetChannelID — sets the channel ID for IP library use.

Syntax

#include <cogent.h>
void IP_SetChannelID (

int chid
);

Arguments

chid

A channel ID.

Returns

None.

Description

This function sets the channel ID to be used by the IP library. This is stored in a static variable within the
library and is accessible withIP_GetChannelID . This function is normally only needed when
interfacing to a facility that implements its own event loop and has already created a channel ID. Photon
is such a facility.

See Also

Connections and Channels, IP_GetChannelID

220

IP_SetConnectionID
IP_SetConnectionID — sets the connection ID for IP library use.

Syntax

#include <cogent.h>
void IP_SetConnectionID (

int coid
);

Arguments

coid

A connection ID.

Returns

Nothing.

Description

This function sets the connection ID to be used by the IP library. This is stored in a static variable within
the library and is accessible withIP_GetConnectionID . This function is normally only needed
when interfacing to a facility that implements its own event loop and has already created a connection
ID. Photon is such a facility.

See Also

Connections and Channels, IP_GetConnectionID

221

IP_SetGUIHandler
IP_SetGUIHandler — sets callback functions for GUI events.

Syntax

#include <cogent.h>
int IP_SetGUIHandler (

IP_pfGUIFilter filter ,
IP_pfGUIHandler handler

);

Arguments

filter

A GUI filter function.

handler

A GUI event handler function.

Returns

0

Description

This function sets the two callback functions required to deal with a GUI event throughIP_Receive .
These functions must match the following types:

typedef int (*IP_pfGUIFilter)(int rcvid , void* msg, int length);
typedef int (*IP_pfGUIHandler)(void* msg, int length);

The filter function returns0 if the rcvid , msg andlength do not represent a GUI message for this
GUI, and returns non-zero if the given message is a GUI message.

The handler function must be able to process any message for which the filter function returns non-zero,
routing the message to the appropriate GUI facility.

If the filter function returns non-zero, then the IP library functions will perform no further processing on
that message, but will return fromIP_Receive with a message type ofIP_GUI . The programmer is
not required to provide code for a message of typeIP_GUI .

See Also

Receiving Messages and Events, IP_Receive

222

IP_TaskCloseAsync
IP_TaskCloseAsync — closes queues and cleans up resources.

Syntax

#include <cogent.h>
int IP_TaskCloseAsync (

IP_Task* task
);

Arguments

task

A task pointer.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function closes any open queues, either for reading or writing, associated with thetask , and cleans
up any associated resources. This may result in destroying the pulse used by the queue notification
services.

See Also

Task Structures, IP_TaskInitAsync , IP_TaskSendAsync , IP_TaskWaitAsync

223

IP_TaskCloseSync
IP_TaskCloseSync — closes synchronous connections and cleans up resources.

Syntax

#include <cogent.h>
int IP_TaskCloseSync (

IP_Task* task
);

Arguments

task

A task pointer.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function closes any open synchronous connections to the given task, and cleans up any associated
resources. Thetask should not refer to the current process.

See Also

Task Structures, IP_TaskSendSync

224

IP_TaskConnect
IP_TaskConnect — opens a connection to a receiver.

Syntax

#include <cogent.h>
int IP_TaskConnect (

IP_Task* receiver
);

Arguments

receiver

A task to which a connection should be made.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function opens a connection between the current task and the receiver. This connection remains
open until the receiver task structure is destroyed. It is not normally necessary to call this function, as the
IP_TaskSend* functions do this on your behalf.

See Also

Sending Messages, IP_TaskSendSync , IP_TaskSendAsync , IP_TaskSendRaw

225

IP_TaskCopy
IP_TaskCopy — copies a task structure.

Syntax

#include <cogent.h>
IP_Task* IP_TaskCopy (

IP_Task* task
);

Arguments

task

A pointer to a task structure to be copied.

Returns

A pointer to a new task structure.

Description

This function makes a copy of the task structure pointed to bytask . This will not perform queue
initialization or name registration withnserve.

See Also

Task Structure Caching

226

IP_TaskCreate
IP_TaskCreate — creates a new task structure.

Syntax

#include <cogent.h>
IP_Task* IP_TaskCreate (

int nid ,
int pid ,
int chid ,
char* name,
char* domain ,
char* qname,
int security ,
void* userdata

);

Arguments

nid

A node ID.

pid

A process ID.

chid

A channel ID.

name

The name of the task.

domain

The domain name, orNULL.

qname

A queue name, orNULL.

security

Unused, should be0.

userdata

A pointer to user-defined data, orNULL.

Returns

The new task structure, orNULL if there was insufficient memory to perform the allocation.

Description

This function creates a new task structure, and callsIP_TaskSetInfo .

See Also

Task Structures, IP_TaskSetInfo , IP_TaskCreateMe , IP_TaskDefaultDomain ,
IP_TaskDestroy

227

IP_TaskCreateMe
IP_TaskCreateMe — creates a task structure for the current process.

Syntax

#include <cogent.h>
IP_Task* IP_TaskCreateMe (

int chid ,
char* name,
char* domain ,
char* qname,
int qsize

);

Arguments

chid

A channel ID, or0.

name

A name for this task.

domain

A Cascade DataHub domain name.

qname

A queue name, orNULL.

qsize

The maximum number of messages in the queue, or0.

Returns

A pointer to a new task structure orNULLon failure. This function might fail if aqname is specified but
the queue name either already exists, or could not be created.

Description

This function creates a task structure referring to the current process. Ifdomain is NULL, then the
default domain is used. Ifqname is non-NULL, then the queue is created and opened as read-only. If
qsize is 0, then the default of100 is used.

See Also

Task Structures, IP_TaskSetInfo , IP_TaskCreateMe , IP_TaskDefaultDomain ,
IP_TaskDestroy

228

IP_TaskDefaultDomain
IP_TaskDefaultDomain — returns the Cascade DataHub default domain.

Syntax

#include <cogent.h>
char* IP_TaskDefaultDomain (

void
);

Arguments

None.

Returns

A NUL-terminated domain name.

Description

This function returns a static NUL-terminated character string with the name of the default Cascade
DataHub domain.

See Also

Task Structures, Domainsin the Cascade NameServer chapter,IP_TaskSetDomain

229

IP_TaskDestroy
IP_TaskDestroy — closes connections and queues, removes the task and frees memory.

Syntax

#include <cogent.h>
void IP_TaskDestroy (

IP_Task* task
);

Arguments

task

A task pointer.

Returns

None.

Description

This function closes any open connections on thetask , closes any open queues, removes thetask
from the task cache, and frees any memory associated with thetask structure, including the structure
itself.

See Also

Task Structures, IP_TaskCreate

230

IP_TaskFindID
IP_TaskFindID — finds a task by its node, process, and channel IDs.

Syntax

#include <cogent.h>
IP_Task* IP_TaskFindID (

int nid ,
int pid ,
int chid

);

Arguments

nid

The node ID of the task to be found.

pid

The process ID of the task to be found.

chid

The channel ID of the task to be found.

Returns

A pointer to a cachedIP_Task whosenid , pid andchid exactly match the requested values, or
NULL if there is no match.

Description

This function looks up a task in the current process’s task cache by matching the node, process ID and
channel ID of the target task. Channel ID is only relevant in QNX 6.

See Also

Task Structure Caching, IP_TaskFindName

231

IP_TaskFindName
IP_TaskFindName — finds a task by its name.

Syntax

#include <cogent.h>
IP_Task* IP_TaskFindName (

char* name
);

Arguments

name

The task name to be found.

Returns

A pointer to a cachedIP_Task structure if the name matches, orNULL.

Description

This function searches the current process’s task cache for the specifiedname. It will return the first
exact match that it encounters. Names should be unique throughout the system, though it is possible that
more than one task could register a name under certain network conditions, and therefore more than one
task could be cached with the same name.

See Also

Task Structure Caching, IP_TaskFindID

232

IP_TaskInitAsync
IP_TaskInitAsync — creates a read-only queue.

Syntax

#include <cogent.h>
int IP_TaskInitAsync (

IP_Task* myself ,
char* qname,
int qsize

);

Arguments

myself

A task structure referring to the current task.

qname

A queue name.

qsize

The maximum number of messages in the queue, or0.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function creates a queue ofqname andqsize , and opens it as read-only. Ifqsize is 0, the default
of 100 is used. This function also requests notification on the queue for every message in the queue.

See Also

Task Structures, IP_TaskInitAsyncWrites , IP_TaskSendAsync , IP_TaskWaitAsync ,
IP_TaskCloseAsync

233

IP_TaskInitAsyncWrites
IP_TaskInitAsyncWrites — opens a task’s queue as write-only.

Syntax

#include <cogent.h>
int IP_TaskInitAsyncWrites (

IP_Task* receiver
);

Arguments

receiver

A task.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function opens thereceiver ’s queue as write-only, allowing subsequent calls to
IP_TaskSendAsync to succeed.

See Also

Task Structures, IP_TaskInitAsync

234

IP_TaskIntern
IP_TaskIntern — adds a task to a process’s task cache.

Syntax

#include <cogent.h>
IP_Task* IP_TaskIntern (

IP_Task* task
);

Arguments

task

A pointer to a task structure.

Returns

Returnstask on success, orNULL if there is already a matching task in the cache.

Description

This function causes thetask to be added to the task cache for this process. If a task matching thenid ,
pid andchid of thetask already exists in the cache, then the new task is not added to the cache, and
NULL is returned.

See Also

Task Structure Caching, IP_TaskUnintern

235

IP_TaskNew
IP_TaskNew — creates a new task structure.

Syntax

#include <cogent.h>
IP_Task* IP_TaskNew (

void
);

Arguments

None.

Returns

A new task structure.

Description

This function returns a new initialized task structure.

See Also

Task Structures, IP_TaskZero

236

IP_TaskSendAsync
IP_TaskSendAsync — transmits a message viaqserveand returns immediately.

Syntax

#include <cogent.h>
int IP_TaskSendAsync (

IP_Task* myself ,
IP_Task* receiver ,
IP_Msg* smsg,
int priority

);

Arguments

myself

A task structure referring to the current task.

receiver

The task receiving the message.

smgs

The message structure containing the data to send.

priority

The queue priority for this message..

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function transmits a message frommyself to thereceiver via qserve, and returns
immediately. This is nominally a non-blocking call, though it is in fact implemented as a synchronous
send toqserve, which itself is non-blocking. There is no reply from thereceiver .

See Also

Sending Messages, IP_TaskInitAsync , IP_TaskWaitAsync , IP_TaskCloseAsync ,
IP_TaskSendSync , IP_TaskSendRaw

237

IP_TaskSendRaw
IP_TaskSendRaw — sends data in bytes, synchronously.

Syntax

#include <cogent.h>
int IP_TaskSendRaw (

IP_Task* receiver ,
char* outbuf ,
int lout ,
char* inbuf ,
int lin

);

Arguments

myself

A task structure referring to the current task.

receiver

The task receiving the message.

outbuf

The message data to send.

lout

The number of bytes of data to send.

inbuf

The buffer to receive the reply.

lin

The maximum number of bytes in the reply.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function transmits a number of bytes synchronously to thereceiver , and waits for the
receiver to reply. There is no limit to how long thereceiver may delay prior to replying. The
reply data will be written intoinbuf , up tolin bytes. If theinbuf data area is not large enough to
accommodate the entire reply, then the result is OS-dependent. This will change in future versions of this
API.

See Also

Sending Messages, IP_TaskSendSync , IP_TaskSendAsync

238

IP_TaskSendSync
IP_TaskSendSync — transmits a message, and waits for a reply.

Syntax

#include <cogent.h>
int IP_TaskSendSync (

IP_Task* myself ,
IP_Task* receiver ,
IP_Msg* smsg,
IP_Msg* rmsg

);

Arguments

myself

A task structure referring to the current task.

receiver

The task receiving the message.

smsg

The message structure containing the data to send.

rmsg

The message structure into which received data will be written.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function transmits a message (smsg) from myself to thereceiver , and waits for the
receiver to reply. There is no limit to how long thereceiver may delay prior to replying. The reply
data will be written into thermsg buffer. If thermsg data area is not large enough to accommodate the
entire reply, then the result is OS-dependent. This will change in future versions of this API.

See Also

Sending Messages, IP_TaskCloseSync , IP_TaskSendAsync , , IP_TaskSendRaw

239

IP_TaskSetDomain
IP_TaskSetDomain — sets or changes a task’s domain name.

Syntax

#include <cogent.h>
void IP_TaskSetDomain (

IP_Task* task ,
char* domain

);

Arguments

task

A task.

domain

A domain name, orNULL.

Returns

None.

Description

This function sets or changes the domain name for thetask . If the task has an existing domain name,
then memory associated with that domain name is freed and a new domain name is allocated. Ifdomain
is NULL, then the default domain name is used.

See Also

Task Structures, Domainsin the Cascade NameServer chapter,IP_TaskDefaultDomain ,
IP_TaskSetQname

240

IP_TaskSetInfo
IP_TaskSetInfo — sets the fields in a task structure.

Syntax

#include <cogent.h>
IP_Task* IP_TaskSetInfo (

IP_Task* task ,
int nid ,
int pid ,
int chid ,
char* name,
char* domain ,
char* qname,
int security ,
void* userdata

);

Arguments

task

A task pointer.

nid

A node ID.

pid

A process ID.

chid

A channel ID.

name

The name of the task.

domain

The domain name, orNULL.

qname

A queue name, orNULL.

security

Unused, should be0.

userdata

A pointer to user-defined data, orNULL.

Returns

task

Description

This function sets the various fields in the task structure. It is simply a convenience function. Ifdomain
is NULL, the default domain is used.

241

IP_TaskSetInfo

See Also

Task Structures, Domainsin the Cascade NameServer chapter,IP_TaskSetDomain ,
IP_TaskDefaultDomain

242

IP_TaskSetQname
IP_TaskSetQname — sets a task’s queue name.

Syntax

#include <cogent.h>
void IP_TaskSetQname (

IP_Task* task ,
char* qname

);

Arguments

task

A task.

qname

A queue name, orNULL.

Returns

None.

Description

This function sets the queue name for thetask . If the task already has an open queue, then that queue
is closed. Ifqname is non-NULLand the task had a previously open queue, then the new queue name is
opened and initialized with the same permissions.

See Also

Task Structures, Domainsin the Cascade NameServer chapter,IP_TaskSetDomain

243

IP_TaskUnintern
IP_TaskUnintern — removes a task from a process’s task cache.

Syntax

#include <cogent.h>
IP_Task* IP_TaskUnintern (

IP_Task* task
);

Arguments

task

A pointer to a task to be removed from cache.

Returns

Returnstask on success, orNULL if task is not in the cache.

Description

This function removes thetask from the task cache. The match is done as a pointer comparison, so the
task must be the exact task that is currently in the cache.

See Also

Task Structure Caching, IP_TaskIntern

244

IP_TaskWaitAsync
IP_TaskWaitAsync — registers the task for events inqserve.

Syntax

#include <cogent.h>
int IP_TaskWaitAsync (

IP_Task* task ,
int flags

);

Arguments

task

A pointer to a task structure.

flags

The event on which to wait.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function causes the current task to be notified whenever the events in flags occur withinqserve.
This function will create a pulse, stored intask->qpulse , if necessary. When the event occurs,
task->qpulse will be triggered, and will subsequently be received throughIP_Receive as an
IP_PULSE event type.

The possible values forflags are:

• IP_NOTIFY_MSGnotifies the caller when the next message is available. This event causes at most
one pulse trigger.

• IP_NOTIFY_EVERY_MSGnotifies the caller when every message is available. This event will cause
on pulse trigger for each message that arrives in the queue.

• IP_NOTIFY_SPACEnotifies the caller when the queue transitions from full to non-full This event
causes at most one pulse trigger.

• IP_NOTIFY_ANY_SPACEnotifies the caller whenever the queue transitions from full to non-full.

• IP_NOTIFY_HALF_SPACEnotifies the caller when the queue transitions from half-full to less than
half-full. This event causes at most one pulse trigger.

• IP_NOTIFY_ANY_HALF_SPACEnotifies the caller whenever the queue transitions from half-full to
less than half-full.

The programmer should not make this call with a task structure referring to the current process, as it is
done automatically by the API.

See Also

Task Structures, IP_TaskInitAsync , IP_TaskSendAsync , IP_TaskCloseAsync

245

IP_TaskZero
IP_TaskZero — sets all task structure fields to defaults.

Syntax

#include <cogent.h>
IP_Task* IP_TaskZero (

IP_Task* task
);

Arguments

task

An uninitialized task structure.

Returns

task

Description

This function sets all fields in a task structure to default values. The task structure is assumed to be
uninitialized, so this function does not attempt to free memory associated with strings within the task
structure.

See Also

Task Structures, IP_TaskNew

246

IP_TimerTime
IP_TimerTime — adjusts timer parameters.

Syntax

#include <cogent.h>
int IP_TimerTime (

timer_t timer ,
int absolute ,
time_t init_sec ,
time_t init_nsec ,
time_t interval_sec ,
time_t interval_nsec

);

Arguments

timer

A timer ID, as returned byIP_PulseTimed .

absolute

1 for absolute time,0 for relative.

init_sec

Seconds of delay prior to the first timer expiry.

init_nsec

Nanoseconds of delay prior to the first timer expiry.

interval_sec

Seconds of delay for subsequent timing intervals.

interval_nsec

Nanoseconds of delay for subsequent timing intervals.

Returns

0 on success, or-1 on failure anderrno is set.

Description

This function changes the times associated with thetimer . If absolute is non-zero, then the
init_sec andinit_nsec fields are treated as the number of seconds and nanoseconds since 12:00
a.m. Jan 1, 1970 UTC. Otherwise,init_sec andinit_nsec are treated as an offset from the current
time.

See Also

Pulses and Timers, IP_PulseTimed

247

IP_UnselectFD
IP_UnselectFD — is used internally only.

Syntax

#include <cogent.h>
int IP_UnselectFD (

void
);

Arguments

None.

Returns

Undocumented.

Description

This is an internal function. Do not call it directly.

See Also

Receiving Messages and Events

248

VII. Cascade TextLogger Functions

Table of Contents
LG_Cache ..250

LG_Collect ...252

LG_Disable ...254

LG_Empty ..255

LG_Enable ..256

LG_Exit ...257

LG_Fall ...258

LG_File ...260

LG_Flush ..262

LG_Group ..263

LG_Log ...264

LG_Output ..265

LG_Time ...266

LG_Timestamp ...268

LG_Tolerance ...270

LG_UseGMT..271

249

LG_Cache
LG_Cache — controls how frequently data is written.

Syntax

#include <cogent.h>
ST_STATUS LG_Cache (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
int cached ,
int nlabels ,
char** labels

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

cached

Any non-0 value sets caching on (the default). A value of0 turns off caching.

nlabels

The number of labels (log or group names) referenced in thelabels argument.

labels

An array of char*, each of which is a pointer to a string containing a log or group name.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seecachein the Cascade TextLogger documentation). If the return value isST_OK, theretbuf may
not contain useful information.

Description

This function lets you determine how frequently data is written. When caching is on (cached is set to
0, the default), data is written in blocks, according to your default C library file buffer implementation.
When caching is off (any non-zero value), each line of output is immediately flushed from the buffer to
the file.

If the Cascade TextLogger is started with the-F option, this function is ignored because there is
no possibility of caching; all data is immediately flushed to the file.

250

LG_Cache

This function corresponds to the Cascade TextLoggercachecommand.

251

LG_Collect
LG_Collect — specifies when a line of data is considered complete.

Syntax

#include <cogent.h>
ST_STATUS LG_Collect (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
char* style ,
int nlabels ,
char** labels

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

style

One of the following:

any

Writes a line when data from any point is eligible to be written. Leaves values for all other
points empty.

fill

Writes a line when data from any point is eligible to be written. Writes previous values for all
other points.

all

Writes a line only after data from all points is eligible to be written.

nlabels

The number of labels (log or group names) referenced in thelabels argument.

labels

An array of char*, each of which is a pointer to a string containing a log or group name.

252

LG_Collect

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seecollect in the Cascade TextLogger documentation). If the return value isST_OK, theretbuf may
not contain useful information.

Description

This function lets you specify when a line of data in a given log or group is considered complete, and
ready for writing. If nolabels are specified, this command sets a global default value for all logs and
groups. Any specific value always overrides the global definition, regardless of the order in the
configuration file or when a command is sent.

The Cascade TextLogger always keeps one line of output for each log in a buffer. Whenever a point
changes value, the TextLogger checks each log to see if it includes that point. If so, the TextLogger
checks thestyle specified for the log. If it isany or fill and if the tolerance for that log has been
exceeded, the line in the buffer gets written immediately, and this point is entered in a new line in the
buffer. But if thestyle is set toall , the TextLogger keeps the line in the buffer until every point in the
log has changed at least once,or until a point is logged beyond the tolerance. When one of these
conditions is met, the line gets written.

This function corresponds to the Cascade TextLoggercollectcommand.

253

LG_Disable
LG_Disable — renders a log or group inactive.

Syntax

#include <cogent.h>
ST_STATUS LG_Disable (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
int nlabels ,
char** labels

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

nlabels

The number of labels (log or group names) referenced in thelabels argument.

labels

An array of char*, each of which is a pointer to a string containing a log or group name.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seedisable in the Cascade TextLogger documentation). If the return value isST_OK, theretbuf may
not contain useful information.

Description

This function lets you inactivate any number of logs or groups. This function corresponds to the Cascade
TextLoggerdisablecommand.

See Also

LG_Enable

254

LG_Empty
LG_Empty — specifies a place-holder string for empty data readings.

Syntax

#include <cogent.h>
ST_STATUS LG_Empty (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
char* emptystring

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

emptystring

The string which will replace a non-existent value when theLG_Collect style is set tofill .

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seeempty in the Cascade TextLogger documentation). If the return value isST_OK, theretbuf may
not contain useful information.

Description

This function lets you specify a string to be written whenever there is no data available for a point. This
is a global value, applied to all logs.

This function corresponds to the Cascade TextLoggerempty command.

255

LG_Enable
LG_Enable — activates a log or group.

Syntax

#include <cogent.h>
ST_STATUS LG_Enable (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
int nlabels ,
char** labels

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

nlabels

The number of labels (log or group names) referenced in thelabels argument.

labels

An array of char*, each of which is a pointer to a string containing a log or group name.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seeenablein the Cascade TextLogger documentation). If the return value isST_OK, theretbuf may
not contain useful information.

Description

This function lets you reactivate a disabled log or group. A log or group is automatically enabled when
theLG_Log or LG_Group function is first called, or when alog or group command is first given. This
function corresponds to the Cascade TextLoggerenablecommand.

See Also

LG_Disable

256

LG_Exit
LG_Exit — exits the Cascade TextLogger.

Syntax

#include <cogent.h>
ST_STATUS LG_Exit (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
int exitstatus

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

exitstatus

The exit status to be returned to the operating system.

Returns

If this function returns a value at all, it will beNULL, indicating that the exit function failed. Normally
this function will cause the Cascade TextLogger to exit, so that the client will see a disconnection rather
than a return value.

Description

This function corresponds to the Cascade TextLoggerexit command.

257

LG_Fall
LG_Fall — associates values logged within a tolerance.

Syntax

#include <cogent.h>
ST_STATUS LG_Fall (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
char* direction ,
int nlabels ,
char** labels

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

direction

One of the following:

forward

Associates a new value with the next logged value.

backward

Associates a new value with the previously logged value.

closest

Associates a new value with the value nearest in time.

nlabels

The number of labels (log or group names) referenced in thelabels argument.

labels

An array of char*, each of which is a pointer to a string containing a log or group name.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seefall in the Cascade TextLogger documentation). If the return value isST_OK, theretbuf may not
contain useful information.

258

LG_Fall

Description

This function determines how the Cascade TextLogger will associate different values logged within a
given tolerance. It corresponds to the Cascade TextLoggerfall command. Please refer to that document
for an example.

259

LG_File
LG_File — specifies the file to receive a log.

Syntax

#include <cogent.h>
ST_STATUS LG_File (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
char* filename ,
int nlabels ,
char** labels

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

filename

One of the following:

• The name of the file that will be logged to.

• stdout

• stderr

nlabels

The number of labels (log or group names) referenced in thelabels argument.

labels

An array of char*, each of which is a pointer to a string containing a log or group name.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seefile in the Cascade TextLogger documentation). If the return value isST_OK, theretbuf may not
contain useful information.

260

LG_File

Description

This function lets you specify the filename that a log or group will be written to. If nolabels are
specified, this command sets a global default value for all logs and groups. Any specific value always
overrides the global definition, regardless of the order in the configuration file or when a command is
sent.

If this command specifies multiplelabels , the logs for all of them will be written to one file. They will
not necessarily always be written in exact time-sequential order, however. You may have to post-process
the file if you need that kind of record.

The Cascade TextLogger writes each log only once. If you apply theLG_File function twice
for the same log, writing to a different file each time, for example, only the most recent
application ofLG_File will produce results. Thus, if you need the same information written in
two places, make two identical logs with different labels.

This function corresponds to the Cascade TextLoggerfile command.

261

LG_Flush
LG_Flush — flushes all buffered output.

Syntax

#include <cogent.h>
ST_STATUS LG_Flush (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
int nlabels ,
char** labels

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

nlabels

The number of labels (log or group names) referenced in thelabels argument.

labels

An array of char*, each of which is a pointer to a string containing a log or group name.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seeflush in the Cascade TextLogger documentation). If the return value isST_OK, theretbuf may
not contain useful information.

Description

This function attempts to log any collected data to the cache. If data is not being cached (as determined
by theLG_Cache function or thecachecommand), theLG_Flush function will cause data to be
flushed to file or standard output.

This function corresponds to the Cascade TextLoggerflush command.

262

LG_Group
LG_Group — groups a number of logs or groups together.

Syntax

#include <cogent.h>
ST_STATUS LG_Group (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
char* label ,
int nlabels ,
char** labels

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

label

The name of the group to be created.

nlabels

The number of labels (log or group names) referenced in thelabels argument.

labels

An array of char*, each of which is a pointer to a string containing a log or group name.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seegroup in the Cascade TextLogger documentation). If the return value isST_OK, theretbuf may
not contain useful information.

Description

This function lets you group any number of logs or groups. Grouping allows you to give commands that
refer to several logs at the same time, because a command specifying a group will be applied to all the
logs in that group or its sub-groups.

Groups can be made recursively (ie. groups of groups). Each group must contain either groups or logs,
but not both; you are not permitted to have a group consisting of groups and single logs.

This function corresponds to the Cascade TextLoggergroup command.

263

LG_Log
LG_Log — writes point data in formatted lines.

Syntax

#include <cogent.h>
ST_STATUS LG_Log (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
char* label ,
char* spec ,
int npoints ,
char** pointnames

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

label

The name of the log.

spec

The format string for the log line, similar to the kind used in theprintf statement. Please refer to
the Cascade TextLoggerlog command documentation for details.

npoints

The number of entries in the arraypointnames .

pointnames

The names of the points corresponding to format directives in thespec format string.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seelog in the Cascade TextLogger documentation). If the return value isST_OK, theretbuf may not
contain useful information.

Description

This function specifies which points to log, and the format of each line of the written output. It
corresponds to the Cascade TextLoggerlog command.

264

LG_Output
LG_Output — writes an output string to a log or group, stdout, or stderr.

Syntax

#include <cogent.h>
ST_STATUS LG_Output (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
char* label ,
char* output

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

label

The log or group to which theoutput will be written. You can also specifystdout to write to
standard output, orstderr to write to standard error.

output

The text to write.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seeoutput in the Cascade TextLogger documentation). If the return value isST_OK, theretbuf may
not contain useful information.

Description

This function inserts an output string as a line into a log or group, standard output, or standard error. If
the label is for a single log, the string will appear in that log only. If thelabel is for a group, then the
string will appear in each of the logs pertaining to that group.

This function corresponds to the Cascade TextLoggeroutput command.

265

LG_Time
LG_Time — specifies the time format for a log or group.

Syntax

#include <cogent.h>
ST_STATUS LG_Time (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
char* timespec ,
int nlabels ,
char** labels

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

timespec

A time specification format string, whose options are as follows:

%J The day of the week (e.g.,Mon).

%j The day of the month[1-31] .

%M The month (e.g.,Jan).

%m The month in the year[1-12] .

%y The year in the century (e.g.,96).

%Y The year with century (e.g.,1996).

%h The hour in the day[0-23] .

%n The minute in the hour[0-59] .

%z The second in the minute[0-59] .

%Z The seconds since Jan 1, 1970.

%T The tenths of seconds in second (%z).

%H The hundredths of seconds in second (%z).

%L The milliseconds in second (%z).

%U The microseconds in second (%z).

%N The nanoseconds in second (%z).

%A Sets a global default time spec. This default can be changed at any time, including
run-time.

266

LG_Time

nlabels

The number of labels (log or group names) referenced in thelabels argument.

labels

An array of char*, each of which is a pointer to a string containing a log or group name.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seetime in the Cascade TextLogger documentation). If the return value isST_OK, theretbuf may
not contain useful information.

Description

This function lets you specify the time format for any log or group. If nolabels are specified, this
command sets a global default value for all logs and groups. Any specific value always overrides the
global definition, regardless of the order in the configuration file or when a command is sent.

You can prepend anyprintf -style format modifiers to the time spec field names, as appropriate for the
field type. Some of these format modifiers will be ignored (e.g.,%yand%Yignore format modifiers). The
string-type fields,%Jand%M, respond to%smodifiers.

Sub-second fields (%T, %L, %U, %N) usually need to be zero-padded to produce readable results,
as in%z.%09N.

This function corresponds to the Cascade TextLoggertime command.

267

LG_Timestamp
LG_Timestamp — sets the time resolution for each line.

Syntax

#include <cogent.h>
ST_STATUS LG_Timestamp (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
char* timestamp ,
int nlabels ,
char** labels

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

timestamp

Specifies how the timestamp is to be assigned for each line. One of the following:

first

Sets the timestamp to the time the first point was logged.

last

Sets the timestamp to the time the last point was logged. This is the recommended choice.

average

Sets the timestamp to the average log time of all the points.

nlabels

The number of labels (log or group names) referenced in thelabels argument.

labels

An array of char*, each of which is a pointer to a string containing a log or group name.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seetimestamp in the Cascade TextLogger documentation). If the return value isST_OK, theretbuf
may not contain useful information.

268

LG_Timestamp

Description

This function lets you set the time resolution for each line. If nolabels are specified, this command
sets a global default value for all logs and groups. Any specific value always overrides the global
definition, regardless of the order in the configuration file or when a command is sent.

We recommend setting the timestamp tolast , so the lines of output will be written in a non-decreasing
order. Of course, this will only be true if the data itself is ordered incrementally by times. Otherwise, you
may have to post-process the file and sort it to create a non-decreasing time sequence.

This function corresponds to the Cascade TextLoggertimestampcommand.

269

LG_Tolerance
LG_Tolerance — sets the maximum gap between timestamps of any two points.

Syntax

#include <cogent.h>
ST_STATUS LG_Tolerance (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
long seconds ,
long nanoseconds

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

seconds

The number of seconds in the collection tolerance.

nanoseconds

The number of nanoseconds in the collection tolerance.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seetolerance in the Cascade TextLogger documentation). If the return value isST_OK, theretbuf
may not contain useful information.

Description

This function sets timestamp tolerance. The tolerance is the maximum gap between the timestamps of
any two points on a line. Whenever a point is to be logged, the Cascade TextLogger checks the current
log line in the buffer. If the timestamp gap between this point and any other point in the buffer has
exceeded the tolerance, the existing line in the buffer is written first, and then this point is logged on a
new line in the buffer.

The tolerance is globally applied to all logs all the time. There is no way to prevent it from being applied,
but you can effectively ignore it by setting it to a very high number. The default tolerance is one
millisecond.

This function corresponds to the Cascade TextLoggertolerancecommand. Please refer to that document
for an example.

270

LG_UseGMT
LG_UseGMT— sets time/date strings to GMT or local time.

Syntax

#include <cogent.h>
ST_STATUS LG_UseGMT (

IP_Task* myself ,
IP_Task* textlog ,
char* retbuf ,
int buflen ,
int usegmt ,
int nlabels ,
char** labels

);

Arguments

myself

A pointer to this task’sIP_Task structurenormallly generated by a call toIP_NserveInit .

textlog

A pointer to the Cascade TextLogger’sIP_Task structure, normally generated by a call to
IP_TaskFindName .

retbuf

A pointer to a character buffer to hold the return from the call.

buflen

The length ofretbuf , in bytes.

usegmt

1 sets the time to GMT (the default),0 sets the time to local.

nlabels

The number of labels (log or group names) referenced in thelabels argument.

labels

An array of char*, each of which is a pointer to a string containing a log or group name.

Returns

ST_OKon success. OtherwiseST_ERROR, and theretbuf will contain a more detailed error message
(seeusegmtin the Cascade TextLogger documentation). If the return value isST_OK, theretbuf may
not contain useful information.

Description

This function lets you set the time for the time and date strings of any log or group to Greenwich Mean
Time or local time. If nolabel is specified, this command sets a global default value for all logs and
groups. Any specific value always overrides the global definition, regardless of the order in the
configuration file or when a command is sent.

This function corresponds to the Cascade TextLoggerusegmtcommand.

271

VIII. Point Manipulation Functions

Table of Contents
PT_FindCPoint ..273

PT_InitClient ..274

PT_NewCPoint ...275

PT_PointCopyValue ...276

PT_PointFormat ..277

PT_PointInt ...278

PT_PointReal ...279

PT_PointString ..280

272

PT_FindCPoint
PT_FindCPoint — looks up a point by name in the internal point hash table.

Syntax

#include <cogent.h>
PT_pCPOINT PT_FindCPoint (

char* name
);

Arguments

name

The point name to be found in the internal hash table created by PT_InitClient.

Returns

A pointer to a PT_stCPOINT structure, or NULL if PT_InitClient has not yet been called.

Description

This function looks up a point by name in the internal point hash table. If the point name does not exist,
then a new point structure is created through a call to PT_NewCPoint, and the result is returned.

See Also

Point Structure, Storage, and Manipulation, PT_InitClient, PT_NewCPoint

273

PT_InitClient
PT_InitClient — initializes the static hash table of referenced points.

Syntax

#include <cogent.h>
ST_STATUS PT_InitClient (

void
);

Arguments

None.

Returns

ST_OK on success, ST_ERROR on failure.

Description

This function initializes a statically held hash table that is used to maintain the definitions of all points
that have been accessed by the program.

See Also

Point Structure, Storage, and Manipulation, PT_FindCPoint,

274

PT_NewCPoint
PT_NewCPoint — allocates and initializes a new point structure.

Syntax

#include <cogent.h>
PT_pCPOINT PT_NewCPoint (

void
);

Arguments

None

Returns

A newly allocated point structure with all of its members set to sane values.

Description

This function allocates a new point structure on the heap and sets all of its members to sane values.

See Also

Point Structure, Storage, and Manipulation, PT_FindCPoint

275

PT_PointCopyValue
PT_PointCopyValue — copies one point structure into another.

Syntax

#include <cogent.h>
void PT_PointCopyValue (

PT_pCPOINT dest ,
PT_pCPOINT src

);

Arguments

dest

The destination of the copy.

src

The source of the copy.

Returns

Nothing.

Description

This function copies all relevant information from one point structure to another. If the destination point
is of type PT_TYPE_STRING, then free() will be called on its string value prior to the copy. If the
source point is of PT_TYPE_STRING, then the value of the destination will be the result of a strdup()
call on the source point’s string value.

276

PT_PointFormat
PT_PointFormat — formats a point according to a printf-like directive.

Syntax

#include <cogent.h>
char* PT_PointFormat (

PT_pCPOINT point ,
char* format ,
char* buffer

);

Arguments

point

A point whose value should be formatted.

format

A printf-style format directive used to format the point value. Only the actual formatting directive,
beginning with % and ending with one of [sfgGeEdicouxX] is acceptable. If this argument is
NULL, then default formatting will be done.

buffer

A character buffer to be filled with the formatting result. It is the programmer’s responsibility to
ensure that the buffer is large enough to hold the formatted point value.

Returns

A pointer to the character following the formatting directive within the format string. This is useful for
self-parsing a longer printf-style formatting string which contains literal strings and multiple point
values.

Description

This function examines the formatting directive to determine the type of point expected, and calls one of
Pt_PointString, PT_PointInt or PT_PointReal depending on the formatting directive type:

• [gGeEf] - PT_PointReal

• [diuxX] - PT_PointInt

• [s] - PT_PointString

See Also

Point Structure, Storage, and Manipulation, PT_PointString, PT_PointInt, andPT_PointReal

277

PT_PointInt
PT_PointInt — converts a point to an integer.

Syntax

#include <cogent.h>
long PT_PointInt (

PT_pCPOINT point
);

Arguments

point

A point whose value should be returned.

Returns

An integer representation of the point. value

Description

This function attempts to find the most reasonable integer representation for the given point. This will
depend on the input type of the point:

• PT_TYPE_INTEGER - the point value

• PT_TYPE_REAL - the floor of the point value

• PT_TYPE_STRING - atol() of the point value

See Also

Point Structure, Storage, and Manipulation, PT_PointString, PT_PointReal, PT_PointFormat

278

PT_PointReal
PT_PointReal — converts a point to a real.

Syntax

#include <cogent.h>
double PT_PointReal (

PT_pCPOINT point
);

Arguments

point

A point whose value should be returned.

Returns

A floating point representation of the point value.

Description

This function attempts to find the most reasonable integer representation for the given point. This will
depend on the input type of the point:

• PT_TYPE_INTEGER - the point value

• PT_TYPE_REAL - the point value

• PT_TYPE_STRING - atof() of the point value

See Also

Point Structure, Storage, and Manipulation, PT_PointString, PT_PointInt, andPT_PointFormat

279

PT_PointString
PT_PointString — converts a point to a string.

Syntax

#include <cogent.h>
char* PT_PointString (

PT_pCPOINT point ,
char* format ,
char* buffer

);

Arguments

point

The point whose value is to be returned.

format

A printf-style format directive used to format the point value. Only the actual formatting directive,
beginning with % and ending with one of [sfgGeEdicouxX] is acceptable. If this argument is
NULL, then default formatting will be done.

buffer

A character buffer to be filled with the formatting result. It is the programmer’s responsibility to
ensure that the buffer is large enough to hold the formatted point value.

Returns

A pointer to a buffer containing the formatted value. This may or may not be a pointer to the input buffer.
In any case, it is not subject to memory management (free or realloc), though buffer may be.

Description

This function attempts to produce a character string that represents the point value. Integer and real
values will be written to the buffer using sprintf along with the format string. If no format string is given,
then %g is used for real, and %d is used for integer. If %s is given to a point which not of type string,
then the value will first be formatted into a string using the default style, and then formatted again using
the %s directive in order to achieve the necessary spacing (e.g., formatting the integer 5 to "%-s" will
generate a right-justified string as "5"). The return value will be either a pointer to the point value (in the
case of an unformatted point of type PT_TYPE_STRING), or a pointer to the argument buffer.

See Also

Point Structure, Storage, and Manipulation, PT_PointInt, PT_PointReal, andPT_PointFormat

280

Index

D
DH_AppendString,64

DH_CreatePoint,65

DH_FindPointAddress,66

DH_FormatPoint,67

DH_ParsePointMsg,69

DH_ParsePointString,71

DH_PointAdd,73

DH_PointDivde,73

DH_PointMultiply,73

DH_ReadExistingPoint,75

DH_ReadPoint,75

DH_RegisterAllPoints,77

DH_RegisterPoint,78

DH_SendPointMessage,80

DH_SetLock,81

DH_SetReceiveFormat,82

DH_SetSecurity,81

DH_SetTransmitFormat,84

DH_UnregisterPoint,85

DH_WriteExistingPoint,86

DH_WriteExistingPoints,86

DH_WritePoint,86

DR_ApCloseIPC,89

DR_ApCommand,90

DR_ApConnectIPC,91

DR_ApDescribeBuffer,92

DR_ApDescribePnt,94

DR_ApInitIPC,96

DR_ApListBuffers,97

DR_ApListPoints,99

DR_ApPointBufAddress,101

DR_ApReadBlock,103

DR_ApReadControl,105

DR_ApReadPoint,107

DR_ApReadStatus,109

DR_ApUpdateBuffers,111

DR_ApWriteBlock,112

DR_ApWriteControl,114

DR_ApWritePoint,116

G
gsend,51

H
HI_Add, 118

HI_BufferIDDestroy,120

HI_BufferIDLength,121

HI_BufferIDRead,122

HI_Bufsize,124

HI_ClipBuffer, 126

HI_Count,127

HI_Deadband,128

HI_Delete,131

HI_Describe,132

HI_Disable,134

HI_Earliest,135

HI_Enable,136

HI_ExchangeBuffer,137

HI_FileBase,138

HI_Flush,140

HI_GapCountBuffer,141

HI_GapFillBuffer,142

HI_History,143

HI_Interpolate,145

HI_InterpolateData,148

HI_Latest,150

HI_Length,151

HI_List, 152

HI_Register,156

HI_ScaleBuffer,154

HI_StatBuffer,155

HI_stVALUE, 59

HI_Unregister,157

HI_Version,158

I
IP_AddFDHandler,162

IP_AttachPhoton,163

IP_AttachPhotonMainloop,164

IP_ConnectToPort,165

IP_ConnectToService,166

IP_DetachPhotonMainloop,167

IP_GetChannelID,168

IP_GetConnectionID,169

IP_IsPulse,170

IP_ListenToPort,171

IP_ListenToService,172

IP_MsgCascade,173

IP_MsgCreate,174

IP_MsgData,175

IP_MsgDefaultSize,176

IP_MsgDestroy,177

IP_MsgInfoReply,178

IP_MsgInfoReplyRaw,179

281

IP_MsgLisp,180

IP_MsgRaw,181

IP_MsgRawData,182

IP_MsgResize,183

IP_NserveAdd,184

IP_NserveClose,185

IP_NserveInit,186

IP_NserveInitMyself,187

IP_NserveLookup,188

IP_NserveLookupId,189

IP_NserveLookupName,190

IP_NservePackTaskInfo,191

IP_NserveQueryNameCount,193

IP_NserveQueryNames,194

IP_NserveReattach,195

IP_NserveRemove,196

IP_NserveSetDomain,197

IP_pfTaskComp,198

IP_PhotonGUIFilter,199

IP_PhotonGUIHandler,200

IP_ProcessMessage,201

IP_PulseDestroy,202

IP_PulseNew,203

IP_PulseTimed,204

IP_PulseTrigger,205

IP_QueueClose,206

IP_QueueOpen,207

IP_QueueRead,208

IP_QueueStrerror,209

IP_QueueWait,210

IP_QueueWrite,212

IP_Receive,213

IP_ReceiveNonblock,215

IP_RemoveFDHandler,216

IP_Reply,217

IP_ReplyRaw,218

IP_SelectFD,219

IP_SetChannelID,220

IP_SetConnectionID,221

IP_SetGUIHandler,222

IP_TaskCloseAsync,223

IP_TaskCloseSync,224

IP_TaskConnect,225

IP_TaskCopy,226

IP_TaskCreate,227

IP_TaskCreateMe,228

IP_TaskDefaultDomain,229

IP_TaskDestroy,230

IP_TaskFindID,231

IP_TaskFindName,232

IP_TaskInitAsync,233

IP_TaskInitAsyncWrites,234

IP_TaskIntern,235

IP_TaskNew,236

IP_TaskSendAsync,237

IP_TaskSendRaw,238

IP_TaskSendSync,239

IP_TaskSetDomain,240

IP_TaskSetInfo,241

IP_TaskSetQname,243

IP_TaskUnintern,244

IP_TaskWaitAsync,245

IP_TaskZero,246

IP_TimerTime,247

IP_UnselectFD,248

L
LG_Cache,250

LG_Collect,252

LG_Disable,254

LG_Empty,255

LG_Enable,256

LG_Exit, 257

LG_Fall,258

LG_File,260

LG_Flush,262

LG_Group,263

LG_Log,264

LG_Output,265

LG_Time,266

LG_Timestamp,268

LG_Tolerance,270

LG_UseGMT,271

lsend,51

N
nserve,55

nsnames,53

P
PT_FindCPoint,273

PT_InitClient,274

PT_NewCPoint,275

PT_PointCopyValue,276

PT_PointFormat,277

PT_PointInt,278

PT_PointReal,279

PT_PointString,280

PT_stCPOINT,60

PT_TYPE,61

282

PT_uVALUE,61

Q
qserve,57

S
ST_STATUS,62

283

Colophon
This book was produced by Cogent Real-Time Systems, Inc. from a single-source group of SGML files.
Gnu Emacs was used to edit the SGML files. The DocBook DTD and related DSSSL stylesheets were
used to transform the SGML source into HTML, PDF, and QNX Helpviewer output formats. This
processing was accomplished with the help of OpenJade, JadeTeX, Tex, and various scripts and
makefiles. Details of the process are described in our book: Preparing Cogent Documentation, which is
published on-line at
http://developers.cogentrts.com/cogent/prepdoc/book1.html .

Text written by Andrew Thomas, Manuel Dias, and Bob McIlvride.

284

	
	Cogent C API and Utilities
	Table of Contents
	List of Tables
	I. Programmers Manual
	Table of Contents
	Chapter 1. Introduction
	1.1. When to use the different Cogent APIs
	1.2. Function Naming Conventions
	1.3. System Requirements
	1.4. Download and Installation
	1.4.1. QNX 4
	1.4.2. QNX 6
	1.4.3. Linux
	1.4.4. Installed file locations
	1.4.5. Installing licenses

	1.5. Cogent Product Integration
	1.6. Where can I get help?

	Chapter 2. Point Structure, Storage, and Manipulation
	2.1. Creating Points
	2.2. Maintaining a Point Hash Table
	2.3. Accessing and Copying Point Values
	2.4. Memory Allocation and String Values

	Chapter 3. Interprocess Communication
	3.1. Connections and Channels
	3.2. Task Structure Caching
	3.3. Messages
	3.4. Cascade NameServer Functions
	3.5. Photon Functions
	3.6. Pulses and Timers
	3.7. Cascade QueueServer Functions
	3.8. Receiving Messages and Events
	3.9. Replying to Messages
	3.10. Sending Messages
	3.11. Task Structures
	3.12. Working with TCP/IP

	Chapter 4. The Cascade NameServer
	4.1. Domains
	4.2. Locating Other Tasks on the Network
	4.3. Task Started and Stopped Messages

	Chapter 5. Communicating with the Cascade DataHub
	5.1. Exceptions
	5.2. Echoes
	5.3. NonExistent Cascade DataHub Points
	5.4. Parsing Point Messages
	5.5. Optimizing Throughput
	5.6. Point Size Limit
	5.7. Cascade DataHub API Code Examples
	5.7.1. Reading from the Cascade DataHub
	5.7.2. Writing data to the Cascade DataHub
	5.7.3. Registering for exceptions from the Cascade DataHub
	5.7.4. A sample makefile definition

	Chapter 6. The Cascade Historian
	6.1. Command/Function Correspondence
	6.2. Binary Data Buffer Functions

	Chapter 7. Cogent Driver Specifications
	7.1. Cogent Driver Functions
	7.2. Hilscher Fieldbus CIF Card
	7.2.1. I/O Block Functions
	7.2.2. Control Block Functions
	7.2.3. Status Block Functions

	Appendix A. GNU General Public License
	GNU General Public License

	Appendix B. GNU Lesser General Public License
	GNU Lesser General Public License

	II. Reference
	Table of Contents
	I. Utilities
	Table of Contents
	lsend, gsend
	Synopsis
	Arguments
	Returns
	Description
	Example

	nsnames
	Synopsis
	Arguments
	Returns
	Description
	Dependencies
	See Also

	nserve
	Syntax
	Arguments
	Returns
	Description
	Dependencies
	See also

	qserve
	Synopsis
	Arguments
	Returns
	Description
	Dependencies
	See Also

	II. Data Types
	Table of Contents
	HIstVALUE
	Synopsis
	Members
	Description

	PTstCPOINT
	Synopsis
	Members
	Description
	See Also

	PTTYPE, PTuVALUE
	Synopsis
	Members
	See Also

	STSTATUS
	Synopsis
	Members
	Description

	III. Cascade DataHub Functions
	Table of Contents
	DHAppendString
	Syntax
	Arguments
	Returns
	Description
	See Also

	DHCreatePoint
	Syntax
	Arguments
	Returns
	Description
	See Also

	DHFindPointAddress
	Syntax
	Description

	DHFormatPoint
	Syntax
	Arguments
	Returns
	Description
	See Also

	DHParsePointMsg
	Syntax
	Arguments
	Returns
	Description
	See Also

	DHParsePointString
	Syntax
	Arguments
	Returns
	Description
	See Also

	DHPointAdd, DHPointDivide, DHPointMultiply
	Syntax
	Arguments
	Returns
	Description
	See Also

	DHReadPoint, DHReadExistingPoint
	Syntax
	Arguments
	Returns
	Description
	See Also

	DHRegisterAllPoints
	Syntax
	Arguments
	Returns
	Description
	See Also

	DHRegisterPoint, DHRegisterExistingPoint
	Syntax
	Arguments
	Returns
	Description
	See Also

	DHSendPointMessage
	Syntax
	Description

	DHSetLock, DHSetSecurity
	Syntax
	Arguments
	Returns
	Description

	DHSetReceiveFormat
	Syntax
	Arguments
	Returns
	Description
	See Also

	DHSetTransmitFormat
	Syntax
	Arguments
	Returns
	Description
	See Also

	DHUnregisterPoint
	Syntax
	Arguments
	Returns
	Description
	See Also

	DHWritePoint, DHWriteExistingPoint, DHWriteExistingPoints
	Syntax
	Arguments
	Returns
	Description
	See Also

	IV. Cogent Driver Functions
	Table of Contents
	DRApCloseIPC
	Syntax
	Arguments
	Returns
	Description
	Example

	DRApCommand
	Syntax
	Arguments
	Returns
	Description
	Example

	DRApConnectIPC
	Syntax
	Arguments
	Returns
	Description

	DRApDescribeBuffer
	Syntax
	Arguments
	Returns
	Description
	Example

	DRApDescribePnt
	Syntax
	Arguments
	Returns
	Description
	Example

	DRApInitIPC
	Syntax
	Arguments
	Returns
	Description
	Example:

	DRApListBuffers
	Syntax
	Arguments
	Returns
	Description
	Example

	DRApListPoints
	Syntax
	Arguments
	Returns
	Description
	Example

	DRApPointBufAddress
	Syntax
	Arguments
	Returns
	Description
	Example

	DRApReadBlock
	Syntax
	Arguments
	Returns
	Description
	Example

	DRApReadControl
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	DRApReadPoint
	Syntax
	Arguments
	Returns
	Description
	Example

	DRApReadStatus
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	DRApUpdateBuffers
	Syntax
	Arguments
	Returns
	Description
	Example

	DRApWriteBlock
	Syntax
	Arguments
	Returns
	Description
	Example

	DRApWriteControl
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	DRApWritePoint
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	V. Cascade Historian Functions
	Table of Contents
	HIAdd
	Syntax
	Arguments
	Returns
	Description

	HIBufferIDDestroy
	Syntax
	Arguments
	Returns
	Description

	HIBufferIDLength
	Syntax
	Arguments
	Returns
	Description

	HIBufferIDRead
	Syntax
	Arguments
	Returns
	Description

	HIBufsize
	Syntax
	Arguments
	Returns
	Description

	HIClipBuffer
	Syntax
	Arguments
	Returns
	Description
	Example

	HICount
	Syntax
	Arguments
	Returns
	Description

	HIDeadband
	Syntax
	Arguments
	Returns
	Description

	HIDelete
	Syntax
	Arguments
	Returns
	Description

	HIDescribe
	Syntax
	Arguments
	Returns
	Description

	HIDisable
	Syntax
	Arguments
	Returns
	Description

	HIEarliest
	Syntax
	Arguments
	Returns
	Description

	HIEnable
	Syntax
	Arguments
	Returns
	Description

	HIExchangeBuffer
	Syntax
	Arguments
	Returns
	Description

	HIFileBase
	Syntax
	Arguments
	Returns
	Description

	HIFlush
	Syntax
	Arguments
	Returns
	Description

	HIGapCountBuffer
	Syntax
	Arguments
	Returns
	Description
	Example

	HIGapFillBuffer
	Syntax
	Arguments
	Returns
	Description
	Example

	HIHistory
	Syntax
	Arguments
	Returns
	Description

	HIInterpolate
	Syntax
	Arguments
	Returns
	Description
	Example

	HIInterpolateData
	Syntax
	Arguments
	Returns
	Description

	HILatest
	Syntax
	Arguments
	Returns
	Description

	HILength
	Syntax
	Arguments
	Returns
	Description

	HIList
	Syntax
	Arguments
	Returns
	Description
	Example

	HIScaleBuffer
	Syntax
	Arguments
	Returns
	Description

	HIStatBuffer
	Syntax
	Arguments
	Returns
	Description

	HIRegister
	Syntax
	Arguments
	Returns
	Description

	HIUnregister
	Syntax
	Arguments
	Returns
	Description

	HIVersion
	Syntax
	Arguments
	Returns
	Description

	VI. InterProcess Communication Functions
	Table of Contents
	IPAddFDHandler
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPAttachPhoton
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPAttachPhotonMainloop
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPConnectToPort
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPConnectToService
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPDetachPhotonMainloop
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPGetChannelID
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPGetConnectionID
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPIsPulse
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPListenToPort
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPListenToService
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPMsgCascade
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPMsgCreate
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPMsgData
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPMsgDefaultSize
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPMsgDestroy
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPMsgInfoReply
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPMsgInfoReplyRaw
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPMsgLisp
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPMsgRaw
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPMsgRawData
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPMsgResize
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPNserveAdd
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPNserveClose
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPNserveInit
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPNserveInitMyself
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPNserveLookup
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPNserveLookupId
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPNserveLookupName
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPNservePackTaskInfo
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPNserveQueryNameCount
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPNserveQueryNames
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPNserveReattach
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPNserveRemove
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPNserveSetDomain
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPpfTaskComp
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPPhotonGUIFilter
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPPhotonGUIHandler
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPProcessMessage
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPPulseDestroy
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPPulseNew
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPPulseTimed
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPPulseTrigger
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPQueueClose
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPQueueOpen
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPQueueRead
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPQueueStrerror
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPQueueWait
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPQueueWrite
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPReceive
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPReceiveNonblock
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPRemoveFDHandler
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPReply
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPReplyRaw
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPSelectFD
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPSetChannelID
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPSetConnectionID
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPSetGUIHandler
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskCloseAsync
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskCloseSync
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskConnect
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskCopy
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskCreate
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskCreateMe
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskDefaultDomain
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskDestroy
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskFindID
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskFindName
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskInitAsync
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskInitAsyncWrites
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskIntern
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskNew
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskSendAsync
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskSendRaw
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskSendSync
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskSetDomain
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskSetInfo
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskSetQname
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskUnintern
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskWaitAsync
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTaskZero
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPTimerTime
	Syntax
	Arguments
	Returns
	Description
	See Also

	IPUnselectFD
	Syntax
	Arguments
	Returns
	Description
	See Also

	VII. Cascade TextLogger Functions
	Table of Contents
	LGCache
	Syntax
	Arguments
	Returns
	Description

	LGCollect
	Syntax
	Arguments
	Returns
	Description

	LGDisable
	Syntax
	Arguments
	Returns
	Description
	See Also

	LGEmpty
	Syntax
	Arguments
	Returns
	Description

	LGEnable
	Syntax
	Arguments
	Returns
	Description
	See Also

	LGExit
	Syntax
	Arguments
	Returns
	Description

	LGFall
	Syntax
	Arguments
	Returns
	Description

	LGFile
	Syntax
	Arguments
	Returns
	Description

	LGFlush
	Syntax
	Arguments
	Returns
	Description

	LGGroup
	Syntax
	Arguments
	Returns
	Description

	LGLog
	Syntax
	Arguments
	Returns
	Description

	LGOutput
	Syntax
	Arguments
	Returns
	Description

	LGTime
	Syntax
	Arguments
	Returns
	Description

	LGTimestamp
	Syntax
	Arguments
	Returns
	Description

	LGTolerance
	Syntax
	Arguments
	Returns
	Description

	LGUseGMT
	Syntax
	Arguments
	Returns
	Description

	VIII. Point Manipulation Functions
	Table of Contents
	PTFindCPoint
	Syntax
	Arguments
	Returns
	Description
	See Also

	PTInitClient
	Syntax
	Arguments
	Returns
	Description
	See Also

	PTNewCPoint
	Syntax
	Arguments
	Returns
	Description
	See Also

	PTPointCopyValue
	Syntax
	Arguments
	Returns
	Description

	PTPointFormat
	Syntax
	Arguments
	Returns
	Description
	See Also

	PTPointInt
	Syntax
	Arguments
	Returns
	Description
	See Also

	PTPointReal
	Syntax
	Arguments
	Returns
	Description
	See Also

	PTPointString
	Syntax
	Arguments
	Returns
	Description
	See Also

	Index
	D
	G
	H
	I
	L
	N
	P
	Q
	S

	Colophon

