
DataHub ® WebView ™

Version 1.4

Cogent Real-Time Systems, Inc.

May 31, 2013

DataHub ® WebView ™: Version 1.4

A user’s guide to DataHub WebView.

Published May 31, 2013
Cogent Real-Time Systems, Inc.

162 Guelph Street, Suite 253
Georgetown, Ontario
Canada, L7G 5X7

Toll Free: 1 (888) 628-2028
Tel: 1 (905) 702-7851
Fax: 1 (905) 702-7850

Information Email: info@cogent.ca
Tech Support Email: support@cogent.ca
Web Site: www.cogent.ca

Copyright © 1995-2013 by Cogent Real-Time Systems, Inc.

Revision History

Revision 1.4-1 January 2011
Initial release of documentation.

Copyright, trademark, and software license information.

Copyright Notice

© 1995-2013 Cogent Real-Time Systems, Inc. All rights reserved.

Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form or by

any means, electronic or mechanical, for any purpose, without the express written consent of Cogent Real-Time Systems, Inc.

Cogent Real-Time Systems, Inc. assumes no responsibility for any errors or omissions, nor do we assume liability for damages resulting from the

use of the information contained in this document.

Trademark Notice

Cascade DataHub, DataHub WebView, Cascade Connect, Cascade DataSim, Connect Server, Cascade Historian, Cascade TextLogger, Cascade

NameServer, Cascade QueueServer, RightSeat, SCADALisp and Gamma are trademarks of Cogent Real-Time Systems, Inc.

All other company and product names are trademarks or registered trademarks of their respective holders.

END-USER LICENSE AGREEMENT FOR COGENT SOFTWARE

IMPORTANT - READ CAREFULLY: This End-User License Agreement ("EULA") is a legal agreement between you (either an individual or a

single entity) and Cogent Real-Time Systems Inc. ("Cogent") of 162 Guelph Street, Suite 253, Georgetown, Ontario, L7G 5X7, Canada (Tel:

905-702-7851, Fax: 905-702-7850), from whom you acquired the Cogent software product(s) ("SOFTWARE PRODUCT" or "SOFTWARE"),

either directly from Cogent or through one of Cogent’s authorized resellers.

The SOFTWARE PRODUCT includes computer software, any associated media, any printed materials, and any "online" or electronic

documentation. By installing, copying or otherwise using the SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA. If you

do not agree with the terms of this EULA, Cogent is unwilling to license the SOFTWARE PRODUCT to you. In such event, you may not use or

copy the SOFTWARE PRODUCT, and you should promptly contact Cogent for instructions on return of the unused product(s) for a refund.

SOFTWARE PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by copyright laws and copyright treaties, as well as other intellectual property laws and treaties. The

SOFTWARE PRODUCT is licensed, not sold.

1. EVALUATION USE: This software is distributed as "Free for Evaluation", and with a per-use royalty for Commercial Use, where "Free for

Evaluation" means to evaluate Cogent’s software and to do exploratory development and "proof of concept" prototyping of software

applications, and where "Free for Evaluation" specifically excludes without limitation:

i. use of the SOFTWARE PRODUCT in a business setting or in support of a business activity,

ii. development of a system to be used for commercial gain, whether to be sold or to be used within a company, partnership, organization

or entity that transacts commercial business,

iii. the use of the SOFTWARE PRODUCT in a commercial business for any reason other than exploratory development and "proof of

concept" prototyping, even if the SOFTWARE PRODUCT is not incorporated into an application or product to be sold,

iv. the use of the SOFTWARE PRODUCT to enable the use of another application that was developed with the SOFTWARE PRODUCT,

v. inclusion of the SOFTWARE PRODUCT in a collection of software, whether that collection is sold, given away, or made part of a

larger collection.

vi. inclusion of the SOFTWARE PRODUCT in another product, whether or not that other product is sold, given away, or made part of a

larger product.

2. COMMERCIAL USE: COMMERCIAL USE is any use that is not specifically defined in this license as EVALUATION USE.

3. GRANT OF LICENSE: This EULA covers both COMMERCIAL and EVALUATION USE of the SOFTWARE PRODUCT. Either clause

(A) or (B) of this section will apply to you, depending on your actual use of the SOFTWARE PRODUCT. If you have not purchased a

license of the SOFTWARE PRODUCT from Cogent or one of Cogent’s authorized resellers, then you may not use the product for

COMMERCIAL USE.

A. GRANT OF LICENSE (EVALUATION USE): This EULA grants you the following non-exclusive rights when used for

EVALUATION purposes:

Software: You may use the SOFTWARE PRODUCT on any number of computers, either stand-alone, or on a network, so long as

every use of the SOFTWARE PRODUCT is for EVALUATION USE. You may reproduce the SOFTWARE PRODUCT, but only as

reasonably required to install and use it in accordance with this LICENSE or to follow your normal back-up practices.

Subject to the license expressly granted above, you obtain no right, title or interest in or to the SOFTWARE PRODUCT or related

documentation, including but not limited to any copyright, patent, trade secret or other proprietary rights therein. All whole or partial

copies of the SOFTWARE PRODUCT remain property of Cogent and will be considered part of the SOFTWARE PRODUCT for the

purpose of this EULA.

Unless expressly permitted under this EULA or otherwise by Cogent, you will not:

i. use, reproduce, modify, adapt, translate or otherwise transmit the SOFTWARE PRODUCT or related components, in whole or in

part;

ii. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

iii. alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;

iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;

v. use a multi-processor version of the SOFTWARE PRODUCT in a network larger than that for which you have paid the

corresponding multi-processor fees;

vi. decompile, disassemble or otherwise attempt or assist others to reverse engineer the SOFTWARE PRODUCT;

vii. circumvent, disable or otherwise render ineffective any demonstration time-outs, locks on functionality or any other restrictions

on use in the SOFTWARE PRODUCT;

viii. circumvent, disable or otherwise render ineffective any license verification mechanisms used by the SOFTWARE PRODUCT;

ix. use the SOFTWARE PRODUCT in any application that is intended to create or could, in the event of malfunction or failure,

cause personal injury or property damage; or

x. make use of the SOFTWARE PRODUCT for commercial gain, whether directly, indirectly or incidentally.

B. GRANT OF LICENSE (COMMERCIAL USE): This EULA grants you the following non-exclusive rights when used for

COMMERCIAL purposes:

Software: You may use the SOFTWARE PRODUCT on one computer, or if the SOFTWARE PRODUCT is a multi-processor version -

on one node of a network, either: (i) as a development systems for the purpose of creating value-added software applications in

accordance with related Cogent documentation; or (ii) as a single run-time copy for use as an integral part of such an application. This

includes reproduction and configuration of the SOFTWARE PRODUCT, but only as reasonably required to install and use it in

association with your licensed processor or to follow your normal back-up practices.

Storage/Network Use: You may also store or install a copy of the SOFTWARE PRODUCT on one computer to allow your other

computers to use the SOFTWARE PRODUCT over an internal network, and distribute the SOFTWARE PRODUCT to your other

computers over an internal network. However, you must acquire and dedicate a license for the SOFTWARE PRODUCT for each

computer on which the SOFTWARE PRODUCT is used or to which it is distributed. A license for the SOFTWARE PRODUCT may

not be shared or used concurrently on different computers.

Subject to the license expressly granted above, you obtain no right, title or interest in or to the SOFTWARE PRODUCT or related

documentation, including but not limited to any copyright, patent, trade secret or other proprietary rights therein. All whole or partial

copies of the SOFTWARE PRODUCT remain property of Cogent and will be considered part of the SOFTWARE PRODUCT for the

purpose of this EULA.

Unless expressly permitted under this EULA or otherwise by Cogent, you will not:

i. use, reproduce, modify, adapt, translate or otherwise transmit the SOFTWARE PRODUCT or related components, in whole or in

part;

ii. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

iii. alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;

iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;

v. use a multi-processor version of the SOFTWARE PRODUCT in a network larger than that for which you have paid the

corresponding multi-processor fees;

vi. decompile, disassemble or otherwise attempt or assist others to reverse engineer the SOFTWARE PRODUCT;

vii. circumvent, disable or otherwise render ineffective any demonstration time-outs, locks on functionality or any other restrictions

on use in the SOFTWARE PRODUCT;

viii. circumvent, disable or otherwise render ineffective any license verification mechanisms used by the SOFTWARE PRODUCT, or

ix. use the SOFTWARE PRODUCT in any application that is intended to create or could, in the event of malfunction or failure,

cause personal injury or property damage.

4. WARRANTY: Cogent cannot warrant that the SOFTWARE PRODUCT will function in accordance with related documentation in every

combination of hardware platform, software environment and SOFTWARE PRODUCT configuration. You acknowledge that software bugs

are likely to be identified when the SOFTWARE PRODUCT is used in your particular application. You therefore accept the responsibility of

satisfying yourself that the SOFTWARE PRODUCT is suitable for your intended use. This includes conducting exhaustive testing of your

application prior to its initial release and prior to the release of any related hardware or software modifications or enhancements.

Subject to documentation errors, Cogent warrants to you for a period of ninety (90) days from acceptance of this EULA (as provided above)

that the SOFTWARE PRODUCT as delivered by Cogent is capable of performing the functions described in related Cogent user

documentation when used on appropriate hardware. Cogent also warrants that any enclosed disk(s) will be free from defects in material and

workmanship under normal use for a period of ninety (90) days from acceptance of this EULA. Cogent is not responsible for disk defects

that result from accident or abuse. Your sole remedy for any breach of warranty will be either: i) terminate this EULA and receive a refund

of any amount paid to Cogent for the SOFTWARE PRODUCT, or ii) to receive a replacement disk.

5. LIMITATIONS: Except as expressly warranted above, the SOFTWARE PRODUCT, any related documentation and disks are provided "as

is" without other warranties or conditions of any kind, including but not limited to implied warranties of merchantability, fitness for a

particular purpose and non-infringement. You assume the entire risk as to the results and performance of the SOFTWARE PRODUCT.

Nothing stated in this EULA will imply that the operation of the SOFTWARE PRODUCT will be uninterrupted or error free or that any

errors will be corrected. Other written or oral statements by Cogent, its representatives or others do not constitute warranties or conditions of

Cogent.

In no event will Cogent (or its officers, employees, suppliers, distributors, or licensors: collectively "Its Representatives") be liable to you for

any indirect, incidental, special or consequential damages whatsoever, including but not limited to loss of revenue, lost or damaged data or

other commercial or economic loss, arising out of any breach of this EULA, any use or inability to use the SOFTWARE PRODUCT or any

claim made by a third party, even if Cogent (or Its Representatives) have been advised of the possibility of such damage or claim. In no event

will the aggregate liability of Cogent (or that of Its Representatives) for any damages or claim, whether in contract, tort or otherwise, exceed

the amount paid by you for the SOFTWARE PRODUCT.

These limitations shall apply whether or not the alleged breach or default is a breach of a fundamental condition or term, or a fundamental

breach. Some jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, or certain limitations

of implied warranties. Therefore the above limitation may not apply to you.

6. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS:

Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be separated for use

on more than one computer.

Termination. Without prejudice to any other rights, Cogent may terminate this EULA if you fail to comply with the terms and conditions of

this EULA. In such an event, you must destroy all copies of the SOFTWARE PRODUCT and all of its component parts.

7. UPGRADES: If the SOFTWARE PRODUCT is an upgrade from another product, whether from Cogent or another supplier, you may use or

transfer the SOFTWARE PRODUCT only in conjunction with that upgrade product, unless you destroy the upgraded product. If the

SOFTWARE PRODUCT is an upgrade of a Cogent product, you now may use that upgraded product only in accordance with this EULA. If

the SOFTWARE PRODUCT is an upgrade of a component of a package of software programs which you licensed as a single product, the

SOFTWARE PRODUCT may be used and transferred only as part of that single product package and may not be separated for use on more

than one computer.

8. COPYRIGHT: All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images, photographs,

animations, video, audio, music, text and ’applets", incorporated into the SOFTWARE PRODUCT), any accompanying printed material, and

any copies of the SOFTWARE PRODUCT, are owned by Cogent or its suppliers. You may not copy the printed materials accompanying the

SOFTWARE PRODUCT. All rights not specifically granted under this EULA are reserved by Cogent.

9. PRODUCT SUPPORT:Cogent has no obligation under this EULA to provide maintenance, support or training.

10.RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as provided in DFARS

227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (OCT 1988), FAR 12.212(a)(1995), FAR 52.227-19, or FAR

52.227-14 (ALT III), as appropriate. Manufacturer is Cogent Real-Time Systems Inc. 162 Guelph Street, Suite 253, Georgetown, Ontario,

L7G 5X7, Canada.

11.GOVERNING LAW: This Software License Agreement is governed by the laws of the Province of Ontario, Canada. You irrevocably attorn

to the jurisdiction of the courts of the Province of Ontario and agree to commence any litigation that may arise hereunder in the courts

located in the Judicial District of Peel, Province of Ontario.

Table of Contents
1. Introduction ..1

1.1. System Requirements..1
1.2. Configuration..2

1.2.1. DataHub Configuration..2
1.2.2. For Internet Explorer Users..3

1.3. Advantages of DataHub WebView..4

2. Working With DataHub WebView ...6

2.1. Quick Start..6
2.1.1. Start the Editor..6
2.1.2. Add and Modify a Control...7
2.1.3. Bind a Control to a Data Point...8
2.1.4. Save and View a Page...9
2.1.5. Add a Symbol...10
2.1.6. Bind a Control to another Control..10
2.1.7. Set Symbol States...11

2.2. User Access...12
2.2.1. Configure User Permissions...12
2.2.2. Log in Remotely...14

2.3. Pages...14
2.3.1. Create, Open, Save, and Delete Pages..14
2.3.2. Page Size..14
2.3.3. The Grid..14
2.3.4. View and Zoom..15
2.3.5. Edit and Run Modes...15

2.4. Controls...15
2.4.1. Add, Copy, Resize, and Move Controls...15
2.4.2. Grouping Controls..16
2.4.3. Control Properties...17
2.4.4. Common Properties..17
2.4.5. Controls Listed by Category...19

2.5. Property Binding...22
2.5.1. DataHub Point Binding..22
2.5.2. Point Attribute Selection..24
2.5.3. Simple Binding - Property Picker...24
2.5.4. Simple Binding - Copy and Paste...26

2.6. Adding Images..27

3. DataHub WebView Scripting ...28

4. Dynamic Binding ...29

4.1. Dynamic Point Binding...29
4.1.1. Combo Box control..29
4.1.2. List Box control..30

4.2. Dynamic Control and Symbol Binding...31
4.2.1. Control Binding..31
4.2.2. Symbol Binding..32

4.3. Creating a Template Page..34

5. Customizing DataHub WebView..37

5.1. Simple Branding...37
5.1.1. Creating a custom login page...37

vii

5.1.2. Specifying text, icon, and URL targets...38
5.1.3. Adding a favorite icon..38
5.1.4. Testing the results...39

5.2. Initialization Parameters..39
5.2.1. Accessing Parameters from the DataHub Properties Window.....................................40
5.2.2. Adding Custom Parameters..40
5.2.3. Specifying Parameters in the Page URL..41
5.2.4. Parameter List...41

5.3. Adding Controls..44
5.3.1. Preparing the Visual Studio project..44
5.3.2. The XAML file to reference the control...46
5.3.3. The XML file for public properties and behavior of the control..................................47
5.3.4. Testing the results...48

6. Creating Custom Symbols..50

6.1. Creating Your Symbol Library..50
6.1.1. Create a symbol map..50
6.1.2. Create a symbol XAML file...51
6.1.3. Deploy your symbol set..52

6.2. Symbol Animation..53
6.2.1. Animation attributes...53
6.2.2. Animation types..54
6.2.3. Conditional animation..58

6.3. Scaling and Other Considerations...58
6.3.1. Scaling..58
6.3.2. Binding element properties to the symbol host control..58
6.3.3. Limitations on XAML code within symbols..59
6.3.4. Compressing symbol files...59
6.3.5. Best Practices..59

6.4. Complete Example..59

I. Controls ...64

Advanced Check Box...66
Alarm List ..67
Boolean Converter..68
Calendar...69
Circular Gauge 1..70
Circular Gauge 2..71
Color Selector..72
Color Selector..73
ComboBox...74
Comparator...75
Condition Selector..76
Control Panel..77
Filtered Data Table...78
Hi/Low Indicator..79
Horizontal Linear Gauge..80
Hyperlink Button..81
Hyperlink Image..82
Hyperlink Text...83
Image..84
Left 90 Degree Gauge..85
List Box..86

viii

Media Player..87
Numeric Gauge..88
One Input Calculator..89
Point Data Table...90
Polynomial Calculator..91
Progress Bar...92
Radio Button..93
Range Mapper..94
Rising/Falling Indicator...95
Semi-circular Gauge..96
Series Chart..97
Shining Light..98
Simple Button..99
Simple Check Box...100
Simple Ellipse..101
Simple Path..102
Simple Radial Gauge...103
Simple Rectangle...104
Slider..105
Symbol...106
System Information..107
Text Entry Field..108
Text Label...109
Thermometer..110
Three Indicator Radial Gauge..111
Three Point Slider..112
Timer..113
Toggle Button...114
Top Sweep Gauge..115
Trend..116
Two Input Calculator..117
Vertical Linear Gauge..118

Index..??

Colophon...121

ix

List of Tables
5-1. Connection..??
5-2. Login..??
5-3. Initial View...??
5-4. Branding...??
5-5. Designer Controls...??

x

Chapter 1. Introduction
DataHub WebView is a state-of-the-art, rich internet application for designing and delivering
high-quality, real-time displays. All page editing is done in a standard web browser, and page updates
can be automatically published as soon as changes are saved. Page designers have access to standard
controls, gauges, and 4,000 industry-standard symbols, each of which can be easily configured to
recognize condition states and to graphically notify operators of process status and anomalies. All
controls feature powerful, "anything-to-anything" data binding.

1.1. System Requirements
Windows: X86 or x64(64-bit mode support for IE only) 1.6 GHz or higher processor with 512-MB of
RAM.

Macintosh (Intel-based):Intel Core Duo 1.83 GHz or higher processor with 512 MB of RAM.

Minimum and Recommended
Hard disk: minimum 70 MB, recommended 70 MB plus any additional space for historical files, log
files. The Cogent DataHub does not use substantial space beyond the minimum unless you configure it to
use more.

Memory: minimum 50 MB, recommended 500 MB. The DataHub will consume more memory with
more data points configured, and with more client connections. We recommend having enough spare
memory to load a large data set. Swapping will reduce performance.

Number of processor cores:minimum 1, recommended 2. An extra core will allow busy connections
and scripts to run on a separate core and will help to keep the GUI responsive. The DataHub can use as
many cores as you provide.

Internet browser for WebView: One of Firefox, Internet Explorer, Chrome or Opera. Effectively any
browser that will load Silverlight will work. Internet Explorer is recommended.

Network protocol between WebView and DataHub:DataHub WebView needs access via TCP/IP on
three ports:

• The web server port can be any port number (default is80).

1

Chapter 1. Introduction

• The Silverlight policy server port must be port943 .

• The DataHub plain-text tunnel port port must be in the range of4502 -4534 (default is4502).

UDP is not used.

Compatible Operating Systems and Browswers
Windows 8 Desktop:IE10*, FF3.6+, Chrome 12+

Windows Server 2012:IE10*, FF3.6+, Chrome 12+

Windows 7: IE8, IE9, FF3.6+, Chrome 12+

Windows 7 SP1:IE8, IE9*, FF3.6+, Chrome 12+

Windows Server 2008 SP2:IE7, FF3.6+, Chrome 12+

Windows Server 2008 R2 SP2:IE8*, IE9*, FF3.6+, Chrome 12+

Windows Vista: IE7, IE8, IE9, FF3.6+, Chrome 12+

Windows Server 2003:IE7, IE8, FF3.6+, Chrome 12+

Windows XP SP2, SP3:IE7, IE8, FF3.6+, Chrome 12+

Macintosh OS 10.5.7+ (Intel-based):FF3.6+, Safari 4+

* Supports 64-bit mode.

1.2. Configuration

1.2.1. DataHub Configuration
Certain parameters of DataHub WebView can be configured from within the Cogent DataHub Properties
window:

Data Domains Visible to DataHub WebView

Check the data domains that you want to access from DataHub WebView. Use theAdd... button to
create and add new domains.

2

Chapter 1. Introduction

Start in Run mode

Allows you to start in Run mode, rather than Design mode, with these options:

Kiosk mode

Presents just the working screen of the web browser, with no border, menus, URL entry field,
etc. To escape from Kiosk mode (and close the browswer), pressAlt + F4.

Disable Design mode

Prohibits any switch from Run mode to Design mode, whether running in Kiosk mode or
normally.

Disable data writes from client

Prevents the web client from accessing DataHub point values.

Show page information icon

Shows or hides the page information icon.

Load a page at startup

Allows you to specify a page that will automatically load when DataHub WebView starts.

Launch DataHub WebView in a browser

Provides a convenient way to start DataHub WebView to check this configuration.

DataHub WebView requires the DataHub to be configured as a tunnelling master. Please refer to
Tunnel/Mirror Master in the DataHub manual for details.

1.2.2. For Internet Explorer Users
For best results, anyone editing or viewing DataHub WebView pages in Internet Explorer should modify
its settings as follows:

1. Open the Internet Explorer menu optionTools / Internet Options and select theBrowsing History
Settings button:

2. Change the cache update algorithm to check for new versionsEvery time I visit the webpage:

3

Chapter 1. Introduction

Do not select the optionAutomatically. This will cause Internet Explorer to try to guess whether to
check for updates to its cache based on a heuristic algorithm that attempts to guess how frequently it
should check. This algorithm will usually not check for updates, and the behaviour described below
will occur.

Explanation

Internet Explorer maintains a local cache of pages that it has visited recently, and when you make a
request for a page it will serve the page from the cache instead of from the web server. This can speed up
browsing, but it makes the behaviour of DataHub WebView unpredictable.

Normally a web server can mark a page as "no-cache" in which case the browser will always re-load the
page on each visit. That is not what we want in the case of DataHub WebView. We want the pages to be
re-loaded only if they have changed on the server. The HTTP protocol allows for this, and this is the best
method for ensuring that the page you are looking at is up to date. Essentially, the browser makes a
request from the server, telling the server the timestamp of the cached version of the page. If the cached
version is up to date, the web server just returns an indication that the browser should use its cached copy
of the page. This is efficient since the amount of information transmitted is small.

Unfortunately, Internet Explorer does not default to the best behaviour. Instead, it contains a heuristic
algorithm that uses the cached copy of a page without ever consulting the web server. This can result in
the following condition in DataHub WebView:

1. You load a DataHub WebView page

2. You edit the page and then save it. The page is correctly stored on the DataHub Web Server.

3. You re-load the page you have just edited. Internet Explorer retrieves the page from its cache
without consulting the DataHub Web Server.

4. DataHub WebView receives the old page from Internet Explorer’s cache and your changes appear to
have vanished. At this point, the copy of the page stored in the DataHub Web Server is correct, but
Internet Explorer never asks for it. To you, it appears as if the page was not saved and your edits
were lost.

1.3. Advantages of DataHub WebView
• Edit screens anywhere.Just open your web browser, type the address of your DataHub Web Server,

log in to the system and, based on your access permissions, you can build, edit and view DataHub
WebView screens from anywhere with network/Internet access.

• No coding required.Build all your screens using the powerful built-in graphical environment.
Complete point and click freedom, with no code in sight.

4

Chapter 1. Introduction

• No development system required.You do not need to install a development system on your
computer in order to build DataHub WebView screens. The development interface is provided to you,
in your browser, by the web server. No compiler necessary.

• No deployment required.Because the screens you build in DataHub WebView are saved on the web
server, you never have to deploy your changes to other users. When you are editing a page and you
want to show your colleagues, you simply save your changes, and tell your team to reload the page in
their browser. No deployment, no complicated file updates.

• Collaborate on development.With no limit to the number of users accessing the system, you can
have a team of developers building pages at the same time. Depending on the permissions you give to
your team members you can have them edit everyone’s pages, or restrict access so they can only edit
the pages they build.

• Build entire multipage HMI applications with hyperlinks between pages, just like a web site or
standard HMI system.

• Security at every level.The permissions based security model allows you to define very precise
privaledges to each user. You can define certain users to have read only access, while other can view
and make changes but not access the develoment interface. In WebView, the security model was one of
the fundamental primary requirements, not an afterthought.

• Specify sophisticated graphical interactions between controls,using DataHub WebView’s
powerful property binding feature. Property binding allows you to associate the input values for one
control, with the properties of other controls. Simpler to do than to describe, this saves you time and
adds significant power to your DataHub WebView screen.

• Based on Microsoft Silverlight,which means it is a leading web technology that is widely supported
by all the popular browsers. Silverlight allows us to produce browser based applications that are every
bit as feature rich and powerful as desktop based applications and they leverage the new opportunities
offered by remote development and web based presentation.

• Comes with a standard set of built-in controls,such as trends, gauages and sliders. In additon,
DataHub WebView also ships with a complete set of Symbol Factory™1 symbols, which offer
thousands of industry standard symbols for a variety of industries. DataHub WebView is able to
provide these and other future third party symbols.

Notes

1. Symbol Factory™ is a trademark of Reichard Software Corporation. Symbol Factory graphics are
included with DataHub WebView under license from Software Toolbox and Reichard Software
Corporation.

5

Chapter 2. Working With DataHub WebView

2.1. Quick Start
Here is a brief example of how to start DataHub WebView, add a control to a page, edit a property and
animate the control with live data, and then save and view the resulting page.

If you are using Internet Explorer, please seeSection 1.2.2,For Internet Explorer Usersand
configure Internet Explorer as shown there before continuing.

2.1.1. Start the Editor

1. In the Cogent DataHub Properties window, selectWebView .

2. In the DataHub WebView configuration window, select theData Domains that you wish to access
data from, and press theApply button.

See alsoSection 1.2,Configurationfor more details about configuration.

3. Once configured, there are two ways to start DataHub WebView:

A. From here in the Properties window, press theLaunch DataHub WebView in a browser
button.

B. From a web browser:

1. Open a web browser like Internet Explorer, Firefox, or Chrome.

2. Type in the DataHub WebView default URL:
http://localhost/Silverlight/DataHubWebView.asp

Using localhost opens the DataHub WebView on your computer. If you need to
connect to DataHub WebView on another computer, instead oflocalhost use
that computer’s IP address in the URL, and keep everything else the same.

Either of these will open the DataHub WebView application in your web browser.

6

Chapter 2. Working With DataHub WebView

4. Enter the passwordadmin to start the DataHub WebView Editor. See alsoSection 2.2.1,Configure
User Permissionsfor more details about security, user names, and passwords.

2.1.2. Add and Modify a Control

1. Find the Circular Gauge 2 control button at the bottom of the editor, and click it.

A copy of the Circular Gauge 2 control will appear in the blank page.

7

Chapter 2. Working With DataHub WebView

2. Now let’s adjust a property of the gauge. In the Properties list on the left, find theScale Properties,
expand the list, and in theScale Label Font Size, enter20 .

PressEnter, and the font size of the numbers on the guage will expand to 20 points.

See alsoSection 2.4.3,Control Propertiesfor more details about working with control properties.

2.1.3. Bind a Control to a Data Point
Many of the controls in DataHub WebView can be bound to certain variables, so that whenever the
variable changes, the value or appearance of the control changes as well. For example, a gauge or meter
can be bound to a DataHub point to display changes to the point in real time. In this example we bind the
gauge we created above to display the value of the DataPid point Pv.

1. Start the DataPid program that is included in your Cogent DataHub archive to generate some test
data.

2. Open theBasic Properties of your gauge, and click the arrow button on the right side of the
Current Value row.

A Binding selection box will appear.

3. In theBinding selection box, click the down arrow to open the list, and selectPoint.

This will activate the point selection entry field.

4. We want to connect to the DataPid pointDataPid:PID1:Pv, so enter justPv. All the points that
have "Pv" in their names will appear.

8

Chapter 2. Working With DataHub WebView

Select the pointDataPid:PID1:Pv. Once selected, the data will start updating in the value entry, and
the gauge needle will start to move.

See alsoSection 2.4,Controlsfor more details about using controls, orSection 2.5,Property Bindingfor
binding data them to DataHub points.

2.1.4. Save and View a Page

1. To save the page, you can click the Save button, or chooseSave from theFile menu, or press
Ctrl + Shift + S.

Specify a filename for the page.

2. To enter Run Mode and view your page, click on the Enter Run Mode buttonor pressCtrl +
Shift + R.

Your page will appear in the web browser as a user would see it, with all the controls fully animated
and functional.

9

Chapter 2. Working With DataHub WebView

To exit Run Mode and return to Edit Mode, click on the Exit Run Mode buttonor pressCtrl +
Shift + R.

See alsoSection 2.3,Pagesfor more details about saving and viewing pages.

2.1.5. Add a Symbol

1. Find the Symbol control button at the bottom of the editor, and click it.

A copy of the Symbol control will appear in the page. This one control can be used to represent any
symbol in the symbol library, which contains thousands of different symbols.

2. In the Properties list, for theSymbol Set, chooseSymbol Factory. ForCategory choosePumps,
and forSymbol, chooseCool pump.

The generic symbol icon should change into a symbol of a pump.

10

Chapter 2. Working With DataHub WebView

2.1.6. Bind a Control to another Control
Most controls can bind their properties to other controls, so that when the first control is modified, the
bound control gets modified automatically. Here’s an example, binding the value of the pump we just
created to the value of the gauge.

1. Click the gauge, and in theBasic properties, right-click theCurrent Value row, and selectCopy
Reference.

2. Click the pump, and in theInput properties, right-click theInput Value row, and selectPaste Link.

The pump will take the same values as the gauge, and turn green, the default non-zero color for this
symbol.

Notice that theCurrent State is State 1, for True . This default can be changed, as explained
below.

See alsoSection 2.5,Property Bindingfor more details about binding control properties.

2.1.7. Set Symbol States
Most symbols can be set as booleans, to show on/off states, and many can also display multiple states.
Here we’ll change the default boolean settings and colors of the pump to display three different states.

1. Click on the pump, and uncheck theTreat as Boolean box.

11

Chapter 2. Working With DataHub WebView

2. In theState 0 properties, forValue Is Less Than or Equal enter a value of35 . Then change the
Color to PowderBlue.

3. In theState 1 properties, enter a value of65 and change theColor to MediumBlue.

4. In theState 2 properties, enter a value of100 and change theColor to Navy.

Now, whenever the gauge value is between0 and35 , the pump color will be light blue,36 to 65
medium blue, and66 to 100 dark blue. Note that for each state, you enter the maximum value, while the
minimum value is controlled by the previous state.

2.2. User Access

2.2.1. Configure User Permissions
User permissions and passwords are assigned according to groups in the Security option of the DataHub
Properties window. Here is an example of how to configure two different groups: operators and page
designers, and then assign users to them.

1. Open the Security option of the Properties window and click theConfigure Permissions button.

2. Click on theGroups tab. This will allow you to configure a group of users that will all inherit the
same permissions.

12

Chapter 2. Working With DataHub WebView

3. Create a new group by typing in the name:Operator .

4. Select the following permissions:

• In theConnectionssection, to give access to real-time data, select:Connect, Read, andWrite.

• In theHTTP section, selectConnect to allow DataHub WebView to connect to the DataHub
Web Server.

• In theDataHub WebView section, to allow basic interaction with the DataHub WebView
application, select:Connect, ViewPage, ViewOtherOwnerPage, ViewOnlineHelp, and
BrowseInternet.

5. Click on the Users tab.

6. Add a user name, with no spaces in it, for example,JohnDoe , and enter a password for him.

The password is not stored in the system. If a user forgets his password, you cannot retrieve
it. You will need to assign him a new password.

7. Check theOperator box to makeJohnDoe a member of the Operator group. Notice that all of the
group’s permissions are given toJohnDoe .

8. Another useful group to create would be Designers, who have permission to design pages. These
users would need the sameConnection andHTML permissions as above but could take more, even
all, of theDataHub WebView options, as needed.

9. Once that group is created, you can assign designer users to the group.

13

Chapter 2. Working With DataHub WebView

10. When finished, press theApply button to write your configuration to the DataHub permissions
database.

Now, when you launch DataHub WebView and log in asJohnDoe , you should go straight to the Start
page in Run Mode, and have no access to Edit Mode. If you log in as a designer, you will be place in Edit
Mode.

2.2.2. Log in Remotely
Any user can very easily log in to DataHub WebView remotely from another computer on the network,
or over the Internet. Just open your web browser and navigate to this URL:

http:// IP_or_computer_name /Silverlight/DataHubWebView.asp

WhereIP_or_computer_name is the network IP address or DNS computer name of the computer
running the Cogent DataHub.

2.3. Pages
If you are using Internet Explorer, please ensure that it isconfigured properlyfor use with
DataHub WebView.

2.3.1. Create, Open, Save, and Delete Pages

To create a pageclick on thePages tab and then click on the New button in the Toolbar. You can
also create a page from theEdit menu, or by pressingCtrl + Shift + N.

To open a pageclick on thePages tab and then click on the Open button next to the name of the
page. You can also open a page by double-clicking on the name of the page in the Pages tab.

To save a pagesimply click on the Save button . You can also save a page from theEdit menu, or by
pressingCtrl + Shift + S.

To remove a pagefrom thePages tab, you will need to manually delete the page from the DataHub
WebView installation directory. Pages are stored in a user directory that matches your login name. If you
log in asadmin , the pages you save will be located here:

C:\Program Files\Cogent\Cogent DataHub\Plugin\WebServer\html\Silverlight\Pages\Users\admin

2.3.2. Page Size
To change page sizeenter a number of pixels for the width and heightin the W: and H: entry fields at the
bottom right corner of the editing window.

2.3.3. The Grid
To show gridlinesclick theShow gridlines button , or typeTrue in theTools menu,Options
dialog,Design Mode list, Show gridlines entry.

14

Chapter 2. Working With DataHub WebView

To change the grid sizeenter a number of pixels in theGrid entry field at the bottom right corner of the
editing window.

To snap controls to the gridclick theSnap to grid button , or typeTrue in theTools menu,
Options dialog,Design Mode list, Snap to grid entry.

2.3.4. View and Zoom
To view the pageat a specific size, click the Page Zoom button , which opens a list of zoom
levels, and choose the level you need. There are several other ways to zoom in and out, to make resizing
the page convenient.

To fit the page into the window, click the Fit button , use theView/Zoom menu, or pressCtrl + Shift
+ Z.

To zoom in and outclick the Zoom In or Zoom Out buttons, use theView menu, or pressCtrl +
Shift and spin the mouse wheel up or down.

To focus your zoomon a specific location in the page, click the Set Zoom Focal Point button, or
click that option in theView/Zoom menu. Then click the page where you want to focus your zoom.

To zoom on a controlclick the control, and then from theView/Zoom menu check theZoom on
Selected Control option.

2.3.5. Edit and Run Modes
At log in DataHub WebView checks for user and editing permissions. If you log in with a user name that
does not have editing permissions, then DataHub WebView will automatically open in Run Mode and
you will not be able to switch to Edit Mode. If you do have permissions to edit and create new pages,
then DataHub WebView will open in Edit Mode.

To enter Run Mode from Edit Mode, click on the Enter Run Mode button or pressCtrl + Shift + R.

To exit Run Mode and return to Edit Mode, click on the Exit Run Mode button or pressCtrl + Shift
+ R.

To display the Kiosk View, which removes the toolbars in Run Mode, go to Edit Mode, and from the
Edit menu, selectRun Mode Options and checkUse Kiosk View.

If you have configured Run Mode to display in Kiosk View, there will be no toolbar at the top of
the page, so you will need to useCtrl + Shift + R to exit Run Mode.

2.4. Controls

2.4.1. Add, Copy, Resize, and Move Controls
To add a new controlto your page, you have two options:

15

Chapter 2. Working With DataHub WebView

1. In the Controls tab, find the control in its appropriate group and click the Add button.

2. Click that control’s button in the Control Toolbar at the bottom of the page to put the control in the
center of the page.

Pressing theShift key while you click on the control button lets you manually position the
control on the page. While positioning the control, pressingCtrl + Shift and turning the
mouse wheel allows you to zoom in and out.

To copy a controlselect it, and from theEdit menu chooseCopy, or pressCtrl + Shift + C.

To paste a controlselect it, and from theEdit menu choosePaste, or pressCtrl + Shift + V.

To resize a controlselect it and resize it with one of the black resize handles. Or, enter a width and
height in theW: andH: entry fields at the bottom right corner of the editing window.

To move a controlselect it, and move it with the mouse. For precise movements, you canshow
gridlines, and snap controls to the grid. Or, enter X and Y coordinates (distance from the top-left corner)
in theX: andY: entry fields at the bottom right corner of the editing window. Alternatively, you can use
the cursor keys as follows:

• move by 1 pixel:Ctrl + arrow keys

• move by 10 pixels: arrow keys

• move by 100 pixels:Ctrl + Shift + arrow keys

2.4.2. Grouping Controls
Controls can be grouped together, forming essentially a single large control.

To group controls click the controls that you want to be in the group, and then click the Group button

. This is also available from the right-click pop-up menu.

To ungroup controls click the group that you want to ungroup, and then do choose one of the following:

• Click the Ungroup button to preserve the size and position changes you made while the controls
were grouped. This is also available from the right-click pop-up menu.

16

Chapter 2. Working With DataHub WebView

• Click the Cancel Group button to discard all changes that you made to the group. This is also
available from the right-click pop-up menu.

To access and change the properties of any control in a group

1. Select the group.

2. Click theCtrl key on your keyboard.

3. Click the control in the goup that you need to access.

If you have a group within a group, you can access a single cell like this:

1. Select the outer group.

2. Click theCtrl key on your keyboard.

3. Click the inner group that you need to access.

4. Click theCtrl key twiceon your keyboard.

5. Click the control that you need to access.

2.4.3. Control Properties
Each control has a number of properties associated with it. There are common properties (see below)
shared with each control, as well as other properties unique to that particular control. When you click on
a control, theProperties tab opens, listing the properties by groups, with theBasic Properties group
viewable. The Basic Properties are the ones that you’ll probably use most often. Below these are groups
of other properties unique to the control, followed by the common properties.

To change the value of a propertyclick the control and type in or select the value.

To bind the properties of a control to a DataHub point or another control, please refer toSection 2.5,
Property Binding.

2.4.4. Common Properties
The common properties shared by all controls include:

Background, Border and Margin

Background

A color for the background of the control.

Border

A color for the border of the background of the control.

Border Thickness

The thickness of the background border, in pixels, for the left, top, right, and bottom borders,
respectively. Adding to this thickness will reduce the visible size of the control.

Border Corner Radius

The radius of each corner of the background border, in pixels, for the top-left, top-right,
bottom-right, and bottom-left corners, respectively.

Content Margin

The width of the margins, in pixels, for the left, top, right, and bottom borders, respectively. Adding
to this width will reduce the visible size of the control.

17

Chapter 2. Working With DataHub WebView

Background Image

Image File

A file to use for a background. To add your own images to the DataHub WebView library, you need
to copy your image files to the following directory:

C:\Program Files\Cogent\Cogent DataHub\Plugin\WebServer\html\Silverlight\Images

If you copy your images to a subdirectory, then they will appear together in the image file selector
within the editor.

Image Width

The width of the image, in pixels.

Image Height

The height of the image, in pixels.

Image Alignment

Aligns the background image with a corner, side, or middle of the control, or stretches it to fill the
whole area.

Image Opacity

A number between 0 (transparent) and 1 (fully opaque).

Image Margin

The width of the margins, in pixels, for the left, top, right, and bottom sides of the image,
respectively. Adding to this width will reduce the visible size of the image.

Image Rotation (degrees)

A number of degrees to rotate the image to the right.

Flip X-Axis

Flip the image top-to-bottom.

Flip Y-Axis

Flip the image right-to-left.

Content Visibility and Appearance

Visible in Run Mode

Will this control be visible in Run mode?

Content Opacity

A number between 0 (transparent) and 1 (fully opaque).

Static Rotation (degrees)

A number of degrees to rotate the control to the right.

Maintain Uniform Size for Static Rotation

Will the control change size to fit its container when rotated?

Clip Content

Not yet documented.

Flip X-Axis

Flip the content of the control top-to-bottom.

18

Chapter 2. Working With DataHub WebView

Flip Y-Axis

Flip the content of the control left-to-right.

Position and Size

Left

A number of pixels specifying the distance of the top left corner of the control from the left side of
the page.

Top

A number of pixels specifying the distance of the top left corner of the control from the top of the
page.

Width

A number of pixels specifying the width of the control.

Height

A number of pixels specifying the height of the control.

Content Animation

Is Content Rotating

Specifies if the control content rotates.

Animated Rotation (rpm)

Specifies the speed, in rotations per minute, of the control content.

2.4.5. Controls Listed by Category
WebView controls are arranged in the following categories. You can click on the control icon for more
information about the specific control.

•

Alarms

•

Charts

•

19

Chapter 2. Working With DataHub WebView

Common Input Controls

•

Configuration

•

DateTime

•

DTC: Palettes

•

DTC: Program Blocks

•

Gauges

•

20

Chapter 2. Working With DataHub WebView

Media Controls

•

Navigation

•

Notification

•

Shapes

•

Symbols

•

Text Controls

•

21

Chapter 2. Working With DataHub WebView

Tutorial Controls

2.5. Property Binding
DataHub WebView provides extensive support for property binding, allowing the properties of one
control to be bound to other controls, or to DataHub point values. These three binding options are
available on many control properties:

• None allows you to enter a static value, not bound to anything.

• Point lets you bind a control property to the value of any DataHub point. When the point changes
value, the property changes value with it. For example, you can bind the current value of a gauge to a
DataHub point, animating the gauge indicator with live data.

• Simple lets you bind a property of areferencecontrol to the property of alinkedcontrol. Whenever
you change the value of the property on the reference control, the property will change on any linked
controls. For example, if you bind the color and size of several buttons to a single, reference button,
whenever you change the color or size of the reference button, all the other buttons will change too.
Any control with bindable properties can be used as a reference control, a linked control, or both.

There are several features of property binding that facilitate page design, such as:

• Simple bindings are universalso that any control can be bound to any other control, as long as the
bindings are compatible (eg. value-to-value, color-to-color, etc.).

• The Property Picker shows compatible propertiesfor simple bindings.

• For simple bindings, properties can be both references and linkswhich means that bindings can be
chained, allowing controls to act simultaneously as a references to other controls or be linked to them,
in any combination.

• Simple and Point bindings can be combinedin a single control, which allows you to get your data
from the DataHub, and the control appearance from another control.

• Copying a control will copy all property bindings. So, if you need a number of similar controls to
share certain properties, you can make a reference control and one linked control, and then copy the
linked control as many times as needed.

2.5.1. DataHub Point Binding
To create aPoint binding you can follow this example, where we bind the indicator value of a gauge to a
DataPid point:

1. Start the DataPid program that is included in your Cogent DataHub archive to generate some test
data.

2. Open a blank page and add a Circular Guage 2 control.

22

Chapter 2. Working With DataHub WebView

3. Open theBasic Properties of the gauge, and click the binding button on the right side of the
Current Value row.

A Binding selection box will appear.

4. In theBinding selection box, click the down arrow to open the list, and selectPoint.

This will activate the point selection entry field.

5. To connect to the DataPid pointDataPid:PID1:Pv, you can enter justPv. All the points that have
"Pv" in their names will appear.

Select the pointDataPid:PID1:Pv. Once selected, the data will start updating in the value entry, and
the gauge needle will start to move.

23

Chapter 2. Working With DataHub WebView

2.5.2. Point Attribute Selection
When binding a point, DataHub WebView provides a choice of point attributes that are available for the
control you are working with. These attributes may include, in various formats, the point name, the
quality of the connection, the timestamp of the most recent value change, and the value of the point
itself. These are chosen through right-clicking on the small arrow to the right of the text-entry field, and
selecting from the drop-down menu that appears:

Here are the possible choices, availability depends on the control you are working with:

Menu Item Point Attribute Example

The full point name, no domain. PID1.Pv

The abbreviated point name. Pv

The full point name, with domain name. DataPid:PID1.Pv

The point quality, in plain text. Good

The code for the point quality. 192

The full date and time. 09/02/2011 13:09:15

The point value. 71.33489150492

The point value, quality, and timestamp. 71.334 {Good,13:09:15.32}

The point value (12) is the default, and used for most bindings, while the other options are available if
necessary. Certain controls that need to reference timestamps, such as the Trend control, require using
VQT.

2.5.3. Simple Binding - Property Picker
There are two ways to create a simple binding, either with the Property Picker, or by copy and paste. The
following example shows how to use the Property Picker. In this example, we use a hexagon as the
reference control, and a rectangle as the linked control.

1. On a blank page, add one hexagon and one rectangle, using theSimple Path andSimple
Rectangle controls.

24

Chapter 2. Working With DataHub WebView

2. Select the hexagon (the reference control), and in theBasic Properties, Fill Color choose a color
other thanWhite, such asSandyBrown.

3. Select the rectangle (the linked control), and in theBasic Properties click the binding button on the
right side of theFill Color row.

A Binding selection box will appear, above the color selection dialog.

4. In theBinding box, selectSimple. A text-entry box will appear, and to the right, the Property Picker
icon.

5. Click the Property Picker icon. TheProperties area will turn gray, and when you move the mouse
over the page, it will take the shape of the Property Picker.

6. Click the hexagon. This will open the Property Picker menu. From here you can choose which
property of the hexagon you wish to give to the rectangle.

7. From theBasic Properties submenu, chooseFill Color.

25

Chapter 2. Working With DataHub WebView

The rectangle will change toSandyBrown. It is now bound to the color of the hexagon, and will
change whenever that color gets changed.

There are two options on the Property Picker menu:
Filter by Matching Type

Reduces the list of properties in the reference control to only those that are also present in
the linked control. This helps you quickly identify which properties you can actually bind to this
particular control.
Include Common Properties

Hides or displays the Common Properties in the list.

2.5.4. Simple Binding - Copy and Paste
Another way to create a simple binding is by copying a reference for a binding and then pasting the link.
This is expecially useful if you know what properties you need to bind, or if you need to link many
controls to a single reference control. Below is an example, based on the controls created in the example
above. In this example, the hexagon again is the reference control, and the rectangle is the linked control.

1. Select the hexagon (reference control), and in theLine Properties, change theStroke Thickness
to 5. You should see the border of the hexagon become 5 pixels thick.

2. Right-click in the text box where you entered 5, and from the drop-down menu, selectCopy
Reference.

26

Chapter 2. Working With DataHub WebView

3. Select the rectangle (linked control), and in theBasic Properties, Stroke Thickness, Value entry
field, right click, and from the drop-down menu, selectPaste Link,

The border of the rectangle will change to 5 pixels. It is bound to the width of the hexagon’s border,
and will change whenever that gets changed.

2.6. Adding Images
To add your own images to the DataHub WebView library, you need to copy your image files to the
following directory:

C:\Program Files\Cogent\Cogent DataHub\Plugin\WebServer\html\Silverlight\Images

If you copy your images to a subdirectory of that directory, then they will appear together in the image
file selector within the editor.

27

Chapter 3. DataHub WebView Scripting
Please refer to DataHub WebView Scripting for an overview and reference for the scripting capabilities
and features in DataHub WebView.

28

Chapter 4. Dynamic Binding
Using WebView Scripting, it is possible to dynamically bind DataHub points to symbols and controls,
and use these capabilities to make template pages.

4.1. Dynamic Point Binding
Dynamic point binding allows you to change the DataHub points associated with a control at run time.
This tutorial shows two different ways to do this (simple array and dynamic list), using two controls -
ComboBox and ListBox.

4.1.1. Combo Box control
Binding a Combo Box to a Circular Gauge using a simple array

1. Start the DataPid program from the WindowsStart menu, the command line, or by clicking on the
desktop icon.

As soon as DataPid starts, it attempts to connect to a DataHub and begins generating data.

2. Open DataHub WebView, open a new page, and add a ComboBox controlto the page.

3. In theBasic Properties of the Combo Box, for theItems Source, select theScript binding type
and edit the default script to read:

["Sp", "Mv", "Pv"];

In this line of script, the[and] characters tells the WebView scripting engine that this is an array of
comma-separated strings, each of which should be assigned to one value in the Combo Box control.

As an alternative to using an array, it is possible to use a script to list the items, as explained
in theList Box controlsection, below.

4. Add a Circular Gauge 2 control to the page.

5. In theBasic Properties of the Circular Gauge 2, for theCurrent Value, select thePoint binding
type and make a script:

="DataPid:PID1." + GETP("ComboBox1@SelectedValue");

29

Chapter 4. Dynamic Binding

When a line of script is entered as a point binding as we see here, the= sign tells the
WebView scripting engine that the point name will be assigned. In this example, this allows
the name of the point to be constructed by concatenating strings. TheGETPfunction gets the
property of a control. The syntax for theGETPargument is a string consisting of the name of
the control, an@symbol, and the name of the parameter that you need to get.

6. Switch to Run Mode and choose selections from the Combo Box and see the results in the Circular
Gauge.

4.1.2. List Box control
Binding a List Box to a Trend Chart using a script

1. Ensure that the DataPid program is running, or start it from the WindowsStart menu, the command
line, or by clicking on the desktop icon.

2. Open DataHub WebView, open a new page, and add a List Box controlto the page.

3. In theBasic Properties of the List Box, for theItems Source, select theScript binding type and
edit the default script to read:

var pts = new List<|string|>();
pts.Add("Mv");
pts.Add("Pv");
/* More strings can be added ... */
pts;

This example script creates a list of strings, and then adds two strings (point names in this case) to
the list. The list can hold any number of strings. The final line of the script calls thepts; variable,
which causes the list of strings to be passed to the List Box as its source of items.

30

Chapter 4. Dynamic Binding

As an alternative to using a script, it is possible to use a an array to list the items, as
explained in theCombo Box controlsection, above.

4. Add a Trend Chart (3 pens) control to the page.

5. In theBasic Properties of the Trend Chart control, for thePen 1 Value, select thePoint binding
type enter the valueDataPid:PID1.Sp .

6. For thePen 2 Value, select thePoint binding type and make a script:

="DataPid:PID1." + GETP("ListBox1@SelectedValue");

7. Switch to Run Mode and choose selections from the List Box and see the results in the Trend Chart.

4.2. Dynamic Control and Symbol Binding
Dynamic control and symbol binding allow you to change bindings on a control or symbol at run time.
This tutorial shows how to use a Combo Box to change the color of a Shining Light, and then how to
change a light switch symbol to appear as if it is being switched on and off.

4.2.1. Control Binding
Bind a Combo Box to a Shining Light

1. Open DataHub WebView, open a new page, and add a Combo Box controlto the page.

2. In theBasic Properties of the Combo Box, for theItems Source, select theScript binding type
and edit the default script to read:

WV.GetColorSet();

31

Chapter 4. Dynamic Binding

3. For Display Member Path, chooseName.

4. For Selected Value Path, chooseColor.

5. Add a Shining Light control to the page.

6. In theBasic Properties of the Shining Light, for thePrimary Light Color, select theSimple
binding type and enter the value:

ComboBox1@SelectedValue

7. Switch to Run Mode and choose selections from the List Box and see the results in the Trend Chart.

4.2.2. Symbol Binding
Change a Light Switch Symbol Binding to Simulate On and Off

1. Using the same page as above, add a Symbol control.

2. In theSymbol Selection for theSymbol Set, selectSymbol Factory, for theCategory, select
Operator Interface, and for theSymbol, selectLight switch (on).

32

Chapter 4. Dynamic Binding

3. Select the ShiningLight control, and in theBasic Properties, right mouse click onIs Light On to
copy the reference.

4. Select the Symbol (light switch) and inCustom Events, for OnChecked Event, enter:

SETP("ShiningLight1@IsLightOn", true);

For this and the next step, the stringShiningLight1@IsLightOn is what you copied
from the Shining Light control. You can simply paste it in.

5. In Custom Events, for OnUnChecked Event, enter:

SETP("ShiningLight1@IsLightOn", false);

6. Switch to Run Mode and click the light switch symbol to turn the Shining Light on and off.

This works OK, but it looks strange to have the light go off when the light switch is still in the ON
position. We’ll fix that next.

7. Select the Symbol (light switch) and inCustom Events, for OnChecked Event, add one more
line:

SETP("ShiningLight1@IsLightOn", true);
SETP("@SymbolID", 955272870);

33

Chapter 4. Dynamic Binding

For this and the next step, the string@SymbolID refers to the symbol itself.

8. In Custom Events, for OnUnChecked Event, add one more line:

SETP("ShiningLight1@IsLightOn", false);
SETP("@SymbolID", 1685125442);

9. Switch to Run Mode and click the light switch symbol to turn the Shining Light on and off.

Now the symbol changes from Light switch (on) to Light switch (off) as the light goes on and off.

4.3. Creating a Template Page
This tutorial shows how to create a page where you can switch between data sources in a single display,
at the click of a button.

Creating an Identical Data Source

1. With DataPid running, start another instance of DataPid. In the second DataPid instance, click the
More... button to expose the DataPidConfigurable Options

2. Change theDomain to OtherPid and click theApply Changes button. Then press the
Reconnect button.

If you look in the DataHub Data Browser, you should see a new data domain,OtherPid with data
changing values. Now we need to add that data domain for DataHub WebView.

3. Go to theWebView option of the DataHub Properties window, and in theData Domains Visible
to WebView section, click theRefresh button.

4. The domain nameOtherPid should appear in the list. Check the checkbox to make the OtherPid
domain visible to DataHub WebView, and make its points accessible. Now we have two identical
point sets with different data to demonstrate our template page.

Creating the Template Page

1. Start DataHub WebView, open new page, and add a Combo Box controlto the page

2. In theBasic Properties of the Combo Box, for theItems Source, select theScript binding type
and edit the default script to read:

34

Chapter 4. Dynamic Binding

["DataPid", "OtherPid"];

3. Add a Point Data Table control to the page.

4. In theBasic Properties of the Point Data Table, for thePoint Pattern, select theScript binding
type and edit the default script to read:

"^" + GETP("ComboBox1@SelectedValue") + ":PID1." + "..$";

The^ symbol allows any combination of prefix characters, while theGETPexpression pulls in the
value from the ComboBox. The..$ string allows for any combination of suffix characters after the
requiredPID1. string.

5. To make the table easier to read, in theTable Columns property, you can make the following
columns in the table visible:Point Name, Display Name, Value, andQuality.

6. Switch to Run Mode and change the data domain in the Combo Box fromDataPid to OtherPid to
view the two different sets of data points.

Adding a Trend Chart to the Page

1. Add a Trend Chart (3 pens) control to the page.

2. In theBasic Properties of the Trend Chart, for thePen 1 Value, select thePoint binding type and
enter:

=GETP("ComboBox1@SelectedValue") + ":PID1.Sp";

When a line of script is entered as a point binding as we see here, the= sign tells the
WebView scripting engine that the point name will be assigned. In this example, this allows
the name of the point to be constructed by concatenating strings. TheGETPfunction gets the
property of a control. The syntax for theGETPargument is a string consisting of the name of
the control, an@symbol, and the name of the parameter that you need to get.

3. To give a better shape to the trend line for the Sp point, in thePen1 Properties check the boxes for
thePen 1 Is Square and thePen 1 Auto Extend options.

4. Back in theBasic Properties, for thePen 2 Value select thePoint binding type and enter:

=GETP("ComboBox1@SelectedValue") + ":PID1.Mv";

And for thePen 3 Value select thePoint binding type and enter:

=GETP("ComboBox1@SelectedValue") + ":PID1.Pv";

You should now see all three trends.

35

Chapter 4. Dynamic Binding

5. Switch to Run Mode, and again change the data domain in the Combo Box fromDataPid to
OtherPid. Now both the table and the trend chart alternate between the two different sets of data
points.

Following this example, you can build a page to display multiple identical sets of data in any group of
controls. with the ability to switch between data sets at the click of a button.

36

Chapter 5. Customizing DataHub WebView

5.1. Simple Branding
Simple branding allows a DataHub WebView administrator to create a branded login page, to specify the
application title, and to add company-specific links to theHelp menu. Simple branding is intended for
site administrators who want to provide their users with a general sense that the application is an integral
part of the company’s software solution for systems and processes.

In addition to simple branding options, OEM branding allows a distributor to replace
Cogent-specific logos and references with icons and text of its own choosing. This level of
branding is intended for Cogent partners and licensed distributors who need to re-brand the
application to leverage their own corporate brand and to capitalize on specific market
opportunities. For more information on OEM Branding, please contact
http://www.cogentdatahub.com/Contact.htmlCogent.

Prerequisites

• An understanding of XML.

• Familiarity with XAML.

• Access to the Cogent DataHub installation directory and files.

5.1.1. Creating a custom login page
1. Using XAMLPad (or your favorite XAML editor), create a standalone XAML file that contains the

details of your login page. The file must be namedLoginPage.xaml and stored in a subdirectory
of theBranding installation directory:

C:\Program Files\Cogent DataHub\Plugin\WebServer\html\Silverlight\Branding\

Your page may contain any XAML you wish, including graphics, controls and animation. For your
convenience, you may wish to start by copying the sampleLoginPage.xaml file from the
Template subdirectory.

2. Your page must include aDataHubConnection element (and associated XML namespace). This
element provides support to authenticate the user (i.e., username and password). Even if you want to
bypass the login page with automatic credentials, this element must be included in
LoginPage.xaml .

To add theDataHubConnection element:

a. At the top ofLoginPage.xaml , on the root elememt, add an XML namespace reference
to theDataHubWebViewApplicationInfrastructure assembly:

<Grid
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:dhc="clr-namespace:Cogent.DataHubWebView;assembly=DataHubWebViewApplicationInfrastructure"
...

b. Insert theDataHubConnection element where you want to place the credential
prompt, for example:

<dhc:DataHubConnection Background="Transparent"/>

When the user navigates to your published ASP/HTML URL to launch DataHub
WebView, theDataHubConnection element will appear:

37

Chapter 5. Customizing DataHub WebView

Simple branding does not support customizing the style of this element. You can
set visibility, margin and other standard attributes, but you can not change the text,
colors or button style.

5.1.2. Specifying text, icon, and URL targets
1. Using your favorite editor, create a standalone XML file to contain the branding settings for the

application. The file must be namedBranding.xml and stored in a subdirectory of the
Branding installation directory:

C:\Program Files\Cogent DataHub\Plugin\WebServer\html\Silverlight\Branding\

2. For your convenience, you may wish to start by copying the sampleBranding.xml file from the
Template subdirectory.

<c:Branding
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:c="clr-namespace:Cogent.DataHubWebView;assembly=DataHubWebViewApplicationInfrastructure"

ApplicationName="Your Application Title"

CompanyName="Your Company Name"
CompanyImageSource="Branding/Template/CompanyIcon.png"
CompanyUrl="http://www.yourcompany.com"

OnlineHelpUrl="http://www.yourcompany.com/Docs/ProductOverview.html"

Version="1.0" />

3. Do not change the XML namespace references (xmlns andxmlns:c) or the names of the
Branding attributes (e.g.,ApplicationName).

4. Replace the placeholder text and URLs with your branding information:

• ApplicationName : incorporated into the browser title

• CompanyName: incorporated into theHelp menu’sAbout item text.

• CompanyImageSource : the icon for theHelp menu’sAbout item text.

• CompanyUrl : the target for theHelp menu’sAbout item text.

• OnlineHelpUrl : the target for theHelp menu’sAbout item text.

5. Do not change theVersion attribute or its value.

38

Chapter 5. Customizing DataHub WebView

5.1.3. Adding a favorite icon
1. When accessing website content, browsers look for a file namedfavicon.ico in the website root

directory:

C:\Program Files\Cogent DataHub\Plugin\WebServer\html\

If found, this icon is used in several places to represent your website, such as the browser address
bar,Favorites list, etc.

2. To use your own icon, replace the DataHub WebView defaultfavicon.ico file deployed during a
typical installation.

For more information onfavicon.ico , see http://en.wikipedia.org/wiki/Favicon.

5.1.4. Testing the results
1. Ensure yourBranding.xml andLoginPage.xaml files (and all local resources referenced by

the login page) have been copied to a subdirectory of theBranding installation directory:

C:\Program Files\Cogent DataHub\Plugin\WebServer\html\Silverlight\Branding\

2. Open the Cogent DataHub Properties window and select theWebView option. Ensure theUse a
custom branding directory box is checked and select your branding directory from the dropdown
list. If your directory does not appear, confirm you have completed the previous step.

In most cases, an administrator sets the DataHub WebView launch configuration from the
DataHub Properties window. However, if your users navigate to a custom ASP/HTML page
to launch DataHub WebView, you will need to add a key-value pair to theinitParams
property of the Silverlight control in the custom ASP/HTML page. By default, this file is
DataHubWebView.asp and located in the root:

C:\Program Files\Cogent DataHub\Plugin\WebServer\html\Silverlight\Branding\

The initParams key isbrandingdirectory and the value is the name of the
subdirectory. For example, if you save yourBranding.xml andLoginPage.xaml files
in a directory namedABC(under theBranding installation directory), your configuration
would look something like this:

<object id="Object1" data="data:application/x-silverlight-2,"
type="application/x-silverlight-2" width="100%" height="100%">

<param name="source" value="Bin/Debug/DataHubWebView.xap"/>
<param name="initParams" value="domains=default;...,brandingdirectory= ABC" />

...

</object>

3. Launch DataHub WebView. It should present your custom login page. After entering your
credentials, you should see that the application references the settings you specified in the
Branding.xml file.

39

Chapter 5. Customizing DataHub WebView

5.2. Initialization Parameters
DataHub WebView is implemented as a Microsoft Silverlight object embedded in a web page.
Consequently, it is possible to apply formatting and parameters to the <object> tag in the HTML of that
web page. This allows the administrator of the DataHub WebView installation to customize the user
experience, for example to set background color, size and position of the DataHub WebView object
within the page. In addition it is possible to pass parameters to DataHub WebView from the web page to
customize the behaviour of the DataHub WebView application. This document deals with these various
initialization parameters.

The initParams Parameter

The Silverlight object recognizes a parameter on the <object> tag calledinitParams . In its simplest
form, it is specified in HTML like this:

<object id="DataHubWebView" ...>
<param name="initParams" value=""/>

</object>

The values of the initialization parameters can be inserted into thevalue attribute of the <param> tag as
a comma-separated list of parameters. Each parameter consists of a parameter name, followed by the
equal sign, (=), followed by the parameter value.

5.2.1. Accessing Parameters from the DataHub Properties Window
The Cogent DataHub Properties window allows you to specify some of the possible intialization
parameters that are accepted by DataHub WebView. You can access these parameters in HTML as
follows:

1. Ensure that the HTML page containing the DataHub WebView object has the extension.asp
instead of.html . This will allow the Cogent DataHub to execute Gamma scripts specified in the
page when the web client loads the page. The default URL for starting DataHub WebView is
http://localhost/Silverlight/DataHubWebView.asp .

2. Add the following HTML to the page:

<%
require ("WebViewSupport.g");
local initparams = WebViewInitString();
%>

3. Modify the initParams in the DataHub WebView <object> tag as follows:

<object id="DataHubWebView" ...>
<param name="initParams" value="<%= initparams %>"/>

</object>

Every time the page is loaded, the DataHub WebViewinitParams will be computed from the settings
in the DataHub Properties window.

5.2.2. Adding Custom Parameters
To customize the initialization parameters, simply add your own definitions to theinitParams
<param> tag. For example:

<param name="initParams" value="Page=MyStartPage,StartInRunMode=true" />

You may combine your own custom parameters with those specified in the DataHub Properties window
simply by adding your own parameters to those read from the Properties window. For example:

<param name="initParams" value="<%= initparams %>,Page=MyStartPage,StartInRunMode=true" />

40

Chapter 5. Customizing DataHub WebView

The last value of a parameter will take precedence, so if you insert your parameters after the <%=
initparams %> ASP code, as in the example above, then your parameters will override those specified in
the Properties window.

5.2.3. Specifying Parameters in the Page URL
Some WebView initialization parameters can be specified in the URL of the web page, starting with a
question mark (?). Multiple parameters are separated by ampersands (&). For example:

http://localhost/Silverlight/DataHubWebView.asp?StartInRunMode=true

http://localhost/Silverlight/DataHubWebView.asp?username=admin&password=admin

TheURL columns in the tables below indicate which parameters can be specified in this way.

5.2.4. Parameter List

The following tables show all of the initialization parameters available in DataHub WebView. The
parameter names are not case sensitive, but the parameter arguments may be, depending on the meaning
of the argument. ThePropertiescolumn indicates whether the parameter can be set via a selection in the
Cogent DataHub Properties window. TheURL column indicates whether the parameter can be set in the
URL for the web page.

Table 5-1. Connection

Parameter Value Properties URL Description

TcpPort Integer Tunnel/
Mirror

No This is the port number used to connect to the DataHub
data feed. The default is4502 .

WebPort Integer Web
Server

No This is the HTTP port number on which the DataHub
Web Server is listening. The default is80 .

Domains Stringlist DataHub
WebView

No This is a list of data domain names separated by
semicolon (;) characters.

Host String No No This is determined automatically by DataHub WebView
from the URL entered into the client’s web browser. It
should not normally be specified explicitly.

Table 5-2. Login

Parameter Value Properties URL Description

UserName String No Yes The user name. If this is specified then DataHub
WebView will bypass the login screen and automatically
log in using this user name.

Password String No Yes The password matchingUserName.

FullLogin True/False No No If this is true, then the port, host and domain information
will be requested in the DataHub WebView login dialog.

41

Chapter 5. Customizing DataHub WebView

Table 5-3. Initial View

Parameter Value Properties URL Description

Page String DataHub
WebView

Yes The DataHub WebView page
to show when the user first
logs in. This page will be
loaded even if the user starts
in design mode. The page
name must include any path
components separated by/
characters. The page name
does not include an extension.
Example:
Users/admin/mypage

PageData name=value
pairs

DataHub
WebView

Yes These values become global
variables in the script context.
Eachname=value pair is
separated by a comma, as in:
PageData=a=5,b=6 .
Please see Page Data in the
DataHub WebView Scripting
manual for more information.

StartInRunMode True/False DataHub
WebView

Yes If this parameter is true,
DataHub WebView will enter
Run mode when the user logs
in, otherwise it will enter
Design mode if the user has
permission to do so.

UseKioskView True/False DataHub
WebView

No If this parameter is true,
DataHub WebView will start
in kiosk mode, removing the
menu and icon bars.

FreezeScreenWhileLoadingPage True/False No No If this is true (the default) then
the current page is frozen and
the new page is loaded in the
background. If this is false
then the current page is erased
and the new page is loaded in
the foreground, with controls
on the screen appearing as
they load.

DisableDesignMode True/False DataHub
WebView

No If this parameter is true,
DataHub WebView will not
allow the user to enter Design
mode, even if the user has
permission to do so.

HideInitializationElements True/False No Yes If this parameter is true, no
wallpaper is displayed during
initialization of the DataHub
WebView application.

42

Chapter 5. Customizing DataHub WebView

Parameter Value Properties URL Description

EnableBrowserScripts True/False DataHub
WebView

No If this parameter is true,
DataHub WebView will be
allowed to execute Javascript
code in the hosting browser.
The default isFalse .

Table 5-4. Branding

Parameter Value Properties URL Description

BrandingFolder String DataHub
WebView

No The path to a folder to search for custom
branding information. This folder is relative
to the DataHub WebView installation’s
Branding directory. The path separator is
the/ character.

Table 5-5. Designer Controls

Parameter Value Properties URL Description

MakeDataPointsReadOnly True/False DataHub
WebView

Yes If this parameter is true,
DataHub WebView will
be unable to write data to
the DataHub’s data set,
regardless of the
configuration or user
permissions.

DisablePageInformationButton True/False DataHub
WebView

Yes If this parameter is true,
the page information
button will not be
displayed in Run mode.

ShowHiddenControls True/False No No If this parameter is true,
controls that are normally
hidden will be visible in
Design mode. Hidden
controls are controls that
act as base classes for
other controls, are
deprecated, or are
experimental. In any case,
these controls should not
be used by a page
designer.

RunSilently True/False DataHub
WebView

Yes If this parameter is true,
DataHub WebView will
not display any error
messages in Run mode.

43

Chapter 5. Customizing DataHub WebView

Parameter Value Properties URL Description

HideLoadingPageMessage True/False DataHub
WebView

Yes If this parameter is true,
DataHub WebView will
not display a message
each time a page is
loaded.

ShowExitConfirmation UnsavedChanges,
Never,
Always

No Yes This setting determines
whether to prompt the
user when he attempts to
exit DataHub WebView.
If set toNever , then the
user will not be prompted
on exit. If set toAlways
then the user will be
prompted. If set to
UnsavedChanges then
the user will only be
prompted if there are
unsaved changed on the
current page. The default
is Always .

5.3. Adding Controls
This section outlines the steps to add a custom control, with custom behavior, that will be used inside the
DataHub WebView Silverlight application.

This procedure is intended for control designers and power users who want to complement or extend the
suite of controls that ship with DataHub WebView. For those who merely want to re-style an existing
control, please refer to a soon-to-be-added section: Restyling a DataHub WebView Control.

Prerequisites

• An understanding of how to develop Microsoft .NET class libraries.

• Familiarity with Visual Studio 2010.

• An understanding of XML.

• Some familiarity with XAML.

• Access to the Cogent DataHub installation directories and files.

5.3.1. Preparing the Visual Studio project
The first step in adding a custom control is to create a Visual Studio project containing the default
XAML style, ControlTemplate , and the control’s code-behind class.

1. In Visual Studio 2010, create a new project:

• Template : Silverlight Class Library

• Version : Silverlight 4

44

Chapter 5. Customizing DataHub WebView

• Project Name : MyGauges

replacingMyGauges with the name of your project.

2. Deleteclass1.cs and add a new class to represent your control. For this documentation, we
name the classGlossyGauge ; which you can replace with your own class name.

public class GlossyGauge

3. Now the XAML needs to be separated from the code-behind class. Create a new directory and add
an XAML file to that directory, as follows:

• New directory name:Themes

• New XML file name:Generic.xaml

4. Replace the content ofGeneric.xaml with the following XAML code:

<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:vsm="clr-namespace:System.Windows;assembly=System.Windows"
xmlns:layout=

"clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Layout.Toolkit"
xmlns:toolkit="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Toolkit"
xmlns:input="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Input.Toolkit"
xmlns:controls="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:primitives="clr-namespace:System.Windows.Controls.Primitives;assembly=System.Windows"

xmlns:local="clr-namespace: MyWebViewControls.MyGauges "
>

<Style TargetType="local: GlossyGauge ">
<Setter Property="Template">

<Setter.Value>
<ControlTemplate TargetType="local: GlossyGauge ">

<Grid x:Name="ControlRoot" Background="Transparent">
<Viewbox>

</Viewbox>
</Grid>

</ControlTemplate>
</Setter.Value>

</Setter>
</Style>

</ResourceDictionary>

5. Set thelocal XML namespace to match the namespace used for your control (i.e., where the
GlossyGauge class resides).

xmlns:local="clr-namespace: MyWebViewControls.GlossyGauge "

6. Set theTargetType (for both theStyle andControlTemplate elements) to refer to your
class:

TargetType="local: GlossyGauge "

7. Between the start and end<Viewbox> tags, paste the XAML code that represents your control
(perhaps created using Microsoft Expression Blend).

8. Change the definition of your class to work with theStyle andControlTemplate (in
Generic.xaml) by inheriting fromControl and by using thepartial modifier.

public partial class GlossyGauge : Control

9. Add a default constructor to your class and set theDefaultStyleKey property to refer to the
class’s type. This triggers the framework to invoke theOnApplyTemplate method and apply the
matching XAML template in the project’s\Themes\Generic.xaml file.

public GlossyGauge ()
{

45

Chapter 5. Customizing DataHub WebView

this.DefaultStyleKey = typeof(GlossyGauge);
}

10. For illustration, add aDependency Property , which will manage theBackgroundColor of
the control, and will be exposed to the user via Property Explorer.

TheUpdateVisualState method will be coded in an upcoming step.

public Color BackgroundColor
{

get { return (Color)GetValue(BackgroundColorProperty); }
set { SetValue(BackgroundColorProperty, value); }

}

public static readonly Dependency Property BackgroundColorProperty =
Dependency Property.Register("BackgroundColor", typeof(Color), typeof(DHCommonGauge),
new PropertyMetadata(Colors.Black, new PropertyChangedCallback(Dependency Property_Changed)));

private static void Dependency Property_Changed(
DependencyObject sender, Dependency PropertyChangedEventArgs e)

{
DHCommonGauge gauge = sender as DHCommonGauge;
gauge.UpdateVisualState();

}

11. Define theControlTemplate behavior, i.e., the interaction among theStyle and
ControlTemplate you defined inGeneric.xaml and your control’s properties and behavior.

private Grid ControlRoot;
public override void OnApplyTemplate()
{

// Capture the Framework Elements from the ControlTemplate
ControlRoot = GetTemplateChild("ControlRoot") as Grid;

UpdateVisualState();
}

private void UpdateVisualState()
{

// Logic to update the control, e.g., gauge range, current value, color, etc.
// For example:
ControlRoot.Background = new SolidColorBrush(this.GaugeBackgroundColor);

}

For example, the above code:

• Defines theControlRoot element, which is set in theOnApplyTemplate method by
referencing the named element in theControlTemplate .

• Updates theBackground of theControlRoot whenever theUpdateVisualState
method is called, including when theBackgroundColor Dependency Property
changes.

For more information about modifying custom control behavior, please refer to a soon-to-be-added
section: Making your Custom DataHub WebView Control Host-Aware.

5.3.2. The XAML file to reference the control
You will need to create a standalone XAML file that references the Silverlight control.

1. Using your favorite editor, create a standalone XAML file that references the Silverlight control you
created in your Visual Studio project. The file can be named anything you like. By convention, the
file name refers to the Silverlight class (e.g.,GlossyGauge .xaml).

The root element is<UserControl> and four XML namespaces are required.:

46

Chapter 5. Customizing DataHub WebView

• xmlns andxmlns:x are used by Silverlight to process XAML.

• xmlns:live is used by the DataHub WebView infrastructure to associate XAML elements with
control Parameters (discussed in the next section).

• xmlns: myControls is used to reference your Visual Studio control.

<UserControl
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:live="clr-namespace:Cogent.DataHubWebView;assembly=DataHubWebViewApplicationInfrastructure"
xmlns:myControls=" clr-namespace: MyWebViewControls.MyGauges ;assembly= MyWebViewControls "
>

<myControls:GlossyGauge live:DynamicElement.ID=" Gauge" />
</UserControl>

2. When ready to test, this file needs to reside in the DataHub installation directory hierarchy:

C:\Program Files\Cogent DataHub\Plugin\WebServer\html\Silverlight\Controls\

5.3.3. The XML file for public properties and behavior of the control
In this section, we will create a standalone XML file that encapsulates the public properties and behavior
of the Silverlight control.

1. Using your favorite editor, you need to create a standalone XML file to define the public interface
for your DataHub WebView control. The file can be named anything you like. By convention, the
file name refers to the Silverlight class (e.g.,GlossyGauge .xml). The file must end with the
.xml file extension.

The best way to begin is to use one of the existing control XML files as a template. Like the
standalone XAML file (previous step), these files reside in the DataHub Controls installation
directory:

C:\Program Files\Cogent DataHub\Plugin\WebServer\html\Silverlight\Controls\

2. DataHub WebView parses control XML files to determine:

• Identifying control information, includingControlID (unique),ControlName ,
Description andShortDescription (the latter three are presented to the user in Property
Explorer).

• The base XAML used to render the control,ControlFileName , which in turn references your
Silverlight control class.

• The public data (i.e., Parameters) to make available to the user via Property Explorer. Parameters
are grouped withinParameterCategory elements.

For example, the XML file for theGlossyGauge control might look like this:

<c:EditableObjectConfig Owner="System" Category="Gauges"
ControlID="MyControls:GlossyGauge:1" ControlName="My Glossy Gauge"
ControlFileName="GlossyGauge.xaml"
Description=" This gauge has glossy style and looks cool!"
ShortDescription="Cool-lloking glossy gauge"
Width="200" Height="200">

<c:EditableObjectConfig.ParameterCategories>

<c:ParameterCategory ParameterCategoryName="CAT_Basic" Label="Basic Properties">
<c:ParameterCategory.Parameters>

<c:Parameter ParameterName="CurrentValue" EditorType="general" Label="Current Value"
Default="50" TargetPath="Gauge.CurrentValue" />

<c:Parameter ParameterName="MinimumValue" EditorType="general" Label="Minimum Value"
Default="0" TargetPath="Gauge.MinValue"/>

47

Chapter 5. Customizing DataHub WebView

<c:Parameter ParameterName="MaximumValue" EditorType="general" Label="Maximum Value"
Default="100" TargetPath="Gauge.MaxValue"/>

<c:Parameter ParameterName="GaugeBackgroundColor" EditorType="color" Label="Background Color"
Default="#FF000000" TargetPath="Gauge.GaugeBackgroundColor"/>

</c:ParameterCategory.Parameters>
</c:ParameterCategory>

</c:EditableObjectConfig.ParameterCategories>
</c:EditableObjectConfig>

3. Notes for Parameters:

• Thec: namespace prefix is used by DataHub WebView and is required for the
EditableObjectConfig , ParameterCategory andParameter elements.

• ParameterName is required and must be unique for the control.

• Label values can be any text you want. They appear in Property Explorer.

• DataHub WebView usesEditorType to determine how the user should interact with the
Parameter value in Property Explorer.EditorType can be one of several values, including
bool , color , enum, togglebutton , etc.

• TheDefault value is used as the initialParameter value.

• TargetPath refers to the source object and source property path of the control to which this
Parameter maps. For example, referring to:

<c:Parameter ParameterName="BackgroundColor" ... Default="#80FF0000" TargetPath="Gauge.CurrentValue" />

theBackgroundColor Parameter has aTargetPath of Gauge.BackgroundColor
which means it maps to:

• the XAML element defined with theDynamicElement.ID of Gauge i.e., the element
defined inGlossyGauge .xaml (ControlFileName)

<myControls: GlossyGauge live:DynamicElement.ID="Gauge" />

• and the"Backgroundcolor" Dependency Property defined in the Silverlight
control.

• There are several more attributes that can be used to configure theEditableObjectConfig
andParameter objects. For a comprehensive list, please refer to "Configuring Control XML
with EditableObjectConfig and Parameter Attributes."

5.3.4. Testing the results
1. Confirm your Visual Studio project (which includes theGlossyGauge class and

Generic.xaml) builds successfully.

2. Copy the resulting assembly (MyGauges.dll) into theControlAssemblies installation
directory:

C:\Program Files\Cogent DataHub\Plugin\WebServer\html\Silverlight\ControlAssemblies\

3. Confirm thatGlossyGauge .xaml andGlossyGauge .xml reside in theControls
installation directory:

C:\Program Files\Cogent DataHub\Plugin\WebServer\html\Silverlight\Controls\

4. Launch DataHub WebView. Your control should be listed in Control Explorer and on the Controls
Toolbar. You should be able add an instance of your control to any page.

48

Chapter 5. Customizing DataHub WebView

5. Now that you’ve confirmed you can build a control and get it working inside DataHub WebView, it;s
time to enhance and extend your control’s functionality. It’s a simple, iterative cycle:

• Define newDependency Properties on your Silverlight control class.

• Implement new behaviors with custom functionality in your Silverlight control class and with the
control XAML in theGeneric.xaml file.

• Build your Silverlight class library and copy thedll to theControlAssemblies installation
directory.

• In the control XML file (Controls installation directory), add newParameters for each of
the control properties you want to expose to the user.

49

Chapter 6. Creating Custom Symbols
DataHub WebView uses a single "Symbol Host" control to host all of the available symbols. Symbols are
arranged in symbol sets, where each symbol set has one or more categories, and each category has one or
more symbols. The symbols themselves are just drawings in their simplest form. Consequently, you can
add different symbols to DataHub WebView by creating your own drawings and telling DataHub
WebView where to find them.

What you’ll need

1. A XAML Editor. Symbols are specified entirely in XAML. The XAML editor can be any one of the
following:

• Microsoft Expression Blend

• Microsoft Visual Studio

• Any text editor (e.g., Notepad++)

Microsoft Expression Blend is the most powerful of these tools. Microsoft Visual Studio 2010
Express is free of charge, as are many text editors. We do not recommend writing XAML using a
text editor until you are very experienced.

2. An XML Editor. Symbol maps are specified in XML. A symbol map tells DataHub WebView how
to identify your symbols and how to associate the XAML files with the symbol names and
identifiers. XML is a plain-text format that can be edited with any text editor, including the editors
built into Expression Blend and Visual Studio.

6.1. Creating Your Symbol Library

6.1.1. Create a symbol map
The symbol map is a simple XML file that tells DataHub WebView about your symbol set. The first part
details information about the whole symbol set, and the second part identifies the individual symbols.
Below is an example of a symbol map file. A symbol map file can be formatted either as 7-bit ASCII or
as UTF-8. For example, the following map file defines two shapes, an ellipse and a rectangle:

<?xml version="1.0" encoding="utf-8"?>
<wvsm:SymbolMap

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wvsm="clr-namespace:Cogent.DataHubWebView;assembly=DataHubWebViewSymbolHelpers"

SymbolSet="My Test Symbols"
Manufacturer="Cogent Real-Time Systems Inc."
Copyright="(C) 2011 Cogent Real-Time Systems Inc."
License="Licensed for use with DataHub WebView only."
Description="These Symbols illustrate how to incorporate custom objects into DataHub WebView."
SymbolSetVersion="1.0"
>

<wvsm:SymbolMap.Symbols>
<wvsm:Symbol Category="Simple Shapes" Name="Rectangle" SymbolID="201"

FileName="SmipleShapes.xaml" Style="RectangleStyle" />
<wvsm:Symbol Category="Simple Shapes" Name="Ellipse" SymbolID="202"

FileName="SimpleShapes.xaml" Style="EllipseStyle" />
</wvsm:SymbolMap.Symbols>

</wvsm:SymbolMap>

50

Chapter 6. Creating Custom Symbols

You can make a copy of this symbol map and alter it to your needs. Some of the SymbolMap fields
deserve further description:

SymbolSet

The name that will appear in the DataHub WebView user interface when the user chooses to place
one of your symbols on the screen.

SymbolSetVersion

A version number of the formN. N. TheSymbol Host control can interpret this version number
to allow you to offer multiple versions of the same symbol. The intention here is that you could
create an equivalent visual representation of your symbols and make them available as an optional
upgrade from a previous version. Different versions of symbols should perform the same role, such
that a newer version of a symbol is a "drop-in" replacement of the previous version.

In addition to the symbol set definitions, this file contains a Symbols list, with a single entry for each
symbol in the symbol set. Each symbol has the following fields:

SymbolID

A number that must be unique for each symbol in this symbol set. This is the most important
identifying element of a symbol. Once you have released your symbol set, you must not change this
number for a given symbol. If you release multiple versions of your symbol set, then the
SymbolID s must match for different versions of the same symbol.SymbolID is a 32-bit signed
integer number, and does not have to be in order or contiguous.

Category

A character string that identifies the symbol category. This category will be displayed to the user in
the DataHub WebView interface. You may use any string you like. If two or more symbols have the
same category name, they will be grouped within the DataHub WebView interface.

Name

The symbol name that will be displayed to the user in the DataHub WebView interface. This name
does not have to be unique, as theSymbolID is the sole unique identifier for a symbol.

FileName

This is the name of the file that contains the symbol’s XAML definition. When DataHub WebView
encounters this symbol, the XAML file will be read from the server. DataHub WebView will only
look for the file in the same directory as it originally found your symbol map file.

Style

This identifies the<Style> tag associated with this particular symbol within the XAML file. You
may combine multiple symbol definitions into a single XAML file. The specific XAML definition
of a symbol is identified by a<Style> tag within that file.

6.1.2. Create a symbol XAML file
The symbol file defines a singleUserControl . The definition of that control consists of a header, one
or moreControlTemplate resources, a matching number ofStyle resources, and an instance
definition of aDHSymbol control. In its simplest form, it would look like this:

<UserControl
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:ed="http://schemas.microsoft.com/expression/2010/drawing" mc:Ignorable="d"

51

Chapter 6. Creating Custom Symbols

xmlns:sym="clr-namespace:Cogent.DataHubWebView.Controls;assembly=DataHubWebViewSymbol"
>

<UserControl.Resources>

<ControlTemplate x:Key="RectangleTemplate" TargetType="sym:DHSymbol">
<Grid>

<Rectangle Fill="Transparent" Stroke="Black"/>
</Grid>

</ControlTemplate>

<ControlTemplate x:Key="EllipseTemplate" TargetType="sym:DHSymbol">
<Grid>

<Ellipse Fill="Transparent" Stroke="Black"/>
</Grid>

</ControlTemplate>

<Style x:Key="RectangleStyle" TargetType="sym:DHSymbol">
<Setter Property="StyleName" Value="Rectangle" />
<Setter Property="Template" Value="{StaticResource RectangleTemplate}" />

</Style>

<Style x:Key="EllipseStyle" TargetType="sym:DHSymbol">
<Setter Property="StyleName" Value="Ellipse" />
<Setter Property="Template" Value="{StaticResource EllipseTemplate}" />

</Style>

</UserControl.Resources>

<sym:DHSymbol Style="{StaticResource RectangleStyle}" />

</UserControl>

A DataHub WebView symbol can contain any legal XAML definition. That means that a symbol is in
fact more than just a drawing. It could contain buttons, dials, shapes, storyboards and virtually anything
that XAML can describe. However, you may not provide C# code-behind class for your symbol. The
intention is that the symbol definition contains the rendering definition of the symbol, while the
behaviour of the symbol is implemented by theSymbol Host control.

The symbol XAML file can contain any number of matching pairs of <ControlTemplate> and <Style>
tags. The <Style> tag for a particular symbol refers to its matching <ControlTemplate> in the Template
property within the Style.

6.1.3. Deploy your symbol set
You can deploy your symbol set by simply copying the XAML files and symbol map file into a directory
from which DataHub WebView can load them. When you install Cogent DataHub, the web server root
directory is:

C:\Program Files\Cogent\Cogent DataHub\Plugin\WebServer\html

You can change this directory by modifying the Cogent DataHub Web Server properties.

This document will refer to the web root directory (above) as[WebRoot] henceforth.

By default, the base directory for all symbols is:

[WebRoot]\Silverlight\Symbols

You should create a sub-directory beneath theSymbols directory that is specific to your symbol set. Do
not deploy your symbols into any directory that is installed with the Cogent DataHub, as your symbol
files would be subject to deletion when you un-install the Cogent DataHub. For example, create a
directory called:

52

Chapter 6. Creating Custom Symbols

[WebRoot]\Silverlight\Symbols\Test Symbols V1.0

Copy your symbol files into this directory. They may have any file extension, but normally they should
be.xaml files. In the above examples, you should call your symbol fileSimpleShapes.xaml to
match the contents of the sample.map file.

Copy your symbol map file into this directory. It must have the extension.map . DataHub WebView
searches for all.map files to determine which symbol sets are available. For example, you could create a
.map file using the above example calledTest Symbols V1.0.map .

You should now have created the following two files:

[WebRoot]\Silverlight\Symbols\Test Symbols V1.0\SimpleShapes.xaml
[WebRoot]\Silverlight\Symbols\Test Symbols V1.0\Test Symbols V1.0.map

Whenever you have changed or added files to your symbol set directory, you must inform DataHub
WebView that it needs to update its resource definitions. You can do this by selecting the menu item
Tools / Diagnostics / Refresh Application Objects. When you modify the symbol map file, you must
reload DataHub WebView by saving your work and then refreshing the browser page.

6.2. Symbol Animation
In its simple form a symbol is not animated. That is, it does not blink, rotate or change color as its input
data value changes. In order to animate your symbol you must indicate which parts of your symbol will
change according to its data value. The Symbol Host control provides XAML markup attributes that you
can use on the parts of your symbol to produce the animation of your choice. For example, if you include
an attribute on a part of your symbol that indicates blinking behaviour, theSymbol Host control will
enable the blinking properties for that symbol and will allow your user to configure the conditions under
which the symbol will blink.

6.2.1. Animation attributes
An animation attribute is defined as an XML attribute attached to anyUIElement tag within your
symbol’s XAML definition. For example, to make our ellipse blinkable, we can modify its template
definition:

<ControlTemplate x:Key="EllipseTemplate" TargetType="sym:DHSymbol">
<Grid sym:DHSymbol.BlinkTargetProperty="Opacity" >

<Ellipse Fill="Transparent" Stroke="Black" />
</Grid>

</ControlTemplate>

In this case, we have attached the blink behaviour to the top-levelUIElement (theGrid) in the
symbol. This will cause the entire symbol to blink when it is configured to do so. We have chosen to
blink the symbol by modifying theOpacity property of theGrid , which in practice is the only
reasonable property to use for the purpose.

We may not want to blink the entire symbol. For example, the following XAML code modifies the
ellipse to contain a rectangle within it:

<ControlTemplate x:Key="EllipseTemplate" TargetType="sym:DHSymbol">
<Grid>

<Ellipse Fill="Transparent" Stroke="Black" />
<Rectangle Fill="Red" Stroke="Transparent" Width="20"

sym:DHSymbol.BlinkTargetProperty="Opacity"/>
</Grid>

</ControlTemplate>

Now the ellipse outline will remain solid, and only the rectangle within it will blink.

53

Chapter 6. Creating Custom Symbols

You may add more than one animation attribute to a single element within your XAML definition, and
you may add the same animation attribute to more than one element. Thus, if you have a symbol
consisting of many elements, you can choose on an individual basis which element would blink, change
color etc.

For example, we can add a rotation attribute to our rectangle:

<ControlTemplate x:Key="EllipseTemplate" TargetType="sym:DHSymbol">
<Grid>

<Ellipse Fill="Transparent" Stroke="Black" />
<Rectangle Fill="Red" Stroke="Transparent" Width="20"

sym:DHSymbol.BlinkTargetProperty="Opacity"
sym:DHSymbol.RotationType="Normal"
/>

</Grid>
</ControlTemplate>

Note that the animation attributes do not immediately animate the symbol. They indicate to theSymbol
Host control that this symbol will participate in that type of animation according to the configuration
that the user has applied. The symbol designer might offer a rotation animation in the symbol, but the
page developer may choose not to enable it for his particular configuration.

Your symbol may implement a number of user-definable colors. These can simply be added to any
element of the symbol’s XAML code. For example, to make the base color of the ellipse into a
user-definable property, we can add theBaseColorTargetProperty attribute:

<ControlTemplate x:Key="EllipseTemplate" TargetType="sym:DHSymbol">
<Grid>

<Ellipse sym:DHSymbol.BaseColorTargetProperty="Fill.Color"
Fill="Transparent" Stroke="Black"/>

<Rectangle Fill="Red" Stroke="Transparent" Width="20"
sym:DHSymbol.BlinkTargetProperty="Opacity"
sym:DHSymbol.RotationType="Normal"
/>

</Grid>
</ControlTemplate>

In this example, we add tell theSymbol Host control that the base color property should be applied to
theFill.Color property of theEllipse . TheFill.Color refers to theColor of the
SolidColorBrush assigned to theFill property of theEllipse . Since this reference requires
Fill to be aSolidColorBrush , we must also assignFill to be initiallyTransparent (or any
solid color brush). Now when the user modifies theBase Color property of theSymbol Host in
the Aesthetics property category, the fill color of theEllipse within our symbol will change.

6.2.2. Animation types
TheSymbol Host control offers several animation types. A symbol designer may specify any
combination of these types within his symbol, or may choose to implement none at all. These types are:

Type: Constant

Property Data Type Description

BaseColorTargetProperty String (a
Property Name)

The name of the control property that
will change color when theBase
Color is altered. E.g., a
Rectangle’s Fill or aGrid ’s
Background .

54

Chapter 6. Creating Custom Symbols

Property Data Type Description

AccentColor1TargetProperty String (a
Property Name)

The name of the control property that
will change color when theAccent
Color 1 is altered.

AccentColor2TargetProperty String (a
Property Name)

The name of the control property that
will change color when theAccent
Color 2 is altered.

ShadowColorTargetProperty String (a
Property Name)

The name of the control property that
will change color when theShadow
Color is altered.

GlassinessTargetProperty String (a
Property Name)

The name of the control property that
will receive a value in the range0.0 -
1.0 in response to theGlassiness
symbol property. This is normally used
to modify the opacity of a gradient
overlay on the symbol that will provide
the appearance of a glass cover.

Type: Condition

Condition specifies that part of the symbol will change its color, text or value based on the input value
condition.

Property Data Type Description

ConditionColorTargetProperty String (a
Property Name)

The name of the control
property that will change color
when theCondition
Color is altered.

ConditionColorOpacityTargetProperty String (a
Property Name)

The name of the control
property that will receive a
value in the range0.0 - 1.0
in response to the
Condition Color
Opacity symbol property.

ConditionTextTargetProperty String (a
Property Name)

The name of the control
property that will receive the
condition text string when the
symbol condition changes.

Type: Blink

Blink causes the symbol element to blink according to the condition or blink override settings.

Property Data Type Default Description

BlinkTargetProperty String (a Property
Name)

The name of the property that
will receive a value between
0.0 - 1.0 indicating the blink
opacity.

BlinkColorTargetProperty String (a Property
Name)

The name of the property that
will receive a color when color
blinking occurs.

55

Chapter 6. Creating Custom Symbols

Property Data Type Default Description

BlinkFrom Double 0.0 The minimum value between
0.0 - 1.0 that will be sent to
the property identified by
BlinkTargetProperty .

BlinkTo Double 1.0 The maximum value between
0.0 - 1.0 that will be sent to
the property identified by
BlinkTargetProperty .

BlinkBy Double The rate of change of the value
sent to the property identified
by
BlinkTargetProperty .

BlinkInverse Boolean False If set toTrue , blinking will be
backward from the normal
sense. This would allow the
control to have two elements
that blink in counterpoint.

BlinkSpeedRatio Double 1.0 Specifies the rate of blinking,
where1.0 is normal speed,
<1.0 is slower and>1.0 is
faster than normal.

BlinkFillBehavior One of:HoldEnd ,
Stop

Stop Determines the state of the
symbol when blinking stops. If
set toStop , the control will be
reset to normal. If set to
HoldEnd , the control will be
left as it was when blinking
stopped.

BlinkEasingFunction One of:None,
Back , Bounce ,
Circle , Cubic ,
Elastic ,
Exponential ,
Power ,
Quadratic ,
Quartic ,
Quintic , Sine

None Indicates the type of easing
function to apply when
approaching the limit of a blink
based on fading. Some easing
functions require parameters.

BlinkEasingMode One of:EaseOut ,
EaseIn ,
EaseInOut

Determines whether the easing
function will be applied at the
end of the blink animation, the
beginning, or both.

BlinkEasingArg1 Integer 0 The first argument to the
BlinkEasingFunction if
applicable.

BlinkEasingArg2 Integer 0 The second argument to the
BlinkEasingFunction if
applicable.

56

Chapter 6. Creating Custom Symbols

Type: Rotation

Elements within the symbol may rotate clockwise or counter-clockwise according to the condition or
rotation override settings.

Property Data Type Default Description

RotationType One of:None,
Normal

None If this attribute is "Normal" then
the element can rotate.

RotationFrom Double 0 The starting angle of roatation, in
degrees.

RotationTo Double 360 The finishing angle of roatation, in
degrees.

RotationBy Double The number of degrees to rotate by
in each animation frame.

RotationInverse Boolean False If False , rotation will be in the
clockwise direction. IfTrue ,
rotation is counter-clockwise.

RotationSpeedRatio Double 1.0 Specifies the rate of rotation,
where1.0 is normal speed,<1.0
is slower and>1.0 is faster than
normal.

RotationFillBehavior One of:HoldEnd ,
Stop

Stop Determines the state of the symbol
when rotation stops. If set to
Stop , the control will be reset to
its initial rotation. If set to
HoldEnd , the control will be left
as it was when rotation stopped.

RotationEasingFunction One of:None,
Back , Bounce ,
Circle , Cubic ,
Elastic ,
Exponential ,
Power ,
Quadratic ,
Quartic ,
Quintic , Sine

None Indicates the type of easing
function to apply when
approaching the limit of a rotation.
Some easing functions require
parameters.

RotationEasingMode One of:EaseOut ,
EaseIn ,
EaseInOut

Determines whether the easing
function will be applied at the end
of the rotation animation, the
beginning, or both.

RotationEasingArg1 Integer The first argument to the
RotationEasingFunction
if applicable.

RotationEasingArg2 Integer The second argument to the
RotationEasingFunction
if applicable.

Type: Progress

Elements within the symbol may indicate progress in the range of0.0 - 1.0 (representing 0 - 100%).
Elements may also take on aprogress color.

57

Chapter 6. Creating Custom Symbols

Property Data Type Description

ProgressPercentageTargetProperty String (a
Property Name)

The name of an element property
that will receive the progress value
between0.0 and1.0 .

ProgressColorTargetProperty String (a
Property Name)

The name of an element property
that will be set to the progress
color.

6.2.3. Conditional animation
The primary feature of theSymbol Host control is the ability to change the animation of the symbol
based on an input condition. TheSymbol Host defines 5 states, each of which can be individually
configured forColor , Text , Blink andRotation . All of the properties in theCondition ,
Blink andRotation categories in the table above can be used to affect the behaviour of the symbol
on a per-state basis.

6.3. Scaling and Other Considerations

6.3.1. Scaling
Your symbol will be resized when theSymbol Host control changes size. You will need to decide
what kind of resizing behaviour you would like. Normally, resizing the control will simply scale the
contents in the X and Y direction independently, allowing the user to stretch your symbol. This is not
always the correct behaviour. Typical requirements for alternate scaling methods include:

1. If the symbol needs to maintain an aspect ratio, resizing should not cause flattening of the symbol, or

2. If the symbol contains controls such as text boxes or buttons then resizing should also cause the text
and other contained controls to scale, or

3. If the symbol contains elements that have a fixed size, and therefore do not scale as the rest of the
symbol scales.

Scaling issues can commonly be handled using<Grid> tags, which automatically resize all of their
contained elements. When<Grid> tags are not sufficient, the best choice is to surround the entire
symbol definition in a<Viewbox> :

<ControlTemplate x:Key="EllipseTemplate" TargetType="sym:DHSymbol">
<Viewbox Stretch="Fill">

<Grid Width="100" Height="100" >
<Ellipse sym:DHSymbol.BaseColorTargetProperty="Fill.Color"

Fill="Transparent" Stroke="Black"/>
<Rectangle Fill="Red" Stroke="Transparent" Width="20"

sym:DHSymbol.BlinkTargetProperty="Opacity"
sym:DHSymbol.RotationType="Normal"
/>

</Grid>
</Viewbox>

</ControlTemplate>

Notice that the content within theViewbox must include a specific width and height. TheViewbox
must know the nominal size of its contained element, and will scale the content relative to that size.

58

Chapter 6. Creating Custom Symbols

6.3.2. Binding element properties to the symbol host control
TheSymbol Host control is an instance of the classDHSymbol. Since the symbol content is
specified as aControlTemplate , any of the publicly exposed members of the host control can be
accessed by the symbol XAML using{TemplateBinding property_path} . This allows the
symbol designer to reflect the host control state within the symbol if necessary. For example, the symbol
could contain a text box that presents the progress percentage as a number.

It is not always a good idea to useTemplateBinding instead of theDHSymbol attached properties.
The attached properties act as markup that is not specific to a particularSymbol Host control. If you
chose to implement your own symbol host control or use a third-party symbol host control then the
attached property markup would make your symbol relatively easy to support. If you choose instead to
bind your symbol usingTemplateBinding then your symbol will be much less likely to function
with another symbol host control.

6.3.3. Limitations on XAML code within symbols
A symbol can contain virtually any XAML code with the exception of event handlers. Event handlers
require C# code-behind, which is not available to a symbol. Fairly complex behaviours can be achieved
with storyboards and bindings among elements in the XAML definition.

6.3.4. Compressing symbol files
The XAML file containing the symbol definitions can be compressed with the standard ZIP compression.
This will reduce loading time and network bandwidth when the application starts. You may not specify a
password on this ZIP file.

6.3.5. Best Practices
When symbols are intended to line up with one another, use integer dimensions and positions. Stay
consistent when offsetting symbol contents from the control boundary. For example, a symbol set
consisting of pumps and pipes would be much easier to work with if the pipe were easily scaled to match
the size of the pump’s output, and if the pipes were offset within their bounding box by the size of the
flange on the pump’s ouput.

Create symbols that consist of multiple layers. The bottom layer should be filled with the base color, the
second layer with the condition color and the top layer with a translucent overlay as a lighting effect
whose opacity is tied to the glassiness. ZIP your XAML files when you deploy them to save time and
network bandwidth.

6.4. Complete Example
The following two listings provide a complete example that implements 4 symbols:

• Spinner: A circle containing a rotating rectangle.

• Spiral: A spiral path

• Info (Attached): A rectangle containing symbol information using attached properties to create its
bindings.

• Info (Template): The same rectangle using template bindings.

59

Chapter 6. Creating Custom Symbols

File: TestSymbolsV1.0.map
<?xml version="1.0" encoding="utf-8"?>
<wvsm:SymbolMap

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wvsm="clr-namespace:Cogent.DataHubWebView;assembly=DataHubWebViewSymbolHelpers"

SymbolSet="My Test Symbols"
Manufacturer="Cogent Real-Time Systems Inc."
Copyright="(C) 2011 Cogent Real-Time Systems Inc."
License="Licensed for use with DataHub WebView only."
Description="These Symbols illustrate how to incorporate custom objects into DataHub WebView."
SymbolSetVersion="1.0"
>
<wvsm:SymbolMap.Symbols>

<wvsm:Symbol Category="Simple Shapes" Name="Spinner" SymbolID="1"
FileName="SimpleShapes.xaml" Style="SpinnerStyle" />

<wvsm:Symbol Category="Simple Shapes" Name="Spiral" SymbolID="2"
FileName="SimpleShapes.xaml" Style="SpiralStyle" />

<wvsm:Symbol Category="Simple Shapes" Name="Info (Template)" SymbolID="3"
FileName="SimpleShapes.xaml" Style="Info1Style" />

<wvsm:Symbol Category="Simple Shapes" Name="Info (Attached)" SymbolID="4"
FileName="SimpleShapes.xaml" Style="Info2Style" />

</wvsm:SymbolMap.Symbols>
</wvsm:SymbolMap>

File: SimpleShapes.xaml
<UserControl

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
xmlns:ed="http://schemas.microsoft.com/expression/2010/drawing" mc:Ignorable="d"

xmlns:sym="clr-namespace:Cogent.DataHubWebView.Controls;assembly=DataHubWebViewSymbol"
xmlns:wvc="clr-namespace:Cogent.DataHubWebView.Controls;assembly=DataHubWebViewControlsNew"
>

<UserControl.Resources>

<!-- This string converter is used with {Binding} definitions to convert values into
strings where they are then sumbitted to another control property and converted

to the appropriate type as part of the XAML parsing. This is a quick way to
perform a type conversion that isn’t naturally supported, such as Color to Brush. -->

<wvc:ObjectToStringConverter x:Key="stringConverter" />

<ControlTemplate x:Key="SpinnerTemplate" TargetType="sym:DHSymbol">
<Viewbox Stretch="Uniform">

<Grid Width="100" Height="100">
<Ellipse sym:DHSymbol.BaseColorTargetProperty="Fill.Color" Fill="White"

Stroke="Black"/>
<Rectangle Fill="Red" Stroke="Transparent" Width="10"

sym:DHSymbol.BlinkTargetProperty="Opacity"
sym:DHSymbol.RotationType="Normal"
/>

</Grid>
</Viewbox>

</ControlTemplate>

<ControlTemplate x:Key="SpiralTemplate" TargetType="sym:DHSymbol">
<Viewbox Stretch="Uniform" sym:DHSymbol.RotationType="Normal">

<Grid Width="100" Height="100">
<Path sym:DHSymbol.AccentColor1TargetProperty="Stroke.Color"

sym:DHSymbol.BaseColorTargetProperty="Fill.Color" Fill="Transparent"
StrokeThickness="2"
Data="M45,50 A5,5 180 1 1 55,50 M40,50 A7,7 -180 1 0 55,50 M40,50

60

Chapter 6. Creating Custom Symbols

A10,10 180 1 1 60,50 M35,50 A12,12 -180 1 0 60,50 M35,50 A15,15 180
1 1 65,50 M30,50 A17,17 -180 1 0 65,50 M30,50 A20,20 180 1 1 70,50
M25,50 A22,22 -180 1 0 70,50 M25,50 A25,25 180 1 1 75,50 M20,50 A27,
27 -180 1 0 75,50 M20,50 A30,30 180 1 1 80,50 M15,50 A32,32 -180 1 0
80,50 M15,50 A35,35 180 1 1 85,50 M10,50 A37,37 -180 1 0 85,50 M10,50
A40,40 180 1 1 90,50 M5,50 A42,42 -180 1 0 90,50 M5,50 A45,45 180 1 1
95,50 M0,50 A47,47 -180 1 0 95,50"
>

<Path.Stroke>
<LinearGradientBrush StartPoint="0,0" EndPoint="1,1">

<GradientStop Offset="0.0" Color="Green"/>
<GradientStop Offset="0.0" Color="Green"/>
<GradientStop Offset="1.0" Color="Yellow"/>
<GradientStop Offset="1.0" Color="Yellow"/>

</LinearGradientBrush>
</Path.Stroke>

</Path>
</Grid>

</Viewbox>
</ControlTemplate>

<!-- Create a rectangular information block using template binding. -->
<ControlTemplate x:Key="InfoTemplate1" TargetType="sym:DHSymbol">

<Grid>
<Grid.Resources>

<SolidColorBrush x:Key="SymbolBaseColor"
Color="{Binding RelativeSource={RelativeSource TemplatedParent}, Path=BaseColor}"/>

<LinearGradientBrush x:Key="HorizontalAccentGradient"
StartPoint="0 0" EndPoint="1 0">

<GradientStop Offset="0.0"
Color="{Binding RelativeSource={RelativeSource TemplatedParent}, Path=AccentColor1}"/>

<GradientStop Offset="1.0"
Color="{Binding RelativeSource={RelativeSource TemplatedParent}, Path=AccentColor2}"/>

</LinearGradientBrush>
<LinearGradientBrush x:Key="VerticalProgressGradient" StartPoint="0 1" EndPoint="0 0">

<GradientStop Offset="0.0"
Color="{Binding RelativeSource={RelativeSource TemplatedParent}, Path=ProgressColor}"/>

<GradientStop Offset="{Binding RelativeSource={RelativeSource TemplatedParent},
Path=ProgressPercentage}"
Color="{Binding RelativeSource={RelativeSource TemplatedParent}, Path=ProgressColor}"/>

<GradientStop Offset="{Binding RelativeSource={RelativeSource TemplatedParent},
Path=ProgressPercentage}" Color="Transparent"/>

<GradientStop Offset="1.0" Color="Transparent"/>
</LinearGradientBrush>

</Grid.Resources>
<!-- When we use template binding instead of attached properties, WebView cannot tell

that the properties are in use, so it will not correctly display supported behaviours
in its property editor. We create an invisible control that attaches the properties
that we want to show up as supported in the property editor. -->

<Border Background="Transparent"
sym:DHSymbol.AccentColor1TargetProperty="Background.Color"
sym:DHSymbol.AccentColor2TargetProperty="Background.Color"
sym:DHSymbol.BaseColorTargetProperty="Background.Color"
sym:DHSymbol.ProgressColorTargetProperty="Background.Color"
sym:DHSymbol.ConditionColorTargetProperty="Background.Color"
sym:DHSymbol.GlassinessTargetProperty="Opacity"
sym:DHSymbol.ConditionColorOpacityTargetProperty="Opacity"
sym:DHSymbol.RotationType="Normal"

Visibility="Collapsed">
<TextBlock Text=""

sym:DHSymbol.ConditionTextTargetProperty="Text"
sym:DHSymbol.ProgressPercentageTargetProperty="Text"/>

</Border>

<!-- Create a rectangle. TemplateBinding does not support a Converter, but Binding does.-
->

<Rectangle Opacity="{TemplateBinding Glassiness}" Stroke="Black"
Fill="{StaticResource VerticalProgressGradient}"/>

61

Chapter 6. Creating Custom Symbols

<!-- Create some other controls inside the rectangle that bind to other properties
of the symbol host. -->

<StackPanel Margin="1,1,1,1" Opacity="{TemplateBinding ConditionColorOpacity}">
<CheckBox Content="{TemplateBinding ConditionText}"

IsChecked="{TemplateBinding IsRotating}" IsEnabled="False"/>
<StackPanel Orientation="Horizontal"

Background="{StaticResource HorizontalAccentGradient}">
<TextBlock Text="Progress: " Margin="0,0,5,0"

Foreground="{StaticResource SymbolBaseColor}"/>
<TextBlock Foreground="{StaticResource SymbolBaseColor}"

Text="{Binding RelativeSource={RelativeSource TemplatedParent},
Path=ProgressPercentage, Converter={StaticResource stringConverter}}"/>

</StackPanel>
</StackPanel>

</Grid>
</ControlTemplate>

<!-- Create the same rectangular information block using attached properties. -->
<ControlTemplate x:Key="InfoTemplate2" TargetType="sym:DHSymbol">

<Grid>
<Grid.Resources>

<LinearGradientBrush x:Key="HorizontalAccentGradient" StartPoint="0 0" EndPoint="1 0">
<GradientStop Offset="0.0" Color="White"/>
<GradientStop Offset="1.0" Color="Black"/>

</LinearGradientBrush>
<LinearGradientBrush x:Key="VerticalProgressGradient" StartPoint="0 1" EndPoint="0 0">

<GradientStop Offset="0.0" Color="White"/>
<GradientStop Offset="0.0" Color="White"/>
<GradientStop Offset="1.0" Color="Transparent"/>
<GradientStop Offset="1.0" Color="Transparent"/>

</LinearGradientBrush>
</Grid.Resources>

<!-- Create a rectangle. TemplateBinding does not support a Converter, but Binding does.-
->

<Rectangle sym:DHSymbol.GlassinessTargetProperty="Opacity" Stroke="Black"
Fill="{StaticResource VerticalProgressGradient}"

sym:DHSymbol.ProgressPercentageTargetProperty="Fill.(LinearGradientBrush.GradientStops)
[1].Offset,Fill.(LinearGradientBrush.GradientStops)[2].Offset"

sym:DHSymbol.ProgressColorTargetProperty="Fill.(LinearGradientBrush.GradientStops)
[0].Color,Fill.(LinearGradientBrush.GradientStops)[1].Color"

/>

<!-- Create some other controls inside the rectangle that bind to other properties
of the symbol host. Note that the condition text will only show up if the

"Show Condition Text on Symbol" checkbox is checked in the property category
"Advanced Configuration: Condition Color and Text". -->

<StackPanel Margin="1,1,1,1" sym:DHSymbol.ConditionColorOpacityTargetProperty="Opacity">

<!-- We have no way to reach IsRotating through an attached property. We must use
TemplateBinding for that. -->

<CheckBox IsChecked="{TemplateBinding IsRotating}" IsEnabled="False"
sym:DHSymbol.ConditionTextTargetProperty="Content"/>

<StackPanel Orientation="Horizontal"
Background="{StaticResource HorizontalAccentGradient}"

sym:DHSymbol.AccentColor1TargetProperty="Background.(LinearGradientBrush.GradientStops)
[0].Color"

sym:DHSymbol.AccentColor2TargetProperty="Background.(LinearGradientBrush.GradientStops)
[1].Color"

>
<TextBlock Text="Progress: "

Margin="0,0,5,0" sym:DHSymbol.BaseColorTargetProperty="Foreground.Color"
Foreground="Black"/>

<TextBlock sym:DHSymbol.BaseColorTargetProperty="Foreground.Color" Foreground="Black"
sym:DHSymbol.ProgressPercentageTargetProperty="Text"/>

62

Chapter 6. Creating Custom Symbols

</StackPanel>
</StackPanel>

</Grid>
</ControlTemplate>

<Style x:Key="SpinnerStyle" TargetType="sym:DHSymbol">
<Setter Property="StyleName" Value="Spinner" />
<Setter Property="Template" Value="{StaticResource SpinnerTemplate}" />

</Style>

<Style x:Key="SpiralStyle" TargetType="sym:DHSymbol">
<Setter Property="StyleName" Value="Spiral" />
<Setter Property="Template" Value="{StaticResource SpiralTemplate}" />

</Style>

<Style x:Key="Info1Style" TargetType="sym:DHSymbol">
<Setter Property="StyleName" Value="InfoTemplated" />
<Setter Property="Template" Value="{StaticResource InfoTemplate1}" />

</Style>

<Style x:Key="Info2Style" TargetType="sym:DHSymbol">
<Setter Property="StyleName" Value="InfoAttached" />
<Setter Property="Template" Value="{StaticResource InfoTemplate2}" />

</Style>

</UserControl.Resources>

<sym:DHSymbol Style="{StaticResource SpinnerStyle}" />

</UserControl>

63

I. Controls

Table of Contents
Advanced Check Box...66

Alarm List ...67

Boolean Converter...68

Calendar ...69

Circular Gauge 1..70

Circular Gauge 2..71

Color Selector...72

Color Selector...73

ComboBox..74

Comparator ..75

Condition Selector...76

Control Panel..77

Filtered Data Table..78

Hi/Low Indicator ...79

Horizontal Linear Gauge ..80

Hyperlink Button ...81

Hyperlink Image ..82

Hyperlink Text ...83

Image...84

Left 90 Degree Gauge..85

List Box ...86

Media Player ..87

Numeric Gauge..88

One Input Calculator ..89

Point Data Table...90

Polynomial Calculator...91

Progress Bar...92

Radio Button ..93

Range Mapper..94

Rising/Falling Indicator ..95

Semi-circular Gauge..96

Series Chart..97

Shining Light ..98

Simple Button...99

Simple Check Box..100

Simple Ellipse...101

Simple Path...102

Simple Radial Gauge...103

Simple Rectangle..104

Slider ...105

Symbol ..106

System Information ...107

Text Entry Field ...108

Text Label ...109

Thermometer..110

Three Indicator Radial Gauge..111

Three Point Slider..112

Timer ...113

Toggle Button...114

Top Sweep Gauge...115

Trend ...116

Two Input Calculator ..117

Vertical Linear Gauge ...118

Advanced Check Box
Advanced Check Box — toggles between two states, each with advanced properties.

Description

Changes between two states: checked and unchecked. Each state has additional user properties: a
numeric value, a string, a DateTime, and a color.

66

Alarm List
Alarm List — a table that displays alarms and events.

Description

The Alarm control lets you view the most recent alarms at the top and events at the bottom. The alarms
data comes from a data domain in the Cogent DataHub that has been configured for OPC Alarms and
Events (OPC A&E).

Use

TheSelect Columns button for each section lets you choose which columns to display. TheDefault
Sort button for each section reverts the sort order back to the default setting. TheAck button allows you
to acknowledge and remove all the alarms, while the buttons in that column let you acknowledge and
remove individual alarms.

67

Boolean Converter
Boolean Converter — a program block that selects between two states.

Description

Selects an output value, an output DateTime and an output color based on an input boolean value
(True/False). This is a design-time control and is not visible in run mode.

68

Calendar
Calendar — displays a calendar.

Description

Displays a calendar, enabling the user to select a date.

69

Circular Gauge 1
Circular Gauge 1 — simple circular gauge.

Description

Used to graphically represent real-time data. In its default configuration, this gauge is a simple circle
with a needle. With Edit Mode set to Drag, the user can interact with the gauge in run mode. This is a
highly-configurable control. Properties like value, value range, editing ability, and angle range are all
modifiable.

70

Circular Gauge 2
Circular Gauge 2 — circular gauge with varying value ranges and an indicator light.

Description

Used to graphically represent real-time data. This gauge has an indicator light that shows whether the
needle is in the optimal range, below optimal, or above optimal. This gauge does not allow user
interaction in run mode. All ranges, sizes, values, and colors can be changed.

71

Color Selector
Color Selector — a palette used to store specific colors and to access application theme colors.

Description

Used to set a variety of colors as Custom Colors and to access application Theme Colors. These colors
can then be used as binding sources for other controls on the page. This makes it easy to create and
maintain custom color themes. This is a design-time control and is not visible in run mode.

72

Color Selector
Color Selector — a program block that uses ARGB values to produce a color.

Description

Uses four numeric inputs (alpha, red, green, blue), each in the range 0-255, to build a color. Alternatively,
references a color from a Color Palette. This is a design-time control and is not visible in run mode.

73

ComboBox
ComboBox— a simple dropdown list used for item selection.

Description

Enables the user to select from among available items. The list of items can be configured as a
comma-separated list, or bound to the result of an expression.

74

Comparator
Comparator — a program block that compares two values and outputs the results.

Description

Compares two inputs (DataPoints or values) and produces various output values. Optionally, accepts a
numeric tolerance to stabilize comparisons based on rapidly-changing inputs. This is a design-time
control and is not visible in run mode.

75

Condition Selector
Condition Selector — a program block used to select among five different states.

Description

Selects output text and values based on a condition input value. The input can be treated as a boolean to
produce a two-state result, or can be compared to each state’s value range. If states have overlapping
ranges, the first match is used. Each state can be associated with text, colors and values. Typically, these
configurable state settings feed other controls and processes. This is a design-time control and is not
visible in run mode.

76

Control Panel
Control Panel — supports Run Mode option changes.

Description

Enables the user to change various options while in Run Mode.

77

Filtered Data Table
Filtered Data Table — row/column results from a database query.

Description

Presents the result of a row/column data set in a table. Columns can be reordered and pinned. Rows can
be filtered and grouped.

78

Hi/Low Indicator
Hi/Low Indicator — changes color to indicate high and low values.

Description

Responds to real-time data updates by changing color. The color corresponds to a matching value range.
Five ranges can be configured: Low Low, Low, Normal, High, and High High. It has modifiable text,
limits, colors, and transition time.

79

Horizontal Linear Gauge
Horizontal Linear Gauge — a linear horizontal gauge with a slider,

Description

Used to graphically represent real-time data. In its default configuration, this linear gauge is oriented
horizonally. With Edit Mode set to Drag, the user can interact with the gauge in run mode. This is a
highly-configurable control. Properties like the value, value range, editing ability, and angle range are all
modifiable.

80

Hyperlink Button
Hyperlink Button — acts as a hyperlink to another page or a URL.

Description

Uses a button to link the user to another page or to an external URL. This control is often used to provide
navigation support among a collection of related pages.

81

Hyperlink Image
Hyperlink Image — acts as a hyperlink to another page or a URL.

Description

Uses an image to link the user to another webView page or to an external URL. This control is often used
to provide navigation support among a collection of related pages.

82

Hyperlink Text
Hyperlink Text — acts as a hyperlink to another page or a URL.

Description

Uses a text label to link the user to another page or to an external URL. This control is often used to
provide navigation support among a collection of related pages.

83

Image
Image — an image file container.

Description

Displays an image located in the images file directory on the web server.

84

Left 90 Degree Gauge
Left 90 Degree Gauge — a quarter-circle gauge.

Description

Used to graphically represent real-time data. In its default configuration, this gauge is a quarter-circle
with a needle. With Edit Mode set to Drag, the user can interact with the gauge in run mode. This is a
highly-configurable control. Properties like the value, value range, editing abilitiy, and angle range are all
modifiable.

85

List Box
List Box — a simple list used for item selection.

Description

Enables the user to select from among available items. The list of items can be configured as a
comma-separated list, or bound to the result of an expression.

86

Media Player
Media Player — plays audio and videos.

Description

Displays media located in the media file directory on the web server. Typical playback controls are
available. Media can be configured to auto play and auto repeat. Audio controls are also available.

87

Numeric Gauge
Numeric Gauge — a digital gauge.

Description

A tutorial-oriented gauge that illustrates how to build custom controls. Developed using RadControls by
Telerik Corporation.

88

One Input Calculator
One Input Calculator — a program block that performs calculations on a single input value.

Description

Calculates a variety of values based on a single input. Calculations include Boolean and Duration
conversions, mathematical operations (Abs, Sign, Ceiling, Floor, Exponent, Log, Square, SquareRoot),
and trigonometric functions (Sin, Cos, Tan, etc). This is a design-time control and is not visible in run
mode.

89

Point Data Table
Point Data Table — a table consisting of all available data points.

Description

Presents all available data points in the DataHub in a table format. The columns available are Point
Name, Display Name, Value, Timestamp, Quality Name, and Quality.

90

Polynomial Calculator
Polynomial Calculator — a program block that calculates the result of a polynomial expression.

Description

Calculates the result of a polynomial expression (up to 5th order). This is a design-time control and is not
visible in run mode.

91

Progress Bar
Progress Bar — an expanding/shrinking progress bar.

Description

Used to graphically represent real-time data. This control shows the input value by expanding or
shrinking in size. The bar’s orientation, range, and size can all be modified. The progress bar also
accommodates color change based on five ranges: Low Low, Low, Normal, High, and High High.

92

Radio Button
Radio Button — a button that offers a choice of mutually exclusive options.

Description

Used in groups where only one of the buttons in the group can be checked at a time (i.e., mutually
exclusive). The Control Value for each radio button in a group should be bound to a single source (e.g.,
data point), which will be treated as the group’s input. The radio button whose value matches the Control
Value will be selected.

93

Range Mapper
Range Mapper — a program block that maps an input to an output, using ranges.

Description

Maps a single input (DataPoint or value) to a value in a corresponding output range. Ranges are specified
with an input minimum and maximum, and an output minimum and maximum. The input can be
clamped for limited, linear interpolation, or unclamped for extrapolation. This is a design-time control
and is not visible in run mode.

94

Rising/Falling Indicator
Rising/Falling Indicator — a display that changes according to the rise or fall of a value.

Description

Responds to real-time data updates by changing color. The color reflects how quickly the input value is
rising or falling. It has modifiable text, colors, transition time, and steady time.

95

Semi-circular Gauge
Semi-circular Gauge — a semi-circular gauge.

Description

Used to graphically represent real-time data. In its default configuration, this gauge is a semi-circle with
a needle. With Edit Mode set to Drag, the user can interact with the gauge in run mode. This is a
highly-configurable control. Properties like the value, value range, editing abilitiy, and angle range are all
modifiable.

96

Series Chart
Series Chart — displays data in chart format - bars, lines, pie, etc.

Description

Provides a number of different chart formats for displaying related data values.

97

Shining Light
Shining Light — an indicator light that can flash and change color.

Description

Displays a light which responds to boolean triggers and color changes. This control is typically used for
notification. Boolean inputs control whether the light is on or flashing. The light color can be set with a
single input, or configured using gradient colors and offsets. Duration, auto reverse, and repeat behavior
are also modifiable.

98

Simple Button
Simple Button — a simple, clickable button.

Description

Provides a simple way to attach script code to a button click event.

99

Simple Check Box
Simple Check Box — toggles between two states.

Description

Changes between two states: checked and unchecked. Typically, a DataPoint is bound to the input value
and used to toggle between states. Each state has an associated value which can be used to feed another
control or process.

100

Simple Ellipse
Simple Ellipse — a simple ellipse with editable appearance and properties.

Description

A simple ellipse with modifiable fill color, stroke color, and stroke thickness.

101

Simple Path
Simple Path — a path that can create any shape.

Description

A simple path that can be used to create any shape through mapping out each point using XAML path
notation. Fill color, stroke color, canvas size, stroke thickness, stroke caps, stroke joins, and stroke miter
limit are all modifiable. Please see the XAML path notation for Path Markup Syntax in the online
Microsoft reference library for more information.

102

Simple Radial Gauge
Simple Radial Gauge — a simple, tutorial-oriented circular gauge.

Description

A simple, tutorial-oriented circular gauge that illustrates how to build custom controls. This customizable
radial gauge has a scale and a needle. Developed using RadControls by Telerik Corporation.

103

Simple Rectangle
Simple Rectangle — a simple rectangle with editable appearance and properties.

Description

A simple rectangle with modifiable fill color, stroke color, stroke thickness and corner radius.

104

Slider
Slider — a scale with an adjustable slider to control or view values.

Description

Enables the user to select a value along a configurable scale by dragging the slider. The slider can be
configured either horizontally or vertically. Axis labels can be displayed before or after the scale.

105

Symbol
Symbol — a container for over 4000 symbols.

Description

A common container for over 4000 industry standard symbols. Symbols can be configured to blink,
rotate and show progress. Output states are selected based on a condition input value. The input can be
treated as a boolean to produce a two-state result, or can be compared to each state’s value range. If
states have overlapping ranges, the first match is used. Each state is associated with a value range, color,
text, blinking, blink rate, rotating, and rotation rate. Symbols can be automatically updated when new
versions of the symbol are available.

106

System Information
System Information — a program block that can access system, user, and page information.

Description

Accesses information about the system and page. Outputs include local time, user, page name, file name,
description, and owner. Typically, these values are used for page titles and footers. This is a design-time
control and is not visible in run mode.

107

Text Entry Field
Text Entry Field — a simple textbox used for data entry.

Description

Enables the user to input a text string or numeric value while in run mode.

Use

Values, including dates and times, can be formatted using common FormatString syntax. For example, to
format a numeric value to two decimal places, specify a format of0.00 . January 14, 2011 will be
displayed as ’14-Jan-11 ’ when formatted as ’dd-MMM-yy ’.

108

Text Label
Text Label — a textual display with no entry field.

Description

A text label that displays text, but does not have an entry field. Color is modifiable.

109

Thermometer
Thermometer — a tutorial-oriented linear gauge.

Description

A tutorial-oriented linear gauge that illustrates how to build custom controls. This highly customizable
linear gauge has two linear scales, adjustable offsets and the ability to measure in either Celsius or
Farenheit. Developed using RadControls by Telerik Corporation.

110

Three Indicator Radial Gauge
Three Indicator Radial Gauge — a tutorial-oriented, multi-indicator, circular gauge.

Description

A tutorial-oriented, multi-indicator, circular gauge that illustrates how to build custom controls. This
highly customizable radial gauge has one scale, three indicators, and a three-part range list. Developed
using RadControls by Telerik Corporation.

111

Three Point Slider
Three Point Slider — a horizontal gauge that shows up to three data points on a slider.

Description

Used to graphically represent real-time data. This slider shows up to three values and has optimal, below
optimal, and above optimal ranges. It has a slider for the primary value, which the user can drag in run
mode, and a progress bar for each of the other values. It also has an error indicator which flashes when
the primary value is outside the optimal range.

112

Timer
Timer — a program block executes that provides timer and counter behavior.

Description

Provides timer behavior to control process execution. Counter functions include Increment, Decrement
and Toggle. Supports common repeat behavior. This is a design-time control and is not visible in run
mode.

113

Toggle Button
Toggle Button — a push button with an optional two-state toggle.

Description

Has a normal and a pushed state that can have toggle behavior or a press-and-release behavior. Each state
has associated text, text color, and a numeric value.

114

Top Sweep Gauge
Top Sweep Gauge — a horizontal curved gauge.

Description

Used to graphically represent real-time data. In its default configuration, this gauge is a curved
upper-portion of a circle with a needle. With Edit Mode set to Drag, the user can interact with the gauge
in run mode. This is a highly-configurable control. Properties like the value, value range, editing abilitiy,
and angle range are all modifiable.

115

Trend
Trend — two chart controls can track up to 3 or 8 data points.

Description

These two charts (3-pen and 8-pen) allow a user to assign values and data points to three or eight trend
lines. They track the values and variations of each point as they change over time. These Trend Charts
also leverage the power of the Data Historian.

116

Two Input Calculator
Two Input Calculator — a program block that performs calculations on two input values.

Description

Calculates various mathematical and logical output values using two inputs (DataPoints or values).
Functions include: Sum, Difference, Product, Quotient, Modulo, Minimum, Maximum, Round, etc. This
is a design-time control and is not visible in run mode.

117

Vertical Linear Gauge
Vertical Linear Gauge — a linear vertical gauge with a slider.

Description

Used to graphically represent real-time data. In its default configuration, this linear gauge is oriented
vertically. With Edit Mode set to Drag, the user can interact with the gauge in run mode. This is a
highly-configurable control. Properties like the value, value range, editing abilitiy, and angle range are all
modifiable.

118

Index

A
Advanced Check Box,66

B
Boolean Converter,68

C
Calendar,69

Circular Gauge 1,70

Circular Gauge 2,71

Color Selector,72, 73

ComboBox,74

Comparator,75

Condition Selector,76

Configuration

DataHub,2

Internet Explorer,3

Control Panel,77

controls,15

F
Filtered Data Table,78

H
Hi/Low Indicator,79

Horizontal Linear Gauge,80

Hyperlink Button,81

Hyperlink Image,82

Hyperlink Text,83

I
Image,84

Internet Explorer

configuration,3

L
Left 90 Degree Gauge,85

List Box, 86

M
Media Player,87

N
Numeric Gauge,88

O
One Input Calculator,89

P
pages,14

Point Data Table,90

Polynomial Calculator,91

Progress Bar,92

Q
quick start,6

R
Radio Button,93

Range Mapper,94

Rising/Falling Indicator,95

S
Semi-circular Gauge,96

Series Chart,97

Shining Light,98

Simple Button,99

Simple Ellipse,101

Simple Path,102

Simple Radial Gauge,103

Simple Rectangle,104

Slider,105

Symbol,106

System Information,107

T
Text Entry Field,108

Text Label,109

Thermometer,110

Three Indicator Radial Gauge Indicator Radial

Gauge,111

Three Point Slider,112

Timer,113

Toggle Button,114

Top Sweep Gauge,115

Trend,116

Two Input Calculator,117

119

U
user access,12

V
Vertical Linear Gauge,118

120

Colophon
This book was produced by Cogent Real-Time Systems, Inc. from a single-source group of SGML files.
Gnu Emacs was used to edit the SGML files. The DocBook DTD and related DSSSL stylesheets were
used to transform the SGML source into HTML, PDF, and QNX Helpviewer output formats. This
processing was accomplished with the help of OpenJade, JadeTeX, Tex, and various scripts and
makefiles. Details of the process are described in our book: Preparing Cogent Documentation, which is
published on-line at
http://developers.cogentrts.com/cogent/prepdoc/book1.html .

Text and illustrations by Bob McIlvride and Paul Benford.

121

	
	DataHub® WebView
	Table of Contents
	List of Tables
	Chapter 1. Introduction
	1.1. System Requirements
	1.2. Configuration
	1.2.1. DataHub Configuration
	1.2.2. For Internet Explorer Users

	1.3. Advantages of DataHub WebView
	Chapter 2. Working With DataHub WebView
	2.1. Quick Start
	2.1.1. Start the Editor
	2.1.2. Add and Modify a Control
	2.1.3. Bind a Control to a Data Point
	2.1.4. Save and View a Page
	2.1.5. Add a Symbol
	2.1.6. Bind a Control to another Control
	2.1.7. Set Symbol States

	2.2. User Access
	2.2.1. Configure User Permissions
	2.2.2. Log in Remotely

	2.3. Pages
	2.3.1. Create, Open, Save, and Delete Pages
	2.3.2. Page Size
	2.3.3. The Grid
	2.3.4. View and Zoom
	2.3.5. Edit and Run Modes

	2.4. Controls
	2.4.1. Add, Copy, Resize, and Move Controls
	2.4.2. Grouping Controls
	2.4.3. Control Properties
	2.4.4. Common Properties
	2.4.5. Controls Listed by Category

	2.5. Property Binding
	2.5.1. DataHub Point Binding
	2.5.2. Point Attribute Selection
	2.5.3. Simple Binding Property Picker
	2.5.4. Simple Binding Copy and Paste

	2.6. Adding Images
	Chapter 3. DataHub WebView Scripting
	Chapter 4. Dynamic Binding
	4.1. Dynamic Point Binding
	4.1.1. Combo Box control
	4.1.2. List Box control

	4.2. Dynamic Control and Symbol Binding
	4.2.1. Control Binding
	4.2.2. Symbol Binding

	4.3. Creating a Template Page
	Chapter 5. Customizing DataHub WebView
	5.1. Simple Branding
	5.1.1. Creating a custom login page
	5.1.2. Specifying text, icon, and URL targets
	5.1.3. Adding a favorite icon
	5.1.4. Testing the results

	5.2. Initialization Parameters
	5.2.1. Accessing Parameters from the DataHub Properties Window
	5.2.2. Adding Custom Parameters
	5.2.3. Specifying Parameters in the Page URL
	5.2.4. Parameter List

	5.3. Adding Controls
	5.3.1. Preparing the Visual Studio project
	5.3.2. The XAML file to reference the control
	5.3.3. The XML file for public properties and behavior of the control
	5.3.4. Testing the results

	Chapter 6. Creating Custom Symbols
	6.1. Creating Your Symbol Library
	6.1.1. Create a symbol map
	6.1.2. Create a symbol XAML file
	6.1.3. Deploy your symbol set

	6.2. Symbol Animation
	6.2.1. Animation attributes
	6.2.2. Animation types
	6.2.3. Conditional animation

	6.3. Scaling and Other Considerations
	6.3.1. Scaling
	6.3.2. Binding element properties to the symbol host control
	6.3.3. Limitations on XAML code within symbols
	6.3.4. Compressing symbol files
	6.3.5. Best Practices

	6.4. Complete Example
	I. Controls
	Table of Contents
	Advanced Check Box
	Description

	Alarm List
	Description
	Use

	Boolean Converter
	Description

	Calendar
	Description

	Circular Gauge 1
	Description

	Circular Gauge 2
	Description

	Color Selector
	Description

	Color Selector
	Description

	ComboBox
	Description

	Comparator
	Description

	Condition Selector
	Description

	Control Panel
	Description

	Filtered Data Table
	Description

	Hi/Low Indicator
	Description

	Horizontal Linear Gauge
	Description

	Hyperlink Button
	Description

	Hyperlink Image
	Description

	Hyperlink Text
	Description

	Image
	Description

	Left 90 Degree Gauge
	Description

	List Box
	Description

	Media Player
	Description

	Numeric Gauge
	Description

	One Input Calculator
	Description

	Point Data Table
	Description

	Polynomial Calculator
	Description

	Progress Bar
	Description

	Radio Button
	Description

	Range Mapper
	Description

	Rising/Falling Indicator
	Description

	Semicircular Gauge
	Description

	Series Chart
	Description

	Shining Light
	Description

	Simple Button
	Description

	Simple Check Box
	Description

	Simple Ellipse
	Description

	Simple Path
	Description

	Simple Radial Gauge
	Description

	Simple Rectangle
	Description

	Slider
	Description

	Symbol
	Description

	System Information
	Description

	Text Entry Field
	Description
	Use

	Text Label
	Description

	Thermometer
	Description

	Three Indicator Radial Gauge
	Description

	Three Point Slider
	Description

	Timer
	Description

	Toggle Button
	Description

	Top Sweep Gauge
	Description

	Trend
	Description

	Two Input Calculator
	Description

	Vertical Linear Gauge
	Description

	Index
	A
	B
	C
	F
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

	Colophon

