6_; Logent

Real-Time Systems Inc.

Documentation Library

Gamma™ Reference Volume 2

Version 7.2

Cogent Real-Time Systems, Inc.

August 15, 2012

Gamma™ Reference Volume 2: Version 7.2

A dynamically-typed interpreted programming language specifically designed to allow rapid development of
control and user interface applications. Gamma has a syntax similar to C and C++, but has a range of built-in
features that make it a far better language for developing sophisticated real-time systems.

Published August 15, 2012
Cogent Real-Time Systems, Inc.

162 Guelph Street, Suite 253
Georgetown, Ontario
Canada, L7G 5X7

Toll Free: 1 (888) 628-2028
Tel: 1 (905) 702-7851
Fax: 1 (905) 702-7850

Information Email: info@cogent.ca
Tech Support Email: support@cogent.ca
Web Site: www.cogent.ca

Copyright © 1995-2011 by Cogent Real-Time Systems, Inc.

Revision History

Revision 7.2-1 September 2007
Updated DataHub-related functions for 6.4 release of the DataHub.
Revision 6.2-1 February 2005
Simplified TCP connectivity.
Revision 4.1-1 August 2004
Compatible with Cogent DataHub Version 5.0.
Revision 4.0-2 October 2001
New functions in Input/Output, OSAPIs, Date, and Dynamic Loading reference sections.
Revision 4.0-1 September 2001
Source code compatible across QNX 4, QNX 6, and Linux.
Revision 3.2-1 August 2000
Renamed "Gamma", changed function syntax.
Revision 3.0 October 1999
General reorganization and update of Guide and Reference, released in HTML and QNX Helpviewer formats.
Revision 2.1 June 1999
o Converted from Word97 to DocBook SGML.
Revision 2.0 June 1997
Initial release of hardcopy documentation.

Copyright, trademark, and software license information.

Copyright Notice

© 1995-2011 Cogent Real-Time Systems, Inc. All rights reserved.

Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written consent of Cogent Real-Time Systems, Inc.

Cogent Real-Time Systems, Inc. assumes no responsibility for any errors or omissions, nor do we assume liability for damages resulting from the
use of the information contained in this document.

Trademark Notice

Cascade DataHub, Cascade Connect, Cascade DataSim, Connect Server, Cascade Historian, Cascade TextLogger, Cascade NameServer, Cascade
QueueServer, RightSeat, SCADALisp and Gamma are trademarks of Cogent Real-Time Systems, Inc.
All other company and product names are trademarks or registered trademarks of their respective holders.

END-USER LICENSE AGREEMENT FOR COGENT SOFTWARE

IMPORTANT - READ CAREFULLY: This End-User License Agreement ("EULA") is a legal agreement between you (either an individual or a
single entity) and Cogent Real-Time Systems Inc. ("Cogent") of 162 Guelph Street, Suite 253, Georgetown, Ontario, L7G 5X7, Canada (Tel:
905-702-7851, Fax: 905-702-7850), from whom you acquired the Cogent software product(s) ("SOFTWARE PRODUCT" or "SOFTWARE"),
either directly from Cogent or through one of Cogent’s authorized resellers.

The SOFTWARE PRODUCT includes computer software, any associated media, any printed materials, and any "online" or electronic
documentation. By installing, copying or otherwise using the SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA. If you
do not agree with the terms of this EULA, Cogent is unwilling to license the SOFTWARE PRODUCT to you. In such event, you may not use or
copy the SOFTWARE PRODUCT, and you should promptly contact Cogent for instructions on return of the unused product(s) for a refund.

SOFTWARE PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by copyright laws and copyright treaties, as well as other intellectual property laws and treaties. The
SOFTWARE PRODUCT is licensed, not sold.

1. EVALUATION USE: This software is distributed as "Free for Evaluation”, and with a per-use royalty for Commercial Use, where "Free for
Evaluation" means to evaluate Cogent’s software and to do exploratory development and "proof of concept" prototyping of software
applications, and where "Free for Evaluation" specifically excludes without limitation:

i. use of the SOFTWARE PRODUCT in a business setting or in support of a business activity,

ii. development of a system to be used for commercial gain, whether to be sold or to be used within a company, partnership, organization
or entity that transacts commercial business,

iii. the use of the SOFTWARE PRODUCT in a commercial business for any reason other than exploratory development and "proof of
concept" prototyping, even if the SOFTWARE PRODUCT is not incorporated into an application or product to be sold,

iv. the use of the SOFTWARE PRODUCT to enable the use of another application that was developed with the SOFTWARE PRODUCT,

v. inclusion of the SOFTWARE PRODUCT in a collection of software, whether that collection is sold, given away, or made part of a
larger collection.

vi. inclusion of the SOFTWARE PRODUCT in another product, whether or not that other product is sold, given away, or made part of a
larger product.

2.COMMERCIAL USE: COMMERCIAL USE is any use that is not specifically defined in this license as EVALUATION USE.

3. GRANT OF LICENSE: This EULA covers both COMMERCIAL and EVALUATION USE of the SOFTWARE PRODUCT. Either clause
(A) or (B) of this section will apply to you, depending on your actual use of the SOFTWARE PRODUCT. If you have not purchased a
license of the SOFTWARE PRODUCT from Cogent or one of Cogent’s authorized resellers, then you may not use the product for
COMMERCIAL USE.

A. GRANT OF LICENSE (EVALUATION USE): This EULA grants you the following non-exclusive rights when used for
EVALUATION purposes:

Software: You may use the SOFTWARE PRODUCT on any number of computers, either stand-alone, or on a network, so long as
every use of the SOFTWARE PRODUCT is for EVALUATION USE. You may reproduce the SOFTWARE PRODUCT, but only as
reasonably required to install and use it in accordance with this LICENSE or to follow your normal back-up practices.

Subject to the license expressly granted above, you obtain no right, title or interest in or to the SOFTWARE PRODUCT or related
documentation, including but not limited to any copyright, patent, trade secret or other proprietary rights therein. All whole or partial
copies of the SOFTWARE PRODUCT remain property of Cogent and will be considered part of the SOFTWARE PRODUCT for the
purpose of this EULA.

Unless expressly permitted under this EULA or otherwise by Cogent, you will not:

i. use, reproduce, modify, adapt, translate or otherwise transmit the SOFTWARE PRODUCT or related components, in whole or in
part;

i. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;
iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;

v. use a multi-processor version of the SOFTWARE PRODUCT in a network larger than that for which you have paid the
corresponding multi-processor fees;

vi. decompile, disassemble or otherwise attempt or assist others to reverse engineer the SOFTWARE PRODUCT,;

Vii.

circumvent, disable or otherwise render ineffective any demonstration time-outs, locks on functionality or any other restrictions
on use in the SOFTWARE PRODUCT;

viii. circumvent, disable or otherwise render ineffective any license verification mechanisms used by the SOFTWARE PRODUCT;

ix. use the SOFTWARE PRODUCT in any application that is intended to create or could, in the event of malfunction or failure,
cause personal injury or property damage; or

x. make use of the SOFTWARE PRODUCT for commercial gain, whether directly, indirectly or incidentally.

B. GRANT OF LICENSE (COMMERCIAL USE): This EULA grants you the following non-exclusive rights when used for
COMMERCIAL purposes:

Software: You may use the SOFTWARE PRODUCT on one computer, or if the SOFTWARE PRODUCT is a multi-processor version -
on one node of a network, either: (i) as a development systems for the purpose of creating value-added software applications in
accordance with related Cogent documentation; or (ii) as a single run-time copy for use as an integral part of such an application. This
includes reproduction and configuration of the SOFTWARE PRODUCT, but only as reasonably required to install and use it in
association with your licensed processor or to follow your normal back-up practices.

Storage/Network Use: You may also store or install a copy of the SOFTWARE PRODUCT on one computer to allow your other
computers to use the SOFTWARE PRODUCT over an internal network, and distribute the SOFTWARE PRODUCT to your other
computers over an internal network. However, you must acquire and dedicate a license for the SOFTWARE PRODUCT for each
computer on which the SOFTWARE PRODUCT is used or to which it is distributed. A license for the SOFTWARE PRODUCT may
not be shared or used concurrently on different computers.

Subject to the license expressly granted above, you obtain no right, title or interest in or to the SOFTWARE PRODUCT or related
documentation, including but not limited to any copyright, patent, trade secret or other proprietary rights therein. All whole or partial
copies of the SOFTWARE PRODUCT remain property of Cogent and will be considered part of the SOFTWARE PRODUCT for the
purpose of this EULA.

Unless expressly permitted under this EULA or otherwise by Cogent, you will not:

i. use, reproduce, modify, adapt, translate or otherwise transmit the SOFTWARE PRODUCT or related components, in whole or in
part;

i. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;

iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;

<

. use a multi-processor version of the SOFTWARE PRODUCT in a network larger than that for which you have paid the
corresponding multi-processor fees;

vi. decompile, disassemble or otherwise attempt or assist others to reverse engineer the SOFTWARE PRODUCT,;

Vil.

circumvent, disable or otherwise render ineffective any demonstration time-outs, locks on functionality or any other restrictions
on use in the SOFTWARE PRODUCT;

viii. circumvent, disable or otherwise render ineffective any license verification mechanisms used by the SOFTWARE PRODUCT, or

ix. use the SOFTWARE PRODUCT in any application that is intended to create or could, in the event of malfunction or failure,
cause personal injury or property damage.

4. WARRANTY: Cogent cannot warrant that the SOFTWARE PRODUCT will function in accordance with related documentation in every
combination of hardware platform, software environment and SOFTWARE PRODUCT configuration. You acknowledge that software bugs
are likely to be identified when the SOFTWARE PRODUCT is used in your particular application. You therefore accept the responsibility of
satisfying yourself that the SOFTWARE PRODUCT is suitable for your intended use. This includes conducting exhaustive testing of your
application prior to its initial release and prior to the release of any related hardware or software modifications or enhancements.

Subject to documentation errors, Cogent warrants to you for a period of ninety (90) days from acceptance of this EULA (as provided above)
that the SOFTWARE PRODUCT as delivered by Cogent is capable of performing the functions described in related Cogent user
documentation when used on appropriate hardware. Cogent also warrants that any enclosed disk(s) will be free from defects in material and
workmanship under normal use for a period of ninety (90) days from acceptance of this EULA. Cogent is not responsible for disk defects
that result from accident or abuse. Your sole remedy for any breach of warranty will be either: i) terminate this EULA and receive a refund

of any amount paid to Cogent for the SOFTWARE PRODUCT, or ii) to receive a replacement disk.

5.LIMITATIONS: Except as expressly warranted above, the SOFTWARE PRODUCT, any related documentation and disks are provided "as
is" without other warranties or conditions of any kind, including but not limited to implied warranties of merchantability, fitness for a
particular purpose and non-infringement. You assume the entire risk as to the results and performance of the SOFTWARE PRODUCT.
Nothing stated in this EULA will imply that the operation of the SOFTWARE PRODUCT will be uninterrupted or error free or that any
errors will be corrected. Other written or oral statements by Cogent, its representatives or others do not constitute warranties or conditions of
Cogent.

In no event will Cogent (or its officers, employees, suppliers, distributors, or licensors: collectively “Its Representatives") be liable to you for
any indirect, incidental, special or consequential damages whatsoever, including but not limited to loss of revenue, lost or damaged data or
other commercial or economic loss, arising out of any breach of this EULA, any use or inability to use the SOFTWARE PRODUCT or any
claim made by a third party, even if Cogent (or Its Representatives) have been advised of the possibility of such damage or claim. In no event
will the aggregate liability of Cogent (or that of Its Representatives) for any damages or claim, whether in contract, tort or otherwise, exceed
the amount paid by you for the SOFTWARE PRODUCT.

These limitations shall apply whether or not the alleged breach or default is a breach of a fundamental condition or term, or a fundamental
breach. Some jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, or certain limitations
of implied warranties. Therefore the above limitation may not apply to you.

6. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS:

Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be separated for use
on more than one computer.

Termination. Without prejudice to any other rights, Cogent may terminate this EULA if you fail to comply with the terms and conditions of
this EULA. In such an event, you must destroy all copies of the SOFTWARE PRODUCT and all of its component parts.

7.UPGRADES: If the SOFTWARE PRODUCT is an upgrade from another product, whether from Cogent or another supplier, you may use or
transfer the SOFTWARE PRODUCT only in conjunction with that upgrade product, unless you destroy the upgraded product. If the
SOFTWARE PRODUCT is an upgrade of a Cogent product, you now may use that upgraded product only in accordance with this EULA. If
the SOFTWARE PRODUCT is an upgrade of a component of a package of software programs which you licensed as a single product, the
SOFTWARE PRODUCT may be used and transferred only as part of that single product package and may not be separated for use on more
than one computer.

8. COPYRIGHT: All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images, photographs,
animations, video, audio, music, text and 'applets”, incorporated into the SOFTWARE PRODUCT), any accompanying printed material, and
any copies of the SOFTWARE PRODUCT, are owned by Cogent or its suppliers. You may not copy the printed materials accompanying the
SOFTWARE PRODUCT. All rights not specifically granted under this EULA are reserved by Cogent.

9. PRODUCT SUPPORT: Cogent has no obligation under this EULA to provide maintenance, support or training.

10.RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as provided in DFARS
227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (OCT 1988), FAR 12.212(a)(1995), FAR 52.227-19, or FAR
52.227-14 (ALT Ill), as appropriate. Manufacturer is Cogent Real-Time Systems Inc. 162 Guelph Street, Suite 253, Georgetown, Ontario,
L7G 5X7, Canada.

11. GOVERNING LAW: This Software License Agreement is governed by the laws of the Province of Ontario, Canada. You irrevocably attorn
to the jurisdiction of the courts of the Province of Ontario and agree to commence any litigation that may arise hereunder in the courts
located in the Judicial District of Peel, Province of Ontario.

Table of Contents

L. WAL IS GAITHMA?. ...ttt b e e se et s e bt b b e b e b et e st eae e b e sbese e s emeeseebesaesbenbenbe e eneenens 1
SV (=10 A = To [U T (=T =T) S 2
(I LT o TU 7@ U1 1 o1 | SO SOTPRRS 3
(6110 1] TSP PE PPN 4
{0 T o3 01 SRS 5
fd_data_fUNCHON ettt 6
fA_EOF_TUNCHION bbbt 7
L0 J 0] o 1= o IS ST 8
{0 J == T OSSOSO 10
{0 TR o TN 11 =SSOSR 11
{0 T 1 (=SSOSO 12
L1 1= 0 o SR 14
oo | PR 15
(0] 01T o PP 16
11 1TSS TR PE PO PTOTV P SOUPTRPRTO 18
princ , print , pretty_princ S Pretly_Print e 19
{018V 17/ 1o TSRS 21
[£T= Lo [OOSR 23
read_char ,read_double ,read_float ,read_long ,read_short ... 24
read VAl fil& e et e et re e e nas 26
LY=L [1 0TS 27
LY=L N T 1 = LS 28
LT T I o O 29
1T GOV 30
ST =] (0 o PSP 32
L0 | OSSPSR U PR 33
LT 1] S 34
(UL qT == To [o] -V T 35
write , writec , pretty_write yPretty WILEC e 36
LV C= T T T U =S 37
[FIlE SYSIBML..uieiiiiict i s 38
ADSOIULE_PAIN bbbt 39
L= (0T 0d <11 PSPPSR PRSPPI 40
o2 TST< g = 01 41
o o S 42
CRAIS_WAITING oottt bbb bbb bt s e b se e b e st b et et e et ne e 43
Lo 17T ox (o] Y/ OO P ST PSTPPRTPRRTPRN 44
Lo 1= g0 1SS 45
Lo = 1o SR 46
L1120 = (PSS 47
LT L=< PSS 48
L1 0 o SRS 49
Lo = 0X1,Y o SRS 50
(ST 01U USSP 51
£ o L] O 52
LS 11 O 53
LS (== 10 F= o] = O 54
LT o] = O 55
L0010 | PSSRSO 56

Vi

[= 1 T T Yo = PR S 58

(=] =10 1T TP OPPR PRSP 59
FOOT_PALN bbb bbbt 60
L0 0] 111 T= OSSOSO 61
(8T g] oYU (= o 111 SR 62
(U010 PSR 63
@ 1S 3 AN TSRS 64
oY= d SO PRR 65
block_signal ,unblock_Signal s 66
1111 0L TSR R PR OR PRSP 67
EXEBC eteueeiteeueete et e e e bt e e e e et h e e e e h e e a e e b e R e e e e R e e e e AR e oA e oA R e eR £ e AR e eRe SR e e eR e AR e e Re AR e eRE e Rt eRe e Rt eRe e e e nRenRe e neereenrenas 68
1L 1 (0T | = L 11 S 69
L1011 -GPSR OO 70
[0 1] =] 0 Y PSRRI 72
Lo =11 010 1S3 1 =T o T O 73
Lo =100 1o S 74
Lo =11 oo S 75
[=150 Tod 1Co] o] RN =1 1= Yo 1Co] o) S 76
I et h R E e Rt R R bbb et e et e n e 78
LTz L0 1] 1= =T o SR 79
L1101V ST P TSRSV P PO PR 80
CS] 0] 0 1] 0= o OSSR STU SRR 81
SNIM_UNIINK ek ettt e et b e s et et e et e et e e bene e 83
LT | = OSSPSR PSRPPRPRRP 84
SIEEP |, USIEEP e b bbb bbbttt e 86
S L] (0] ST PRRPPP 87
S V£] (=] 10 TP 88
TCP_BCCEPTL e 89
L (o1 o oo] o 0 T=T o PP 90
Lo oI 115 (T OSSOSO PSPPI 91
112 UL SRS 92
AV)Y/ F=Ta g 1ot o = To [T T SR 94
F U [(o] o = T OSSR 95
autoload_undefined_SymbOol e 97
F U 1o\ =T o] U o ox o] o H USSR PR 98
(O =T T T | (o] I o =T H USSP 99
(o][[0 7= 2SR P U STRRURURO 100
[0 11T (o] SR TSP STRRURURTON 101
[0 1111 o [TSP PO STORURUPUTO 102
DIILOGA ..ottt e bt b e sb b e et et e s e Rt bt e b b e b e e e enenbe e nrens 103
(o 1104 T=11 oo E ST P OO STORURUPUTON 104
[N oA U1 {0] o - To SRS 105
[0 11 0= o R 106
AV = (o] 1 TTa o Jr=TaTo I =Y o 0o o 1 g o S 107
=1 o= =T [o =1 | 108
EVAI_COUNE et e b e st b et bbb bt s et e stk se b e st et et et nenaene s 109
FTEE _CEIIS bbbt enn 110
FUNCHON_CAIIS bbb bbb 111
fUNCHION_TUNLIME bbb bbbt 112
0 o U PSPPI 113

Fo T o] [Yo 1< - ST 114

OC_BNADIE b bbbt b e b ek e bt b e b 115
OC_NEWDBIOCK ettt bbb e eb e e b bt nne e 116
OC_TrACE o e e e 117
L0 111 USSP ST STU PSSP 118
STy = 10 (0] = Vo] SRR UP PR PRPRROT 120
ST A 01 £ST= 1 o1 1o USSR 121
L0101 SRR 122
TFACE, NOWMACE ittt a et b e e e e bt e ae e e sae e e e sbeeae e beebe e s e eneeneeseenanan 123
VL MISCEIIANEOUS.......eceeee ettt b b e e e e et et bt b e be st e se et eneebesaeseens 124
=1 0] (0] 010 1< PSPPSRt 125
Create_state ,enter_state ,exit_State .. 126
[0 1= 01537 (RS SS TR PSR 127
MOAUIES etttk b e s bbb e e et e bt eb e bt s e e e e n s e s e e st eb e e b e b e b e e eneenenbeseeneens 128
] ¢ [TSP P USSR ORURUPUTON 129
RV LR 1 = TSSO P PSSRV 130
= Lo (o [0707 T 131
(o [0 1S - T - 133
0 L1530)Y =] SR 134
L=V T T OSSOSO 135
LS oSO RPN 136
15T o 137
[OCALE_TASK e bbb bbb bbb 138
[0CALE_TASK 10 e bbb 140
NAME_ALEACKH ..ot 141
(R AV o [T TP 142
LT 00TV o o] ST 143
L0 T 00 €T 144
£ o PSR RT 145
SEINA_BSYNC oottt ettt b bbb b e bt e b e b e b e e b e Rt R Rt R bt e b e b e b e n e ne e 147
L1 1o IS (1 o PSR 148
(1T 0 Lo RS (T o =TS Y/ [PPSR 149
taskdied ,taskStarted ... e 150
L= 1S G {0 USSP 152
VI EVENS aNd CaAllDACKScoitiiiiecie ettt ettt et ettt st e eae e be e sareebeebeesaeesnrennneeses 154
= Lo To IR =T=1 01 od 1T o TSRS 155
L LU TSV Z=T 1SS 157
next_event ,NeXt_eVENT ND ettt nreens 158
remove_Set_fUNCLION ettt reesresseeneenreens 159
1V =T TR ST= 1 160
IX. TiIMe, DAtE, AN TIMEIS ...eouiiitieirieirieieriete ettt b et b e bbb s b e ne st e s e st nenaeseneenan 161
=1 TSSOSO 162
L= LTSS PP ORURUPTRION 163
block_timers — , UNDIOCK_tIMEIS o e 165
(o= 1 o) 166
[[0 Yot S o F= T Yo [0 Y3 167
0 168
Lo F=1 (= o) OSSP STUSTPPRORRRPN 169
LSV L] TP 170
OIMEIMIE ettt b bbb e b e bt s e bt s e e b e s £ e b e e e b e sesbeh e s e e bt s e ek e s e eb e seeb e st e b e e ebenenneneas 171

T Yo%= 11110 1 [T 173

0]] TSRS 175
HIMEI_IS_PIOXY oottt e b e bt e bbb bbbt e 176
DO oo [T o | a D= L= [V o OSSR 177
add_exception_function ,add_echo_function ..., 178
[oTo3 Qi oo o | AU UTSSRRTRRN 180
oo 1) A (o Te3 (T o PRSP 181
foTo T) A g F=TaTo LT =T oto] o o <SPS 182
[oT0 1) A T=TeT o] [0 KSR 183
Lo 0 AET=To U | 117/ P PSP RRRURUON 184
read_existing_point B (= T= To [o1 11 | S 185
register_all_POINIS o e s sae e tenreen 186
[0 RS (=T =T (oT=7 o[o PSS 187
register_point ,register_existing_point 188
remove_eChO_fUNCLION .ottt e sre e e eenreens 190
remove_exception _fUNCLION e e s 191
LY=o 0 1= o011) T 192
LY Ao (o1 1 - V1 T 193
LS A= 01T 194
(UL aT =T o TES] (=T g 01 1 196
when_echo_fns ,when_exception_fNS e 197
write_existing_point JWILE_POINT e e 198
DO] N TR 200
Lo LoV =T To TSSOSO STU SRRSO 201
BV _SBIUP ettt b e e b et b et b et b et e bR b e s e b e b e b e b rene s 203
1] T] o1 AT TP RO SUTSOTTRP 204
(00T pF=T o TP 205
(o101 0 T 0T 11 01 TP 207
ONX_NAME_AITACKH et b et e e e e ne e nan 208
(o [F= g L= [2= Tod o PR RR 209
ONX_NAME_IOCALE ..ottt ettt s et e e et ebesbeseese e e e neenesneeeeean 210
(o0 Q0] (TP 211
(o] 4D 011 = | ST U TP UT PSRRI 214
ONX_PrOXY_AtTACKH bbb e e 215
ONX_PrOXY _EIACKH bbb e e 216
QNX_PrOXY_FEM_AttACH oo s se s 217
(oD o1 £ 4 YA (=2 1 1o =3 = X o TSP 218
Lo D (=TT =T Y/ OSSR 219
Lo D 1= 0 Y/ S SS 220
o D= 1 USSP 221
QNX_SPAWN_PFOCESS coteiiuieeteesteesiesiseestessstsasesbeessessatesstessbeesseesabessbeesseesasesbeessesssesensesssesssensn 222
Lo G o o[- T 225
Lo) QYo L1 = Lo o T 226
Lo 0 QYo [= Lo o T 228
(o [0 Yo = U 4 1= - Lt -V o T 229
o = ??
1070] (0] o] 1 o] o TSROSOV 233

List of Tables

1. User/owner PermiSSION MOUES.cccuiiieieieieeieseeeesteseestestessae e ssaessesseessesseeeestesseensessessessssnnessess
2. Group PermiSSION MOUES.ccceeieierierieeeesteeeeseesreeseestessaeteaseessesseaeestesseessesseesessseseessessensessenennses
3. Other PErMISSION MOUES.......cci ettt e st esa e e eae et e s besressesseseenesnestestesseneens
ST | TS
1.dev_read min, time, and tiMEOUL VAIUBS..........ccceveiereeirire ettt

2?

2?

2?

27

2?

Xi

Chapter 1. What is Gamma?

Gamma is an interpreter, a high-level programming language that has been designed and optimized to
reduce the time required for building applications. It has support for the Photon GIU in QNX, and the
GTK GUI in Linux and QNX 6. It also has extensions that support HTTP and MySQL.

With Gamma a user can quickly implement algorithms that are far harder to express in other languages
such as C. Gamma lets the developer take advantage of many time-saving features such as memory
management and improved GUI support. These features, coupled with the ability to fully interact with

and debug programs as they run, mean that developers can build, test and refine applications in a shorter
time frame than when using other development platforms.

Gamma programs are small, fast and reliable. Gamma is easily embedded into today’s smart appliances
and web devices.

@ Gamma is an improved and expanded version of our previous Slang Programming Language for
QNX and Photon. Gamma is available on QNX 4, QNX 6 and Linux, and is being ported to
Microsoft Windows.

The implementation of Gamma is based on a powerful SCADALIisp engine. SCADALisp is a dialect of
the Lisp programming language which has been optimized for performance and memory usage, and
enhanced with a number of internal functions. All references in this manual to Lisp are in fact to the
SCADALIisp dialect of Lisp.

You could say Gamma’s object language is Lisp, just like Assembler is the object language for C.
Knowing Lisp is not a requirement for using Gammea, but it can be helpful. All necessary information on
Lisp and how it relates to Gamma is in the Input and Output chapter of this guide.

Chapter 2. System Requirements

ONX 6

« QONX 6.1.0 or later.

QNX 4

+ QNX 4.23A or later.
+ (For Gamma/Photon) Photon 1.14 or later.

Linux

« Linux 2.4 or later.
« (For Gamma/GTK) GTK 1.2.8.

« The SRR IPC kernel module, which includes a synchronous message passing library modeled on the
QNX 4 send/receive/reply message-passing API. This module installs automatically, but requires a C
compiler for the installation. You can get more information and/or download this module at the Cogent
Web Site.

This module may not be necessary for some Gamma applications, but it is required for any use
of timers, event handling, or inter-process communication.

l. Input/Output

Table of Contents

(o3 [0 1SS PP PSRRI 4
{0 1o 0 1 U 5
L0 Jo =1 = Y {1 o3 1 o] o TS 6
L0 J=0 {0 1T 1o o SR 7
10 0] 0 1= o OSSPSR 8
L0 I =T TSSO STPRSTPTRPRRRPRTRN 10
L0 1 (o TN 11 OSSO SOPTRTPRRRPRRRPRN 11
L0 I L= TSP OETSTP TSP STPTPTPTRTPRRRPRTTN 12
1113 0 T TSRS 14
o ToX 1| RS SS 15
(o] 0= o [PPSR PPTPRP 16
11 01T 18
princ , print , pretty_princ CPretty PriNt e 19
018V 0] 1771 [TSP 21
(7= o [OOSR 23
read_char ,read double ,read float ,read long ,read _short ... 24
(== Lo [=7 U 1 - TP 26
(== Lo [10T S 27
(== Yo I o T o] 6RO 28
(==Y U (] OO TR SOOI 29
LSS 30
LTS G oTCY U o TP 32
1= SRRSO 33
L= 0 ¢ SRS 34
U1 £=Y= Vo [l - 1 USRS 35
write , writec , pretty_write S Pretty WIIEC e 36

AT L C =T T = V= 37

close

close — closes an open file.

Syntax

close (file)

Arguments
file

A file pointer to a previously opened file. This may be either a file in the file system, or a string
opened for read and write.

Returns

t ifthefile had been open and was closed successfully,rglse

Description

This function closes a previously opened file. It is not strictly necessary, as the file will be closed when
the garbage collector recognizes that there are no references to the file, but it is extremely good policy.
This function will close a string opened for reading and writing as well.

Example
Gamma>fp = open("myfile.dat","r");
#<File:"myfile.dat">
Gamma>close(fp);
t
Gamma>fp;
#<Destroyed Instance>
Gamma>

See Also

fd_close , open, open_string

fd_close

fd_close — closes a file identified by a file descriptor.

Syntax
fd_close (fd)

Arguments
fd

A file descriptor as returned frofd_open .

Returns

t , if successful, otherwiseil

Description

This function closes a file identifed by a file descriptor, ie. that was openédl lopen .

Example

Gamma>require_lisp("const/filesys");
"const/filesys"

Gamma>fp = fd_open("/fd/ttyp8",0_WRONLY);
4

Gamma>fd_write(fp,"\nHello\n");

8

Gamma>fd_close(fp);

t

Gamma>fd_close(fp);

nil

See Also

close ,fd_open , Referencing Files

fd_data_function
fd_data_function — attaches a write-activated callback to a file.

Syntax

fd_data_function (fd | file , code)

Arguments
fd [file

A file descriptor as returned frofd_open , or the name of a file pointer to a file that was opened
by a call toopen or open_string

code

Any valid Gamma program, executable code block, or statement.

Returns

The return value of the executedde .

Description

This function acts as a callback, causing teele to execute whenever data is written to the file
associated with thid orfile pointer.

See Also

fd_open , fd_eof function ,fd_write , open, open_string , write

fd_eof function
fd_eof_function — attaches aerof -activated callback to a file.

Syntax

fd_eof_function (fd | file , code)

Arguments
fd [file

A file descriptor as returned frofd_open , or the name of a file pointer to a file that was opened
by a call toopen or open_string

code

Any valid Gamma program, executable code block, or statement.

Returns

The return value of the executedde .

Description

This function acts as a callback, causing teele to execute whenever the end of the fil@6f_) is
reached during a call tll_read or one of the otheread functions. Thed|file argument
identifies the file.

See Also

fd_open , fd_data_function ,fd_write , open, open_string , write

fd_open

fd_open — opens a file or device and assigns it a file descriptor.

Syntax

fd_open (name, mode)

Arguments

name

The name of a file, as a string.
mode

The mode for opening the file.

Returns

A non-negative integer representing the lowest numbered unused file descriptor if successful. If an error
occurs, the function returns -1 and sets the errno.

Description

This function opens a file for reading and/or writing, and assigns it a file descriptor which is used as an
argument by other functions suchfdsread andfd_write . The file that is opened could be a
regular file, a directory, or a block or character device. Legadie values are:

« O_RDONLY Read-only mode
« O_WRONLY Write-only mode
+ O_RDWR Read-Write mode

Any combination of the following flags may be bitwise OR-ed with the open mode to modify how the
file is accessed:

« O_APPEND Append (writes guaranteed at the end)
O_CREAT Opens with file create

O_EXCL Exclusive open

+ O_NOCTTY Don't assign a controlling terminal
+ O_NONBLOCK Non-blocking I/0

« O_TRUNC Open with truncation

« O_DSYNC Data integrity synch

+ O_SYNCFile integrity synch

+ O_TEMP Temporary file, don’t put to disk

« O_CACHE Cache sequential files too

If an error occurs -1 is returned and errno is set to one of the following:

fd_open

« EACCES Search permission denied on a portion of the path prefix, or the file exists and the
permissions required to open the file in the given mode so not exist.

- EBADFSYS The file or the path prefix to the file was found to be corrupted
. EBUSY The file is already open for writing.

« EEXIST O_CREAT and O_EXCL are set and the named file exists

« EINTR The function was interrupted by a signal

- EISDIR The named file is a directory

. EMFILE Too many file descriptors are currently in use by this process

« ENAMETOOLONG The length of the path to the file is too long.

« ENFILE Too many files are currently open on the system

- ENOENT O_CREAT is not set and the file does not exist

« ENOSPCThe directory or file system which would create the new file cannot be extended
- ENOTDIR A component of the path to the file is not a directory

« ENXIO O_NONBLOCK is set, the file is a FIFO, O_WRONLY is set, and no process has the file
open for reading

« EROFS The named file resides on a read-only file system.

Example

Gamma>require_lisp("const/filesys");
"Jusr/cogent/lib/const/filesys.Isp"

Gamma>ptr = fd_open("/fd/ttyp8",0_WRONLY);
4

Gamma>fd_write(ptr,"\nhello\n");

7

See Also

fd_close ,fd_data function , fd_eof function ,fd_read ,fd write ser_setup |,
Referencing Files

fd_read

fd_read — reads a buffer or string from a file identified by a file descriptor.
Syntax

fd_read (fd, buffer |string , length ?, offset ?)

Arguments

fd

A file descriptor as returned frofd_open .
buffer |string

A buffer or string to be read from the file.
length

An integer specifying the length of the buffer or string.
offset

An integer specifying the position in the file to begin reading the buffer or string.

Returns

The number of bytes actually read from the file, or -1 on failure and the errno is set.

Description
This function reads a buffer or string from the specified file.

When an error occurs, the following errnos are possible:

- EAGAIN The O_NONBLOCK flag is set for thiel and the process would be delayed in the read
operation.

- EBADF The passeft is invalid or not open for writing.

« EFBIG File is too big.

+ EINTR Read was interrupted by a signal.

- EINVAL iovcnt was less than or equal to O, or greater than UIO_MAXIOV.
« EIO Physical I/O error.

Example

Gamma>x = fd_open("/fd/serl",O_RDWR);
4

Gamma>fd_read(x,"hello\n");

6

Gamma>fd_close(x);

t

See Also

fd_close ,fd_open ,fd_read ,ser_setup , Referencing Files

10

fd_to_file
fd_to_file — creates a file pointer from a descriptor.

Syntax
fd_to_file (fd , mode)

Arguments
fd

A file descriptor as returned frofd_open .
mode

A string indicating the mode for the fil&" for read-only,"w" for writable,"a" for append.

Returns

t , if successful, otherwiseil

Description

This function creates a file pointer from a file descriptor.

See Also

fileno , Referencing Files

fd_write

fd_write — writes a buffer or string to a file identified by a file descriptor.
Syntax

fd_write (fd, buffer |string , length ?, offset ?)

Arguments

fd

A file descriptor as returned frofd_open .
buffer |string

A buffer or string to write to the file.
length

An integer specifying the length of the buffer or string.
offset

An integer specifying the position in the file to begin writing the buffer or string.

Returns

The number of bytes actually written to the file, or -1 on failure and the errno is set.

Description
This function writes a buffer or string to the specified file.

When an error occurs, the following errnos are possible:

+ EAGAIN The O_NONBLOCK flag is set for thiel and the process would be delayed in the write
operation.

- EBADF The passeftl is invalid or not open for writing.

- EFBIG File is too big.

« EINTR Write was interrupted by a signal.

« EINVAL iovent was less than or equal to O, or greater than UIO_MAXIOV.
« EIO Physical I/O error.

- ENOSPCNo free space remaining on drive.

« EPIPE Attempt to write to a pipe (or FIFO) that is not open for write. SIGPIPE is also sent to process.

Example
Gamma>x = fd_open("/fd/serl",O_RDWR);
4
Gamma>fd_write(x,"hello\n");
6
Gamma>fd_close(x);
t

12

See Also

fd_close

,fd_open , fd_read

, ser_setup

, Referencing Files

fd_write

13

fileno

fileno — creates a file descriptor from a pointer.

Syntax

fileno (file)

Arguments
file

A file pointer as returned frorapen.

Returns

t , if successful, otherwiseil

Description

This function creates a file descriptor from a file pointer.

See Also

fd_to_file , Referencing Files

14

joctl

ioctl — performs control functions on a file descriptor.

Syntax

joctl (fd, request , value)

Arguments
fd

A file descriptor as returned frofd_open .
request

One of the functions listed below in Description.
value

A number that supplies additional information needed byrdfyiest function.

Returns

The return value of theequest function.

Description

This function performs aioctl call (C libraryioctl subroutine) for the givefd file descriptor and
request . The Gammaoctl function currently only supportequest s that take numeric
arguments, ievalue must be a number. You may make operating-system spémific calls by
giving a numeric value for theequest argument.

The currently supportecequest s are:

TCSBRK TCXONC TCFLSH TIOCHPCL TIOCEXCL TIOXNXCL
TIOCFLUSH TIOCDRAIN TIOCSCTTY TIOCMGET TIOCMBIC TIOCMBIS
TIOCMSET TIOCSTART TIOCSTOP TIOCNOTTY TIOCOUTQ TIOCSPGRP
TIOCGPGRP TIOCCDIR TIOCSDIR TIOCCBRK TIOCSBRK TIOCLGET
TIOCLSET TIOCSETPGRP TIOCGETPGRP FIOCLEX FIONCLEX FIOGETOWN
FIOSETOWN FIOASYNC FIONBIO FIONReAd SIOCSHIWAT SIOCGHIWAT
SIOCSLOWAT SIOCGLOWAT SIOCATMARK SIOCSPGRP SIOCGPGRP

15

open

open — attempts to open a file.

Syntax

open (filename , mode, use_parser ?)

Arguments

filename

A filename (possibly including the path), as a string.
mode

A string indicating the mode for the filé" for read-only,"w" for writable,"a" for append.
use_parser

Assume Lisp grammar regardless of the default grammar.

Returns

A file pointer, ornil if the request failed.

Description

This function attempts to open a file. If the file is opened for write'(), any previously existing file of

the same name will be destroyed. If the file is opened for apgid)(then a previously existing file

will be lengthened with subsequent writes, but the data in that file will not be damaged. A file can only
be opened read-onlyr{) if it already exists. The result of this function may be used as an argument to
a variety of read and write operations.

When Gamma opens or creates a file, it creates an abflegmbinter. A printed representation

of the file pointer looks like this#<File: filename >. This representation cannot be read

back in to Gamma, and so a symbol must be assigned to the file pointer in order to refer to or
work with a file. In common language, we refer to this symbol as the file pointer. For instance, in
the examples below, we would say the symiipolis the file pointer. (See also Referencing Files.)

If use_parser is nonhil ,then a call to read will parse the file according to its default grammar. If
use_parser isnil ,then a call to read will parse the file as if it were a Lisp expression. A file must be
opened in Lisp format in order to use callsread_char ,read_double ,read float ,

read_line ,read long ,read_short andread_until

Examples

An input file contains the following:

(setqg y 5)

Callingopen will produce:

Gamma>fp = open ("myopenfile.dat", "r", nil);
#<File:"myopenfile.dat">
Gamma>princ(read_line(fp), "\n");

(setq y 5)

t

Gamma>fp = open ("myopenfile.dat”, "r*, nil);

16

open

#<File:"myopenfile.dat">

Gamma>eval (read(fp));

5

Gamma>fp = open ("myopenfile.dat", "r", t);
#<File:"myopenfile.dat">

Gamma>princ(read_line(fp), "\n");

(setq y 5)

t

Gamma>fp = open ("myopenfile.dat", "r*, t);
#<File:"myopenfile.dat">

Gamma>eval (read(fp));

Error: ./generate.slg: line 1: Malformed expression within ()
Error: ./generate.slg: line 1: Unexpected end of file

Macro read left extra stuff on the LISP stack: 8098478, 8098470
nil

nil

Gamma>

The following example opens and reads a file, if it exists. If not, it prints and error message.
if ((fp=open("myfile","r")) = nil)

local line;
while((line = read_line(fp)) != _eof)
{
princ(line, "\n");
}
close(fp);
else
{
princ("Error : unable to open myfile for read\n");
}
See Also

close ,fd_open ,open_string ,read ,read_char ,read double ,read float
read_line ,read long ,read_short ,read until ,seek,tell ,terpri ,write ,writec

17

pipe

pipe — creates a pipe.

Syntax
pipe ()

Arguments

none

Returns

A list of the read pipe and the write pipe, each as a file pointer.

Description

This function creates an un-named pipe.

Example
Gamma>pipel = pipe();
(#<File:"read_pipe"> #<File:"write_pipe">)
Gamma>pread = car(pipel);
#<File:"read_pipe">
Gamma>pwrite = cadr(pipel);
#<File:"write_pipe">
Gamma>write (pwrite, "This is a test");
t
Gamma>read (pread);
"This is a test"
Gamma>

18

princ

, print , pretty _princ , pretty_print

princ, print, pretty princ, pretty print — write to the standard output file.

Syntax

princ (s_exp ...)

print (s_exp ...)
pretty_princ (s_exp ...)
pretty_print (s_exp ...)

Arguments
S_exp

Any Gamma or Lisp expression.

Returns
t

Description

These functions write to the standard output file, typically the screenpiihe andpretty princ

functions produce formatted output, which means that special characters are not escaped, and double
guotes are not printed around character strings. Output generafgthby cannot be read by the Lisp
reader.

print andpretty_print produce Lisp-readable output. The result of reading a printed expression
using a call taead will generate an equal expression.

pretty princ andpretty_print generate carriage returns and spaces with the intention of
formatting the output to make long or complex Lisp expressions easier for a person to read.

Examples

Gamma>x = "hello";
"hello”

Gamma>print (x,"\n");
"hello™\n"t
Gamma>princ (x,"\n");
hello

t

Gamma> >

Gamma>class C {a; b; c;}
(defclass C nil [lJla b c])
Gamma>princ (C);
(defclass C nil [Jla b c])t
Gamma>pretty_princ (C);
(defclass C nil

1

[a b c]t

Gamma>

Gamma>L = list (1,2,3,4,5,list(1,2,3,4,5,list(1,2,3
list(1,2,3,4,5,list(1,2,3,4,5,list(1,2,3,4,5,list(1,2
Jlist(1,2,3,4,5,list(1,2,3,4,5)))))))));
12345@12345@23
45(12345@123451((1
Gamma>princ (L);

5(12345(1234
3 12

4
2 45 (3 4 5))

19

princ , print
12345(12345(12345(12345@1234
45(12345(12345(12345(2345))
Gamma>pretty_princ (L);
12345
12345
12345
12345
12345
12345
12345(12345(12345(
MM
Gamma>
See Also

write, writec, pretty_write

, pretty_princ

, pretty_print

20

pty , ptytio

pty, ptytio — run programs in a pseudo-tty.

Syntax

pty (program , arguments ..? = nil)
ptytio (termios , program , arguments ..? = nil)

Arguments

program
A string containing the name of the program to be executed.
arguments

A string containing any command-line arguments for the program.
termios

A termios structure.

Returns
A list of:

(process_id file_for_stdin file_for_stdout file_for_stderr pty_name)

Where:

process_id

The process ID of the program called.
file_for_stdin

A pointer to the file used for STDIN.
file_for_stdout

A pointer to the file used for STDOUT.
file_for_stderr

A pointer to the file used for STDERR.
pty_name

The path and filename of this pseudo-tty, as a string.

Description

These functions run programs in a pseudo-tty. A Gamma program can read from either program’s
standard output by issuingread orread_line call onfile_for_stdout . The process can be
reaped usingvait .

Theptytio function is the same gsty , but the first argument istermios structure. This is useful
if particular terminal characteristics are required onghe . Thetermios structure is only available
through thegammatios.so dynamic library.

21

pty , ptytio

Example
This example callpty on the following test program, callddstpty.g

#!/usr/cogent/bin/gamma
princ("Test output.\n");
princ(cadr(argv),"\n");

Here we calpty in interactive mode, and then read the output:

Gamma>ptylist = pty("testpty.g”, "Argument");

(4760 #<File:"testpty.g-stdin"> #<File:"testpty.g-stdout">
#<File:"testpty.g-stderr"> "/dev/ptyp0")
Gamma>read_line(caddr(ptylist));

"This software is free for non-commercial use, and no valid commercial license"
Gamma>read_line(caddr(ptylist));

"is installed. For more information, please contact info@cogent.ca."
Gamma>read_line(caddr(ptylist));

"Test output.”

Gamma>read_line(caddr(ptylist));

"Argument"

Gamma>

22

read

read — reads a Lisp expression from a file.

Syntax
read (file)

Arguments
file

A file pointer to a previously opened file. This may be either a file in the file system, or a string
opened for read and write.

Returns

The next Lisp expression in the file, oeof .

Description

This function reads one Lisp expression from the gifflen . The file must have been opened before
this call with theopen oropen_string functions. White space and newline characters are ignored
during a read. If the end of file is reached duringtbéad call, the message "Unexpected end of file" is
returnedread does not evaluate the expressions it reads.

Example

The file "myreadfile.dat" contains the following:

(ab(cde))
"A message" (+2 3)

Successive calls tiead will produce:

Gamma>fp = open ("myreadfile.dat”, "r");
#<File:"myreadfile.dat">
Gamma>read (fp);

(@ b (cde)
Gamma>read (fp);

"A message"
Gamma>read (fp);

+ 23

Gamma>read (fp);
"Unexpected end of file"
Gamma>

See Also

read_char ,read _double ,read float ,read line ,read long ,read_short
read_until

23

read_char ,read double ,read float ,read long |,
read_short

read_char, read_double, read_float, read_long, read_short — read the next
character, double, float, long or short value in binary representation from the input file.

Syntax

read_char (file)
read_double (file)
read_float (file)
read_long (file)
read_short (file)

Arguments
file

A file pointer to a previously opened file. This may be either a file in the file system, or a string
opened for read and write.

Returns

read_char returns the decimal representation of a string of length 1 containing a single character, or
-1 indicating end of file.

read_double ,read float return a floating point value, or nan indicating end of file.

read_long ,read_short return an integer value, or -1 indicating end of file.

Description

These functions read the next character, double, float, long or short value in binary representation from
the input file, regardless of Lisp expression syntax. This allows a programmer to read binary files
constructed by other programs.

Example

The file "myfile.dat" contains the following:
ajz

Successive calls teead_char will produce:

Gamma>ft = open ("myreadcfile.dat","r");
#<File:"myreadcfile.dat">
Gamma>read_char(ft);

97

Gamma>read_char(ft);

106

Gamma>read_char(ft);

122

Gamma>read_char(ft);

-1 Gamma>

24

See Also

read , read_line

read_char

, read_until

, read_double

, read_float

, read_long

, read_short

25

read_eval file

read_eval_file — reads a file, evaluating and counting expressions.

Syntax

read_eval_file (file)

Arguments
file

A file pointer to a previously opened file. This may be either a file in the file system, or a string
opened for read and write.

Returns

The number of expressions that were read and evaluated.

Description

This function reads from the current location in the file to the end, evaluating its contents as Lisp
expressions and counting them.

Example

The file "myevalfile.dat" contains the following:
(+34)3+2;

Gamma>ft = open ("myevalfile.dat", "r");
#<File:"myevalfile.dat">
Gamma>read_eval_file(ft);

4

Gamma>close(ft);

t

Gamma>

See Also

require, load , open

26

read_line

read_line —reads a single line of text.

Syntax

read_line (file)

Arguments
file

A file pointer to a previously opened file. This may be either a file in the file system, or a string
opened for read and write.

Returns

All characters in the file up to the first newline character, as a string. If the end of file is reached, returns
"Unexpected end of file".

Description

This function reads a single line of text from the given file, up to the first newline character, regardless of
Lisp syntax. This allows a programmer to deal with text files constructed by other programs.

Example

An input file contains the following:

Lists can be
expressed as (a b c).

Successive calls iead_line will produce:

Gamma>ft = open ("myreadlfile.dat", "r");
#<File:"myreadlfile.dat">
Gamma>read_line(ft);

"Lists can be"

Gamma>read_line(ft);

"expressed as (a b c)."
Gamma>read_line(ft);

"Unexpected end of file"

Gamma>

See Also

read ,read_char ,read_double ,read float ,read long ,read_short ,read_until

27

read_n_chars

read_n_chars — reads and stores characters.
Syntax

read_n_chars (file , nchars)

Arguments

file

A file pointer to a previously opened file. This may be either a file in the file system, or a string
opened for read and write.

nchars

The number of characters to read.

Returns

A buffer containing the characters read. The length of the return buffer is equal to the number of
characters actually read. This function retunils if no characters could be read.

Description

This function reads the given number of characters from the file, without any form of translation, and
builds a new buffer object in which to store them. If this function reaches the end of the file before all
characters are read, then the buffer will be shorter than the requested number of characters.

Example

An input file contains the following:

To be or not to be, that is the question.

Successive calls tead_n_chars will produce:

Gamma>ft = open ("myreadnfile.dat", "r");
#<File:"myreadnfile.dat">
Gamma>read_n_chars(ft,15);
#{To be or not to}
Gamma>read_n_chars(ft,18);
#{ be, that is the q}
Gamma>read_n_chars(ft,18);
#{uestion.}
Gamma>read_n_chars(ft,18);
nil

Gamma>

See Also

read_char

28

read_until

read_until — reads characters, constructing a string as it goes.
Syntax

read_until (file , delimiters)

Arguments

file

A file pointer to a previously opened file. This may be either a file in the file system, or a string
opened for read and write.

delimiters

A string of delimiter characters. " indicates white space.

Returns

All characters in the file up to the first occurrence of angelimiter characters, or "Unexpected end
of file".

Description

This function reads characters from the input file one at a time until it reaches anydslbméer
characters, constructing a string as it goes. Successive calls continue from the point of the previous
read_until . If the end of file is reached, the function returns "Unexpected end of file".

Example
An input file contains the following:

Lists can be
expressed as (a b c).

Successive calls tead_until will produce:

Gamma>ft = open ("myreadlfile.dat","r");
#<File:"myreadlfile.dat">
Gamma>read_until(ft, "(");

"Lists can be\nexpressed as "
Gamma>read_until(ft,"x");

"a b c)."

Gamma>read_until(ft,"y");

"Unexpected end of file"

Gamma>

See Also

read ,read_char ,read_double ,read_float ,read line ,read_long ,read_short

29

seek

seek — sets the file position for reading or writing.

Syntax

seek (file , offset , where)
Arguments

file

A file pointer to a previously opened file. This may be either a file in the file system, or a string
opened for read and write.

offset

An integer specifying the number of characters into the file, starting Wwbere .
where

A starting point, indicated by a number:

« 0Beginning of the file.
« 1 Current position in the file.
« 2 End of the file.

Returns

t if successfulnil if unsuccessful.

Description

This function lets you specify a position in a file to start reading or writing.

Example

The file "myseekfile" contains the following:

Now is the time for all good men and women
to come to the aid of their world.

Gamma>msk = open("myseekfile.dat", "r",nil);
#<File:"myseekfile.dat">

Gamma>seek(msk, 5, 0);

t

Gamma>read_line(msk);

"s the time for all good men and women"
Gamma>seek(msk, 2, 1);

t

Gamma>read_line(msk);

" come to the aid of their world."
Gamma>seek(msk, -15, 2);

t

Gamma>read_line(msk);

"of their world."

Gamma>seek(msk, -3, 0);

nil

Gamma>

30

See Also

open, open_string

,read , read_char

read_long ,read_short ,read_unti

, read_double
, tell

, read_float

, read_line

seek

31

ser_setup

ser_setup — sets parameters for a serial port device.

Syntax

ser_setup (devno, baud, bits /char, parity , stopbits , min, time)
Arguments

devno

Afile ID as returned from a call ted_open .

baud
A legal baud rate.
bits/char
Bits per character (6, 7 or 8).
parity
"none", "even", "odd", "mark" or "space"
stopbits
Stop bits (0, 1 or 2).
min

Default minimum number of characters for a read.
time

Default inter-character timeout for a read.

Returns

t on success amil on failure.

Description

This function sets the most common parameters for a serial port device, as opened by a call to
fd_open . The function is currently only available in QNX 4.

Example

Gamma> id = fd_open("/dev/serl",O_RDWR);
4

Gamma> ser_setup(id,9600,8,"none",1,1,0);

t

See Also

fd_close ,fd_open

32

tell

tell — indicates file position.

Syntax
tell (file)

Arguments
file

A file pointer to a previously opened file. This may be either a file in the file system, or a string
opened for read and write.

Returns

Current file position, as an integer.

Description

This function returns the current file position as an integer representing the number of characters from
the beginning of the file.

Example

Gamma>msk = open("'myseekfile.dat", "r",nil);
#<File:"myseekfile.dat">
Gamma>read_until(msk,"f");

"Now is the time "

Gamma>tell(msk);

17

Gamma>seek(msk, 18, 1);

t

Gamma>tell(msk);

35

Gamma>msk = open("'myseekfile3.dat", "w",nil);
#<File:"myseekfile3.dat">
Gamma>write(msk,"hello");

t

Gamma>tell(msk);

7

Gamma>msk = open("myseekfile3.dat", "a",nil);
#<File:"myseekfile3.dat">
Gamma>write(msk,"goodbye");

t

Gamma>tell(msk);

16

Gamma>

See Also

open,open_string ,read ,read_char ,read double ,read float ,read_line
read_long ,read_short ,read until ,seek

33

terpri

terpri — prints a newline to an open file.

Syntax

terpri (file ?)

Arguments
file

A file pointer to a previously opened file. This may be either a file in the file system, or a string
opened for read and write.

Returns

t if successful, otherwiseil

Description

This function writes a newline to the opéfe . Any existing contents written to a file before it was
opened will be deleted when the file is opened and written to.

Example

This example writes a file with the following contents, including the newline:

(chars (1 2 3))
(chars (4 5 6))

Gamma>fw = open("mytpfile.dat”, "w");
#<File:"mytpfile.dat">
Gamma>write(fw,list(#chars,list(1,2,3)));
t

Gamma>terpri(fw);

t
Gamma>write(fw,list(#chars,list(4,5,6)));
t

Gamma>close(fw);

t

Gamma>fr = open("mytpfile.dat", "r", nil);
#<File:"mytpfile.dat">
Gamma>read_line(fr);

"(chars (1 2 3))"
Gamma>read_line(fr);

"(chars (4 5 6))"

Gamma>terpri();

t
Gamma>

34

unread_char

unread_char — attempts to replace a character to a file for subsequent reading.
Syntax

unread_char (file , character)

Arguments

file

A file pointer to a previously opened file. This may be either a file in the file system, or a string
opened for read and write.

character

A single character.

Returns

t if the character could be replaced on tHde , otherwisenil

Description

This function attempts to place the giveharacter back onto thdile so that it can be read again
by subsequent calls to any of thead family of functions. Only one character may be replaced onto a
file between calls toead . At least ongead call must have been made prior to calling this function.

Example

An input file contains the following:

ABCDE

A call tounread_char within a succession of calls tead_char will produce:

Gamma>fr = open("myunreadfile.dat”, "r", t);
#<File:"myunreadfile.dat">
Gamma>read_char(fr);

65

Gamma>read_char(fr);

66
Gamma>unread_char(fr,A");
t

Gamma>read_char(fr);

65

Gamma>read_char(fr);

67

Gamma>read_char(fr);

68

Gamma>

See Also

read

35

write

, Writec , pretty_write , pretty _writec

write, writec, pretty write, pretty_writec — write an expression to a file.
Syntax

write (file , s_exp..)

writec (file , s_exp..)

pretty_write (file , s_exp..)

pretty_writec (file , s_exp..)

Arguments

file

A file pointer to a previously opened file. This may be either afile in the file system, or a string
opened for read and write.

s_exp

Any Gamma or Lisp expression.

Returns

t on success, otherwisg!

Description

Writes the given expressions to the file using the same fornyatiats . Seeprint for more
information.

writec produces the same format@snc ; pretty write produces the same format as
pretty print ; andpretty_writec produces the same format a®tty_printc . Any
contents written to the file before it was opened will be deleted when any ofwése functions are
used.

Example

Gamma>fw = open("'mywritefile.dat", "w");
#<File:"mywritefile.dat">
Gamma>write(fw,"This is on \n one line.");
t

Gamma>writec(fw,"This finishes on \n another line.");
t

Gamma>close(fw);

t

Gamma>fr = open("mywritefile.dat”, "r", nil);
#<File:"mywritefile.dat">

Gamma>read_line(fr);

"\"This is on \n one line\"This finishes on "
Gamma>read_line(fr);

" another line."

Gamma>

See Also
print

36

write_n_chars

write_n_chars =~ — writes characters from a buffer to a file.
Syntax

write_n_chars (file , buffer , nchars)

Arguments

file

A file pointer to the open destination file for the characters.
buffer

The buffer that is the source of the characters.
nchars

The number of characters to write.

Returns

The number of characters successfully written to the file.

Description

This function reads a given number of characters from a buffer and writes them to an open file.

Example

The following example writes the characters 'e’, 'f’, and 'g’ to a file.

Gamma>fw = open("mywritencharsfile.dat", "w");
#<File:"mywritencharsfile.dat">

Gamma>buf = buffer (101, 102, 103, 104);
#efgh}

Gamma>write_n_chars (fw, buf, 3);

3

Gamma>

See Also

write, writec, pretty write

37

Il. File System

Table of Contents

=T 01510] (1) (= o = L1 o 39
2o 011 PSPPSR 40
DASENAME ...t ettt ne e 41
oo TSRS 42
CRAIS_WAILING oottt bt s b e st b e st bt b et bt b st s e b e et e b 43
(o [T =Tox (o] YOO OSSRV 44
0 1 T 1= S 45
0 7= 1o SRS 46
L1 = LSRR 47
L1 LT TSR OORS 48
1110 £ o OSSR 49
[0 <3 (01110 USRS 50
(1S3 o1 1Y USSR 51
1S o L] USSR 52
LES T 1SS 53
[EST (=10 = 1o =TS 54
LEST Y71 = o TS 55
0] o RSO SOTTT 56
(S22 11 N T To = RSO SRTT 58
(T E=T0 0T TP UR TP URPTOUPPRTIN 59
FOOT_PALN bbbt bbbt 60
L0001 0] 1= TSSO PSP ST PTRTPURPRRRPRTTN 61
0T o105 1= S 1= OSSR 62
0T 0] 1] GRS SS 63

38

absolute_path

absolute_path — returns the absolute path of the given file.

Syntax

absolute_path (filename)

Arguments

filename

The name of a disk file.

Returns
The absolute path of the file.

Description

This function returns the absolute path of the given file, with extraneous ../ constructs removed, and with
the full QNX 4 node number added. The filename can be relative or absolute, on any node on the
network.

Example

Gamma> absolute_path(".profile");
"/I1/home/andrewt/.profile"

39

aCCessS

access — checks a file for various permissions.

Syntax

access (filename

, mode)

Arguments

filename

The name of a file on disk.

mode

The file mode to be tested. The legal modes are discussed below.

Returns

Zero is returned if the accessode is valid, otherwise -1 is returned and the errno is set.

Description

This function checks a file for the following permissions. Two or more permissions in bitwise OR
combinations can be checked at one time.

R_OK Test for read permission.
W_OK Test for write permission.
X_OK Test for execute permission.

F_OK Test for existence of file.

The library "const/Filesys.Isp" must be required to use the constants listed above.

Example

Gamma>require_lisp(“const/Filesys");
"lusr/cogent/lib/const/Filesys.Isp"
Gamma>system("touch /tmp/access_test");

0

Gamma>system("chmod a=rx /tmp/access_test");
0

Gamma>access("/tmp/access_test", R_OK|X_OK);
0

Gamma>access("/tmp/access_test", W_OK);

-1

Gamma>

See Also

is_busy ,is_file

,is_readable ,is_writable

, errmo

40

basename

basename — gives the base of a filename.

Syntax

basename (filename , suffix ?)

Arguments

filename

A file name as a string, as defined by the operating system.
suffix

Any ending part of the filename to exclude.

Returns

The base of the filename. If a suffix is specified, the base of the filename without the suffix.

Example
Gamma>x = basename("/usr/george/lib/misc/myfile.dat");
"myfile.dat"
Gamma>y = basename("misc/myfile.dat", ".dat");
"myfile”
Gamma>

See Also

dirname root_path

41

cd

cd — changes the working directory.

Syntax
cd (path)

Arguments

path

A character string which defines a directory path in the current operating system.

Returns

t if the operation is successful, otherwisié .

Description

This function changes the current working directory for subsequent file system operations.

Example

Gamma>cd ("/usr/local/bin");
t

42

chars_waiting

chars_waiting — checks for characters waiting to be read on a file.

Syntax

chars_waiting (file)

Arguments
file

A file pointer to a previously opened file. This may be either a file in the file system, or a string
opened for read and write.

Returns

The number of characters waiting on the open file.

Description

This function determines whether there are any characters waiting to be read on the given file. The file
may be a string file (created lmpen_string), in which case the number of characters which have not
yet been treated byr@ad or similar call will be returned.

If chars_waiting is to be called on a file after it has been partially read, the file must be unbuffered
first with unbuffer_file . Otherwise characters will be read in buffer by buffer and held locally in
groups of 1024. This will causghars_waiting to return unexpected results.

Example

Gamma>ft = open("mytestfile.dat", "r");
#<File:"mytestfile.dat">
Gamma>unbuffer_file(ft);
#<File:"mytestfile.dat">
Gamma>chars_waiting(ft);
9
Gamma>char(read_char(ft));
np
Gamma>chars_waiting(ft);
8

Gamma>read_line(ft);
"BCDEFGHI"

Gamma>

Gamma>x = open_string("hello");
#<File:"String">
Gamma>chars_waiting(x);

5

Gamma>char(read_char(x));

e

Gamma>chars_waiting(x);

4

Gamma>

See Also

open, open_string , unbuffer_file

43

directory

directory ~ — returns the contents of a directory.
Syntax

directory (path , filetypes , fullpaths)
Arguments

path

A path to a directory as defined by the operating system.
filetypes

A number in the range O to 2:

- OFind all files and directories.
« 1Find all files.

. 2 Find all directories.

fullpaths

If non-nil , show the full pathname of the file by prepending pla¢h to all filenames.

Returns

A list containing all of the requested directory entries as strings.

Example

Gamma>directory("/usr",0,nil);

("local* "lib" "bin" "readme")
Gamma>sort(directory("/usr",2,t),strcmp);
("/usr/bin" "/usr/lib" "/usr/local")

44

dirname
dirname — returns the directory path of a file.

Syntax

dirname (filename)

Arguments

filename

A file name as a string, including its directory path, as defined by the operating system.

Returns

The directory path of thBlename , or if no path is entered, tHdename

Description

This function reads thBlename and directory path as a string, returning the directory path as a string.

Example

Gamma>x = dirname("/usr/george/lib/misc/myfile.dat");
"lusr/george/lib/misc"

Gamma>y = dirname("misc/myfile.dat");

"misc"

Gamma>z = dirname("myfile.dat");

"myfile.dat"

Gamma>

See Also

basename, root_path

45

drain

drain — modifies end-of-file detection.

Syntax
drain (file , drain_p)

Arguments
file

An open file.
drain_p

A flag. If nonil |, sets the file to drain.

Returns

The previous state of the drain flag for this file.

Description

This function sets a flag on the file state such that ifdte@n_p flag is on, the first time that a read on
that file finds no characters waiting, the read will return immediately with "Unexpected end of file". This
is intended for use in situations where the operating system may never actually generate an end of file
indication, but where it is known that no more input will be available once a read would block. This
function does not affeadev_read .

For best results, the file should be unbuffered first witbuffer_file . Otherwise characters will be
read in buffer by buffer and held locally in groups of 1024. This could causac function to return
"Unexpected end of file" even when there are still characters waiting to be read.

Example
Gamma>fp = open("mydrainfile.dat","r",nil);
#<File:"mydrainfile.dat">
Gamma>unbuffer_file(fp);
#<File:"mydrainfile.dat">
Gamma>drain(fp,t);
nil
Gamma>read_line(fp);
"This is my drain file."
Gamma>read_line(fp);
"Unexpected end of file"
Gamma>

46

file_date

file_date = — gives the file modification date.

Syntax

file_date (filename)

Arguments

filename

A filename as defined by the operating system.

Returns

The modification date of the file as an integer if the file exists and is readablajlelse

Example
Gamma>fd =(file_date("myfile.dat"));
936977583
Gamma>date_of(fd);
"Fri Sep 10 11:33:03 1999"
Gamma>file_date("nonexistent.file");
nil
Gamma>file_date("unreadable.file");
nil
Gamma>

See Also

clock ,date_of

47

file_size

file_size — gives the file size.

Syntax

file_size (filename)

Arguments

filename

A file name as a string, as defined by the operating system.

Returns

The size of the file in bytes if the file exists and is readable, @lse

Example

Gamma>file_size("myfile.dat");

1467
Gamma>file_size("non_existing.file");
nil
Gamma>file_size("unreadable.file");
nil

Gamma>

48

flush

flush — flushes any pending output on a file or string.

Syntax
flush (file)

Arguments
file

A file pointer to a previously opened file. This may be either a file in the file system, or a string
opened for read and write.

Returns
t

Description

This function flushes any pending output on the file or string. This has the effect of printing output on the
screen or updating a file on disk in the case of afilssh has no effect on stringflush is called
automatically byclose .

Example

Gamma>fp=open("myflushfile.dat","w",nil);
#<File:"myflushfile.dat">
Gamma>write(fp, "I am written.");

t
Gamma>fp=open("myflushfile.dat","r",nil);
#<File:"myflushfile.dat">
Gamma>read_line(fp);

"Unexpected end of file"

Gamma>fp=open("myflushfile.dat","w",nil);
#<File:"myflushfile.dat">
Gamma>write(fp, "I am written.");

t

Gamma>flush(fp);

t
Gamma>fp=open("myflushfile.dat","r",nil);
#<File:"myflushfile.dat">
Gamma>read_line(fp);

"\"l am written.\""

Gamma>

See Also

open, open_string

49

getcwd

getcwd — gets the current working directory.

Syntax
getcwd ()

Arguments

none

Returns

The current working directory as a string.

Example

Gamma>getcwd();
"lhome/robert/w/devel/lisp"
Gamma>

50

iS_busy
is_busy — determines if afile is busy.

Syntax
is_busy (path)

Arguments

path

A character string defining a file path and file name in this file system.

Returns

t if the named file exists and is busy, otherwse .

Description

This function is supported only by certain operating system and hardware combinations that mark files as
busy when they are opened for write by another task. You can check this usisgltekell command. If
it shows a busy file with a ‘B’ or 'b’ as the first bit in the bitmask, this function should be supported.

Example

Gamma>is_busy("/tmp/busyfile");
t

See Also

is_writable

51

is_dir
is_dir — determines if a file is a directory.

Syntax
is_dir (path)

Arguments

path

A character string defining a relative or absolute file path in this file system.

Returns

t if the named file exists and is a directory, otherwigle .

Description

This function checks if a file is a directory. Relative file paths are relative to the current working directory.

Example
Gamma>is_dir("/home/robert/w/devel/lisp");
t
Gamma>is_dir("../../doc");
t
Gamma>is_dir("doc");
nil
Gamma>

See Also

is_file

52

is_file
is_file — determines if a file exists.

Syntax
is_file (path)

Arguments

path

A character string defining a file path and file name in this file system.

Returns

t if the named file exists and is a regular file, otherwige .

Example

Gamma>is_file("/usr/doc/FAQ/txt/FAQ");
t
Gamma>

See Also

is_dir

53

is_readable

is_readable = — determines if a file is readable.

Syntax

is_readable (path)

Arguments

path

A character string defining a file path and file name in this file system.

Returns

t if the named file exists and is readable, otherwie . Existing files might not be readable because of
settings on the files bitmask.

Example
Gamma>is_readable("/usr/doc/FAQ/txt/FAQ");
t
Gamma>

See Also

is_writable ,is_busy

54

Is_writable

is_writable — determines if a file is writable.

Syntax

is_writable (path)

Arguments

path

A character string defining a file path and file name in this file system.

Returns

t if the named file exists and is writable, otherwrske .

Example
Gamma>is_writable("/usr/doc/FAQ/txt/FAQ");
nil
Gamma>is_writable("/home/robert/w/devel/llisp/mytestfile.dat");
t
Gamma>

See Also

is_readable

55

mkdir

mkdir — creates a new sub-directory.

Syntax

mkdir (dirname , mode)

Arguments

dirname

The name of the directory to create.
mode

The access permissions of the new directory, joined in sequence. If there are more than one, they are
OR’ed by the | character in text format, or written consecutively in octal format. (See below.)

Returns

Zero if successful, otherwise non-zero, and the errno will be set.

Description

This function creates a new sub-directory whose path-nawlieriame . The file permissions for the
new sub-directory are determined from thede argument. Valid modes are summarized here.

Table 1. User/owner permission modes

Text format Octal format Meaning

S _IRWXU 0o7 Read, write, execute/search
S _IRUSR 0o4 Read permission

S IWUSR 002 Write permission
S_IXUSR 0ol Execute/search permission

Table 2. Group permission modes

Text format Octal format Meaning

S_IRWXG 0o7 Read, write, execute/search
S_IRGRP 0o4 Read permission
S_IWGRP 002 Write permission
S_IXGRP 0ol Execute/search permission

Table 3. Other permission modes

Text format Octal format Meaning

S _IRWXO 0o7 Read, write, execute/search
S _IROTH 0Oo4 Read permission

S IWOTH 002 Write permission

S IXOTH 0ol Execute/search permission

56

mkdir

Miscellaneous permissions.

« S _IREAD same as S_IRUSR

+ S _IWRITE same as S_IWUSR

« S _IEXEC same as S_IXUSR

These flags are bitwise OR-ed together to get the desired mode.

Error constants for this function:

« EACCES Search permission for some component of the path denied.

« EEXIST The named file exists.

« EMLINK Maximum sub-dirs. reached.

« ENAMETOOLONG The name of the path or the new directory is too long.
- ENOENT The specified path does not exist.

+ ENOSPCNOo space left on the file system.

« ENOSYSThis function is not supported for this path.

- ENOTDIR A component of the passed path is not a directory.

- EROFSTried to create a directory on a read-only file system.

Example

Gamma>require_lisp("const/Filesys");

"lusr/cogent/lib/const/Filesys.Isp"

Gamma>mkdir(“/tmp/mydir’, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH);
0

Gamma>mkdir("/tmp/mydir2", 00755);

0

Gamma>

See Also

unlink

57

path_node
path_node — gives the node number of a path in a QNX 2 path definition.

Syntax
path_node (path)

Arguments

path
Any legal QNX 2 path.

Returns

The node number portion of thpath in a QNX 2 path definition. If the path does not contain an explicit
node portion, the function returmsl

Description

This function is for version 2 of the QNX operating system only.

Example

Gamma>path_node("[2]3:/user");
2

Gamma>path_node("3:/user");

0

58

rename

rename — renames a file.

Syntax

rename (filename , new_name)

Arguments

filename

The name of a file on disk.
new_name

The new name for the file.

Returns

t if the file could be renamed, otherwiné

Description

This function makes an operating system call rename a file on disk. The exact behavior of this function
depends on the renaming facility for the operating system.

Example

Gamma>rename("myfile.dat","x/myrenamedfile.dat");
t
Gamma>rename("x/myrenamedfile.dat","myfile.dat");
t

Gamma>

59

root_path

root_path — strips the final file or directory name from a path.

Syntax
root_path (path)

Arguments

path

A file path name, as a string.

Returns

The portion of thepath with the file name and any trailing directory separators removed.

Description

This function strips the final file or directory name from thegh to produce its parent. Any trailing

directory separators are also removed. Ifplagh represents the root of the file system thenitis
unmodified.

Example

Gamma>x = "[usr/doc/FAQ";
"fusr/doc/FAQ"

Gamma>x = root_path(x);
"Jusr/doc"

Gamma>x = root_path(x);
"lusr"

Gamma>x = root_path(x);
e

Gamma>x = root_path(x);
e

Gamma>

See Also

basename, dirname

60

tmpfile

tmpfile — generates temporary output file names.

Syntax

tmpfile (file_prefix ?)

Arguments

file_prefix

A optional string specifying the beginning of a file name.

Returns

A string representing a file name which is guaranteed not to exist at the time that the function was called.

Description
This function is used to generate a temporary output file namefilEherefix can specify any part
of a file path. If thefile_prefix isnil , then tmp/lisp_t " will be used. Typically the resulting

file name will be the result of appending a number to the file prefix.

Example

Gamma>tmpfile();

"Itmp/lisp_t1"
Gamma>tmpfile("/tmp/atempfile");
"tmp/atempfile2"
Gamma>tmpfile("/tmp/atempfile");
"tmp/atempfile3"
Gamma>tmpfile("/tmp/atempfile");
"tmp/atempfile4"
Gamma>tmpfile("anotherfile");
"anotherfile5"

Gamma>

61

unbuffer_file

unbuffer_file — causes a file to be treated as unbuffered on both input and output.

Syntax

unbuffer_file (file)

Arguments
file

A file pointer to a previously opened file. This may only be a file in the file system, and not a string
opened for read and write.

Returns

The unbuffered file object on successndr on failure.

Description

This function causes a file to be treated as unbuffered on both input and output. The normal buffering
mode of a file depends on whether it is in the file system, or to a character device such as a terminal or
console.

When the file is unbuffered, all input and output to that file will occur immediately, without going
through internal buffers. In general, an unbuffered file is much less efficient for file I/O. Unbuffering is
temporary, as the file will revert to a buffered state when it is closed or reopened.

Example

Gamma>fu = open("mytestfile.dat","r",nil);
#<File:"mytestfile.dat">
Gamma>unbuffer_file(fu);
#<File:"mytestfile.dat">

Gamma>

62

unlink
unlink — deletes a file.

Syntax

unlink (filename)

Arguments

filename

A string representing a valid file name.

Returns
t if the file could be deleted, otherwisd

Description

This functioin deletes a file in the file system. It will fail if the given file does not exist, or the calling
process does not have sufficient privilege to delete the file. Wild cards are not expanded in the file name.

Example
Gamma>fu = open("todeletefile.dat","r");
#<File:"todeletefile.dat">
Gamma>unlink("todeletefile.dat");
t
Gamma>unlink("todeletefile.dat");
nil
Gamma>

See Also

open

63

I1l. OS APIs

Table of Contents

L[S (| PP S TSR 65
block_signal VYo o] [Yo =1 o = 1 66
L= o TP 67
123 ST oSSR 68
L2 LA o] (o |- Vs OSSR 69
(0] 1 SRR 70
[0S (= Y TP PP 72
GEINOSINAME .ottt b et b et bt e bt e b e se b et b et e b et b ne e ae st b et 73
(o131 01T O TSSOSO SRTPTSRUPTRRTR 74
(613 1] [SO SSOTSTPTTOE PO PRTPTSTTPTRURPO 75
(o T<T {0 T0) (o] o RN ST= ko Tox (o] o] ARSI 76
Kl R R R R R R R R Rt R Rt n R R n e 78
(QE=TaTo 1S [=T=T o OSSPSR 79
=] (=T 1 TP 80
£ T 0 01 S 81
£] 0 L1 1 83
] 10| | S 84
RS (ST & TR] T T o S 86
ST =] (o LU SURR PR 87
1S3/ (=] 0 PO P 88
Lo = Te] o =T o TP 89
(o1 o o]0 1 0 [T o TP 90
1003 oI 1151 (= o [T TSP S S TSP SO PTRTPRTRPRPRPRTRTN 91
LT L SO SR 92

64

atexit

atexit — evaluates code before exiting a program.

Syntax

atexit (code)

Arguments

code

Code to be evaluated.

Returns

The result of evaluatingode .

Description

This function gives a program an opportunity to evaluate specified code before it exitsoddeshould
be protected from evaluation using the quote operator

Example

Running this program...

#!/usr/cogent/bin/gamma

/I Program name: exiting.g
/I Demonstrates the atexit() function.

atexit(#princ("Exiting now.\n"));
princ("Started running...\n");
princ("Still running.\n");
exit_program(7);

princ("You missed this part.\n");

...gives these results:

[sh]$ exiting.g
Started running...
Still running.
Exiting now.
[sh]$

65

block signal , unblock_signal

block_signal, unblock_signal — delimit signal blocking.

Syntax
block_signal (signo)
unblock_signal (signo)

Arguments
signo

The integer signal number as defined by the operating system. Symbols KIGild3 are defined
to provide an operating-system independent method for specifying this numbesigisale)

Returns

t

Description

block_signal causes a particular signal to be blocked until a calinblock_signal is made. If

the signal actually occurred while it was blocked, it will occur immediately windslock_signal is
called. Multiple occurrences of the signal while it was blocked will cause the signal to be reported
multiple times wherunblock_signall is called on most operating systems. Code that blocks signals

should be surrounded by a callsowind_protect

Example

Gamma>block_signal(14);

t

Gamma>kill(getpid(),14);

t
Gamma>unblock_signal(14);
Alarm clock

Gamma>block_signal (SIGINT);

t

Gamma>critical_function();
<function return>
Gamma>unblock_signal (SIGINT);
t

See Also

block timers , unblock_timers

66

errno

errno — detects and numbers errors.

Syntax

erro ();

Arguments

none

Returns

The system error number.

Description

When a function fails it returns a value and optionally sets the system error numberriibe function
can be used to check the current error number. To check error numbers against constant error code in
your program remember to include the file witkquire_lisp ("Errno.Isp™);.

@ Calling theerrno function in interactive mode does not return a valid number since you are
retrieving the errno of the C functigorintf of the error to the screen (which will usually be
0).

Example

In this example, we first define a function to remove a file. Then we call that function on a non-existing
file to generate an error. Finally, we check the returned error code to get the error message.

function remove_file(file)

{
unlink(file);
errno();
}
Gamma>ret_val = remove_file("/tmp/xyz");
2
Gamma>strerror(2);

"No such file or directory"
Gamma>

See Also

error , strerror

67

exec

exec — executes a program.

Syntax

exec (program , arguments ?...)

Arguments

program

The name of a program to execute, as a string.
arguments

The arguments to the program, each as a string.

Returns

Does not return if successful, or -1 if an error occurs.

Description

This function is a binding for the C functicgxecvp , which causes the interpreter to terminate
immediately, and to run the named program in its place. The
search is made for the named executable in the current path, as defined by the PATH shell variable.
Unlike the Cexecvp function, the first argument in Gammaégec function does not repeat the

program name—it is automatically inserted for you.

Example
Gamma>exec("/bin/Is","-I","/usr/bin");
-TWXT-XI-X 1 root root 98844 Aug 7 2000 a2p*
-FWXT-XI-X 1 root root 4080 Jul 19 2000 access*
-TWXT-XT-X 1 root root 10256 Jul 12 2000 aclocal*
See Also
fork , wait

iexieevp function indicates that a

68

exit_program

exit_program — terminates the interpreter.

Syntax

exit_program (return_value)

Arguments

return_value

An integer value to be returned to the operating system when the program exits.

Returns

This function does not return.

Description

Terminate the interpreter immediately and return the provided integer value to the operating system as an
exit code.

Example

Running this program...

#!/usr/cogent/bin/gamma
//[Program: exiting.g

atexit(#princ("Exiting now.\n"));
princ("Started running...\n");
princ("Still running.\n");
exit_program(7);

princ("You missed this part.\n");

...gives these results:

[I$ gamma exiting.g
Started running...
Still running.
Exiting now.

1]

Exit showing abnormal termination of -1 (255) to the operating system.
exit_program(-1);
/>echo $?

255
/>

69

fork

fork — duplicates a process.

Syntax
fork ()

Arguments

none

Returns

A positive task id that identifies the child process, and 0 that identifies the parent process to the child; or
-1 if an error occurred. The errno is set if an error occurs.

Description

Thefork function creates a new process identical to the calling (parent) process except for a unique
process ID. The child process has a different parent process ID and its own copy of the parent file
descriptors. The child process does not inherit outstanding signals.

Example

The following example illustrates using therk function withif syntax. This is a useful way of
separating the two, identical processes produced fookn . The first block of code applies to the parent
process, while the second block applies to the child.

#!/usr/cogent/bin/gamma

if ((childID = fork()) > 0)
{
princ("P> My ID is: ", getpid(),"\n");
princ("P> My child's ID is: ", childID, "\n");
signal(SIGCHLD, #princ("P> Signal received that my child -- ",
childID, " -- has died.\n"));
princ("P> Waiting for my child.\n");
w = wait(childID);
princ("P> wait() returned this: ", w, "\n");
}
else
{
sleep(2);
if (childID == -1)
error("C> An error occurred.\n");
else
{
princ("C> | am the child process.\nC> My process ID is: "
getpid(), "\n");
sleep(2);
princ("C> Time to exit.\n");
exit_program(3);

}

Will produce these results:

P> My ID is: 1225
P> My child's ID is: 1226
P> Waiting for my child.

70

(after 2 seconds)

C> | am the child process.
C> My process ID is: 1226

(after 2 more seconds)

C> Time to exit.
P> Signal received that my child -- 1226 -- has died.
P> wait() returned this: (1226 3 nil nil)

See Also

exec , wait

fork

71

getenv

getenv — retrieves the value of an environment variable.

Syntax

getenv (envar)

Arguments

envar

A string.

Returns

A string containing the value of the given environment variablailor if the environment variable is not
defined.

Description

This function retrieves the value of an environment variable from the current process’s environment. The
environment variable must have been set or defined previously by a celidov .

Example
Gamma>setenv("high", "40");
t
Gamma>getenv("high");
40"
Gamma>low = 20;
20
Gamma>getenv("low");
nil
Gamma>

See Also

setenv

72

gethostname
gethosthame — gets the computer’s host name.

Syntax

gethostname ()

Arguments

none

Returns

The host name of this computer, as a string.

Example

Gamma>gethostname();
rex”
Gamma>

73

getnid

getnid — returns the local node number.

Syntax
getnid ()

Arguments

none

Returns

The node number

Example

Gamma>getnid();
2

See Also
getpid

74

getpid
getpid — returns the program ID.

Syntax
getpid ()

Arguments

none

Returns

The program ID of the current session of the interpreter.

Example

Gamma>getpid();
8081
Gamma>

See Also
getnid

75

getsockopt , setsockopt

getsockopt, setsockopt — get and set a socket option.
Syntax

getsockopt (socket , option)

setsockopt (socket , option , value , value ,? = nil)
Arguments

socket

The file descriptor of a socket.
option

The option being queried. Supported options and their possible values are listed below.
value

The value to set the socket option to. There may be one or two values, depending on the option. If a
socket option requires two values, both must be specified.

Returns

getsockopt returns the socket option value(s) on success, as shown beloW, arn failure. When
the option has two values, they are returned as a list.

setsockopt returnsO on success, otherwisg .

Description

These functions get and set a socket option, using the socket’s file descriptor. The supported socket
options are given below.

@ SO_SNDTIMEQSO_RCVTIMEQSO_SNDLOWAGNdSO_RCVLOWAAre not supported by
all operating systems.

Option Possible Values Comments

SO_BROADCAST |0 for off, non-zero for on. | Allows for broadcasting datagrams from the

socket.

SO_DEBUG 0 for off, non-zero for on. | Records debugging information.

SO_DONTROUTE |0 for off, non-zero for on. | Sends messages directly to the network interface

instead of using normal message routing.

SO_ERROR A number. Resets the error status (fgetsockopt only).

SO_KEEPALIVE 0 for off, non-zero for on. | Transmits messages periodically on a connected

socket. No response means the connection i$
broken.

SO_LINGER Two valueson_or_off Keeps the socket open afteclase() call, to
andlinger_time , where| deliver untransmitted messagesoif or_off
on_or_off is 0 for off, is non-zero, the socket will block for the
non-zero foron. If on, a | duration of thdinger_time or until all
value forlinger_time is | messages have been sent.
required.

76

getsockopt , setsockopt

Option

Possible Values

Comments

TCP_NODELAY

0 for enable, non-zero for
disable.

Disables the Nagle algorithm for sending datg

SO_OOBINLINE

0 for off, non-zero for on.

Puts out-of-band data in the normal input que

SO_REUSEADDR

0O for off, non-zero for on.

Permits the reuse of local addresses for this
socket.

D.

SO_RCVBUF A number. The size of the input buffer.
SO_RCVLOWAT A number. Sets the minimum count for input operations.
SO_RCVTIMEO Two valuesseconds and | Sets a timeout value for input.
nanoseconds .
SO_SNDBUF A number. The size of the output buffer.
SO_SNDLOWAT A number. Sets the minimum count for output operations
SO_SNDTIMEO Two valuesseconds and | Sets a timeout value for output.
nanoseconds .

SO_TYPE A number. The type of socket (fogetsockopt only).
Example

Gamma>skt = tcp_connect("localhost”, 22);

8

Gamma>getsockopt(skt, SO_KEEPALIVE);

0

Gamma>setsockopt(skt, SO_KEEPALIVE, 1);

0

Gamma>getsockopt(skt, SO_KEEPALIVE);

1

Gamma>getsockopt(skt, SO_DEBUG);

0

Gamma>setsockopt(skt, SO_DEBUG, 1);

1

Gamma>getsockopt(skt, SO_DEBUG);

0

Gamma>

77

kill

kil — sends a signal to a process.

Syntax
kill (pid , signo)

Arguments
pid

The process id number.
signo

The signal number, normally one of the built-in signal values.

Returns
t

Description

This process functions similarly to th@l shell command. Signals and their descriptions can be found
in signal

Example

Process 1:

Gamma>getpid();
8299
Gamma>

Process 2:

Gamma>kill(8299,9);
t
Gamma>

Process 1:

Gamma> Killed

Process 3:
Gamma>getpid();
9041
Gamma>kill (9041,14);
Alarm clock

See Also

signal

78

nanosleep
nanosleep — pauses the interpreter for seconds and nanoseconds.

Syntax

nanosleep (seconds , nanosecs)

Arguments

seconds

The number of seconds to pause.
nanosecs

The number of nanoseconds to pause.

Returns

t after the time has elapsed.

Description

This function will pause the interpreter for the total time of seconds + nanoseconds

Example

Gamma>time(1,nanosleep(0, 999999999));
1.0009529590606689453
[lthis example is done with the ticksize at 0.5 ms.

See Also

sleep

setenv

setenv — sets an environment variable for the current process.

Syntax

setenv (envar , value)

Arguments

envar
The name of the environment variable to set.

value

The string value for this environment variable.

Returns

t on success, atil on failure.

Description

This function sets an environment variable for the current process. Both arguments are strings. The value
of an environment variable can be acquired using the funggenv .

Example
Gamma>setenv("high"”, "40");
t
Gamma>getenv("high");
40"
Gamma>low = 20;
20
Gamma>getenv("low");
nil
Gamma>

See Also

getenv

80

shm_open

shm_open — opens shared memory objects.

Syntax

shm_open (share_name , open_flags , create_mode , size ?)

Arguments

share_name
The name of the shared memory object.
open_flags
Open control flags.
create_mode
Creation mode.
size

The size of the shared object in bytes.

Returns

A handle to the shared memory objectnilr on failure.

Description
This function is a wrapper for the C functieim_open. It is currently only available in QNX 4.

The name of the shared memory object is usually a name found under the /dev/shmem directory. Direct
shared memory access to devices is acheived throsgmaopen call to the existingPhysical
shared memory.

@ If you are accessing the existifysical shared memory region

(/dev/ishmem/Physical) DO NOT use thesize argument, as you may inadvertantly resize
this shared memory. Thedze argument is added as a convenience, and can be used to specify
the size of a newly created object.

Valid open-flags are OR-ed combinations of:

O_RDONLY open for read-only
+ O_RDWR open for read and write access

« O_CREAT create a new shared memory segment with access privledges governed by the
create_mode parameter

« O_EXCL Exclusive mode. If O_EXCL and O_CREAT are set then shm_open will fail if the shared
memory segment exists.

« O_TRUNC If the shared memory object exists, and it is successfully opened O_RDWR, the object is
truncated to zero length and the mode and owner are unchanged.

The creation mode is usually an octal number in the range 00000 - 00777 defining the access privledges
for the shared memory object. Require the 'const/filesys’ file to load constants to make this arg easier

Possible errno values are:

81

shm_open

« EACCESSpermission to create the shared memory object denied

« EEXIST O_CREAT and O_EXCL are set and the named shared memory object already exists
- EINTR The function call was interrupted by a signal

- EMFILE Too many file descriptors in use by this process

« ENAMETOOLONG The lengthof the name arg is too long

- ENFILE To many shared memory objects are currently open in the system

- ENOENT O_CREAT is not set and the named shared memory object does not exist, or O_CREAT is
set and either the name prefix does not exist or the name arg is an empty string

« ENOSPCNot enough space for the creation of the new shared memory object

« ENOSYSThis function is not supported by this implementation.

Example

/IThis code maps the first 1000 bytes from video
//Imemory (0xA0000) into a buffer named buf.

require_lisp("const/filesys");
require_lisp("const/mman");

fd = shm_open("Physical",0_RDONLY, 00777);
buf = mmap(1000, PROT_READ , MAP_SHARED, fd, 0xA0000);

See Also

mmap shm_unlink

82

shm_unlink
shm_unlink — removes shared memory objects.

Syntax

shm_unlink (share_name)

Arguments

share_name

The name of the shared object to delete.

Returns

t on success, atil on failure, witherrno set.

Description

This function is currently only available in QNX 4. It attempts to remove the shared object,
share_name . If more than one process or link into the shared memory area exists the shared object
will not be removed.

Possible values of errno are:

+ EACCESSPermission to unlink the object is denied
- ENAMETOOLONG The lenght of the name of the object is too long

ENOENT The named shared memory object does not exist.

ENOSYSThis function is not supported by this implementation.

Example

Gamma>shm_unlink("card_mem");
t
Gamma>

See Also

shm_open, mmap

83

signal

signal — defines an expression to be evaluated at an OS generated signal.
Syntax

signal (signal , action [, action]..)

Arguments

signal

A signal number. Normally one of the built-in signal values.
action

Any Gamma or Lisp expression.

Returns
t

Description

This function defines an expression to be evaluated whenever the operating system generates signal
number signal to this process. A signal handler may be of any complexity, though it is advisable to keep
signal handlers as simple as possible. All signals and timers are blocked for the duration of the signal
handler. In addition, the signal handler runs in a separate, smaller heap. If the signal handler is large, this
could result in memory inefficiency. Signal handlers are typically used to ensure that the Gamma
application does not exit when a signal occurs.

Table 1. Signals

Signal Description

SIGABRT Abort signal from theabort() C function.

SIGALRM A timer has occurred. This signal is reserved in most operating system
implementations of Gamma for use with thi¢er , at andevery
functions. This signal is not available in Linux because it is used by the
timer processing internally to Gamma. In QNX, it is the timer signal from
thealarm() C function.

SIGBUS Bus error.

SIGCHLD Child died. Generated when a child process of the current process has|died.

SIGCONT Continue. Causes the task to restart after a SIGSTP.

SIGFPE Floating point exception. Generated by an illegal mathematical function call
(such as division by zero).

SIGHUP Hangup. Typically generated when a terminal session disconnects.

SIGILL lllegal instruction. This is an internal error.

SIGINT Keyboard interrupt. Generated BTRL-C.

SIGIO I/O processing is required. This signal is generated when a socket or file
descriptor has incoming data which must be processed.

SIGIOT IOT trap. A synonym folSIGABRT.

84

signal

egal
rand
e

to the

Signal Description

SIGKILL Killed. Kills the process with extreme prejudice. This signal cannot be
caught.

SIGPIPE Broken pipe. This occurs when a TCP/IP socket or a pipe to an inferior
process is broken.

SIGPOLL A pollable event. Synonym @&IGIO .

SIGPWR Power failure. This is generated by a power monitor program to indicate that
a power loss is imminent.

SIGQUIT Quit.

SIGSEGV Segmentation fault. This signal is generated by an attempt to accessill
memory. If this signal occurs, it represents a fault in the LISP interprete
should be reported along with the corresponding memory address of th
fault.

SIGSTOP Stop execution immediately. This is used by the operating system to
implement multi-tasking. This signal cannot be caught.

SIGSYS Bad argument to a system routine. This happens very rarely.

SIGTERM Terminated. This is generated by other programs which wish to terminate
the job.

SIGTRAP Trace/breakpoint trap.

SIGTSTP Terminal stop. This signal is generated when the user attempts to stop
process (in operating systems which support job control).

SIGTTIN Terminal input is available.

SIGTTOU Terminal output is required.

SIGURG Urgent. An urgent condition has occurred.

SIGUSR1 User-defined signal 1.

SIGUSR2 User-defined signal 2.

SIGWINCH Window change. This is used to indicate that a change has been made
size or position of the window in which the process is running.

Example

Gamma>getpid();
10341

Gamma>signal(SIGUSR1,#princ("Got the signal.\n"));

t

Gamma>kill(10341,SIGUSR1);
Got the signal.

t

Gamma>

See Also

after

,at , every

85

sleep , usleep
sleep, usleep — suspend execution.

Syntax

sleep (seconds)
usleep (microseconds)

Arguments

seconds

The integer number of seconds to sleep.
microseconds

The integer number of microseconds to sleep.

Returns
t

Description

These functions suspend execution for the given number of seconds or microseconds, after which time
the task continues. Signals and timers will still be processed during this time.

Example
Gamma>sleep (3);

(after 3 seconds...)

t
Gamma>usleep (500000);

(after 1/2 second...)

t
Gamma>

See Also

nanosleep

86

strerror

strerror — retrieves an error message.

Syntax

strerror (errno)

Arguments

errno

The error number as returned bgrno .

Returns

An error message as a string.

Description

This function looks up error messages associated with error numbers.

Example

In this example, we first define a function to remove a file. Then we call that function on a non-existing
file to generate an error. Finally, we check the returned error code to get the error message.

function remove_file(file)

{
unlink(file);
errno();
}
Gamma>ret_val = remove_file("/tmp/xyz");
2
Gamma>strerror(2);

"No such file or directory"
Gamma>

See Also

errno

87

system

system — treats its argument as a system command.

Syntax

system (command_line)

Arguments

command_line

A string.

Returns

A numerical return code as generated by the operating system.

Description

This function treats its argument as a command to be run in the native operating system. This function
will wait until the command completes before returning with the command’s exit status. In UNIX and
QNX 4, the command may be run in the background by usin§ symbol after theeommand_line
argument.

Example

Gamma>system("ps");

PID TTY TIME CMD
7856 pts/4 00:00:00 bash
8335 pts/4 00:00:00 Gamma
8336 pts/4 00:00:00 ps
0
Gamma>system(“ls *ty*");
li_type.c li_type.o privity.c pty.Isp
0
Gamma>system("mysubtask &");
0

88

tcp_accept

tcp_accept — forks a new TCP socket on the server side to accept a new connection.

Syntax

tcp_accept (socket)

Arguments

socket

A descriptor for a listening socket, as returned by a catitfo listen

Returns

A file descriptor for a new, connected socket.

Description

This function allows a passive, listening socket to accept a connection, by spawning a new socket that
maintains the connection. It is essentially the same as thec€pt function, but returns a socket
descriptor instead of an address.

Example
CLIENT SIDE: SERVER SIDE:
Gamma>tcp_listen(51715);
5
Gamma>tcp_accept(51715);
Gamma>tcp_connect("localhost”, 51715); 6
5
Gamma>fd_write(5, "Hi there"); Gamma>fd_read(6, "Hi there");
8 8
See Also

tcp_connect , tcp_listen

89

tcp_connect

tcp_connect — creates a client-side TCP socket connection.

Syntax

tcp_connect (host, port)

Arguments

host

The IP address of the host machine.
port

The port to connect to.

Returns

A file descriptor for a new, connected socket.

Description

This function creates a connected socket. This can be accessed with Ganiméunctions such as
fd_write andfd_read

Example

See the example facp_accept

See Also

tcp_accept |, tcp_listen

90

tcp_listen

tcp_listen — creates a server-side TCP socket connection.

Syntax

tcp_listen (port, backlog?)

Arguments

port

The port to connect to.
backlog

The IP address of the host machine.

Returns

A file descriptor for a new, connected socket.

Description

This function creates a connected socket. This can be accessed with Ganiméunctions such as
fd_write andfd_read

Example

See the example facp_accept

See Also

tcp_accept |, tcp_connect

91

wait

wait — waits for process exit status.

Syntax

wait (taskid ?, options ?)

Arguments

taskid

A process ID number. A value & indicates any process.
options
Wait optionWNOHANG WUNTRACED

Returns

One of three possibilities:

+ Alist of four items:
1. The process ID.
2.The process exit statugEXITSTATUS or nil
3. A termination signal(WTERMSIEIf the process exited due to a signal,rar .
4. A stopped signalWWSTOPSIGif the process stopped due to a signalpibr .

- t if the WNOHANGption had been set and there was a child with a status change.

- nil if there was a failure due to error.

Description

This function combines and simplifies the C functiovesit andwaitpid in a single function. If
taskid is provided, then the function actswaaitpid , and will not return until the given child task
has died.

The WNOHANG@ption allows the calling process to continue if the status of specified child process is not
immediately available. ThR&/UNTRACE®@ption allows the calling process to return if the child process
has stopped and its status has not been reported. Both of these can be specified @GiR{fj the

operator.

Example

Process 1:

Gamma>child = fork();

9089

Gamma> 0

Gamma>if (child > 0) wait(); else exit_program(5);

Process 2:
Gamma>kill(9089,14);

92

t
Gamma>

Process 1:

(9089 nil 14 nil)
Gamma>

See Also

fork , exec

wait

93

V. Dynamic Loading

Table of Contents

1 (0 I T T 95
autoload_undefined_SYMDOI e 97
1011/ =T o U o 1 o 98
L@ =TT AU (o] o - Vo S 99
(o] T [1= OO RROSRR PR RRSUPR 100
(o] 1T g (o] OO ORRTOU SRR RRSRRPRO 101
IUNC ettt et e st e e he e besbeeabesbeeaeensesaeensesbeeseenbeeteensesseeneesresaeenbesteans 102
3]/ a = Lo [OOSR 103
(o T aT=T 1 g T o RO SRRRSRRPR 104
[N\ Y 0 o] 0¥ Vo SO SRR 105
(o] [o] o= o USSR 106

94

AutoLoad

AutoLoad — allows for run-time symbol lookup.

Syntax

AutoLoad (" pattern ", ‘ action)

Arguments

pattern

A shell style pattern.
action

An action to be taken when thmattern is matched.

Returns
The_auto_load_alist_ , which is a list of all currently storedutoLoad rules. Each rule is itself
formatted as a list. This is theauto_load_alist_ syntax:

((pattern action_func action_arg))

The members of each rule list are as follows:

pattern

TheAutoLoad pattern parameter.
action_func

The function specified in thAutoLoad action parameter.
action_arg
The function argument(s) specified in thatoLoad action parameter.
For example, thé&utoLoad rules inAutoLoadLib.g (at the time of this writing) would be returned

as follows:

(("P[Tthg]*"* DllLoad "libgammaph.so") (“gl[A-Z]*" DllLoad "libgammagl.so0")
("GLUT_*" DllLoad "libgammagl.so") ("GLU_*" DllLoad "libgammagl.so")
("GL_*" DllLoad "libgammagl.so") ("ASCII_*" DllLoad "libgammamgl.so")
("KB_*" DllLoad "libgammamgl.so") ("GM_*" DllLoad "libgammamgl.so")
("EVT_*" DllLoad "libgammamgl.so") (“[mM][gG][IL]*" DliLoad "libgammamgl.so")
("[0G]tk*" DllLoad "gammagtk.so"))

Description

This function gives Gamma a way to look up symbols during run-time. If Gamma comes across an
undefined symbol while executing a program, and if the symbol matchemtteen , then Gamma
executes thaction . Normally theaction is either a direct definition of the symbol, or an attempt to
load a DLL that defines the symbol, usibjLoad , for example.

The availablepattern s are as follows:

- * matches any number of characters, including zero.
- [c] matches a single character which is a member of the set contained within the square brackets.

« [*c] matches any single character which is not a member of the set contained within the square
brackets.

95

AutolLoad

« ?matches a single character.
« {xx,yy } matches either of the simple strings contained within the braces.

- \c (a backslash followed by a character) - matches that character.

@ This function is not part of the base Gamma executable. It is provided by a Gamma library
AutoLoadLib.g which can be accessed using the Gametpiire function like this:

require ("/usr/cogent/require/AutoLoadLib.g");

Example

@ « Inthis example, we use th@learAutoLoad function to clear thédutoLoad list justto
make the steps easier to follow.
« Once a library is loaded or a symbol is defined, Gamma no longer sehd®kifig for
symbol " message.
+ Notice how althougiNoAutoLoad andClearAutoLoad remove a pattern from future
consideration, any symbols defined or any libraries loaded before they were called remain valid.

Gamma>require ("/usr/cogent/require/AutoLoadLib.g");
t

Gamma>ClearAutoLoad();

nil

Gamma>AutoLoad ("[gG]tk*", ‘DllLoad ("gammagtk.so"));
(("[oG]tk*" DllLoad "gammagtk.so"))
Gamma>gtk_arg_new;

Looking for gtk_arg_new

(defun gtk_arg_new (arg_type) ...)
Gamma>gtk_main;

(defun gtk_main () ...)

Gamma>testvar;

Looking for testvar

Symbol is undefined: testvar

debug 1> (Ctrl - D)
Gamma>AutoLoad("testvar", ‘testvar = 5);
(("testvar" setq testvar 5) ("[gG]tk*" DllLoad "gammagtk.so"))
Gamma>testvar;

Looking for testvar

5

Gamma>NoAutoLoad("testvar");

(("[oG]tk*" DllLoad "gammagtk.so"))
Gamma>testvar;

5

Gamma>ClearAutoLoad();

nil

Gamma>gtk_main;

(defun gtk_main () ...)
Gamma>gtk_false;

(defun gtk_false () ...)

Gamma>

See Also
ClearAutoLoad , NoAutoLoad , DllLoad

96

autoload_undefined_symbol

autoload_undefined_symbol — checks undefined symbols féutoLoad .

Syntax

autoload_undefined_symbol (! sym)

Arguments
sym

A symbol.

Returns

nil on success, else error.

Description

This function is generally used internally by tAetoLoadLib.g program. It is the default function

that is called when an undefined symbol is encountered at run-time, Alutteb.oad.g library has

been required into the program. This is normally done by startup.g, which is automatically loaded by the
Gamma executable at startup.

Example

In this example, the first symbdiegstl) is checked byautoload _undefined_symbol from

within the AutoLoadLib.g program. We know this because the messag®king for symbol "
indicates that Gamma had to usetoLoadLib.g to get the definition of the symbol. For the second
symbol test2), we make theutoload_undefined_symbol call ourselves, and the_boking

for symbol " doesn't appear. This indicates that Gamma knew the value of the symbol and didn’t have
to useAutoLoadLib.g to look it up.

Gamma>AutoLoad("testl", ‘testl = 9);

(("testl" setq testl 9) ("P[Tthg]*" DllLoad "libgammaph.so")...)
Gamma>testl;

Looking for testl

9

Gamma>AutoLoad("test2", ‘test2 = 8);

(("test2" setq test2 8) ("testl" setq testl 9) ("P[Tthg]*" DllLoad "libgammaph.so")...)
Gamma>autoload_undefined_symbol(test2);

nil

Gamma>test2;

8

Gamma>

See Also
AutoLoad

97

AutoMapFunction

AutoMapFunction — maps a C function to a Gamma function.
Syntax

AutoMapFunction (name, rettype , args)

Arguments

name

The name of a C function.
rettype

Not yet documented.
args

Not yet documented.

Returns

Not yet documented.

Description

This function checks to see if the C functioame exists in (is linked into) the Gamma executable. If so,
it then maps it to a Gamma function according totbigype andargs . The details this function
have not yet been documented.

See Also
AutolLoad

98

ClearAutoLoad

ClearAutoLoad — removes alAutoLoad rules.

Syntax

ClearAutoLoad ()

Arguments

None.

Returns

nil

Description

This function removes alAutoLoad rules by setting theauto_load_alist_ to nil

@ This function is not part of the base Gamma executable. It is provided by a Gamma library
AutoLoadLib.g which can be accessed using the Gammetpiire function like this:

require ("/usr/cogent/require/AutoLoadLib.g");

Example

See the example fakutoLoad

See Also
AutoLoad , NoAutoLoad

99

diclose
diclose — closes an open dynamic library.

Syntax

diclose (handle)

Arguments

handle

The "handle" returned bgllopen .

Returns

0 when successful, else -1.

Description

This function is a wrapper for théiclose shell command. Each call decrements the link count in the
dl library created byllopen . When this count reaches zero and no other loaded libraries use symbols in
it, the library is unloaded.

If the library exports a routine namedini , that will be called just before the library is unloaded.

Example
Gamma>dlopen("libform.so",RTLD_NOW|RTLD_GLOBAL);
134940024
Gamma>a = dlopen("libform.so",RTLD_NOW|RTLD_GLOBAL);
134940024

Gamma>diclose(a);
0
Gamma>diclose(a);
0
Gamma>diclose(a);
-1

Gamma>

See Also

dlopen

100

dlerror

dlerror —reports errors in dl functions.

Syntax

dlerror ()

Arguments

none

Returns

An error message, or 0 if no error has occurred since it was last called.

Description

This function returns an error message for the most recent erdbojpen or diclose . If several
errors have occured since the last caltlterror , only the first will return an error message.

Example

Gamma>dlopen("nolibraryhere",RTLD_LAZY);

0

Gamma>dlopen("norhere",RTLD_LAZY);

0

Gamma>dlerror();

"norhere: cannot open shared object file: No such file or directory"
Gamma>dlerror();

nil

Gamma>

See Also

dlopen , diclose

101

difunc

dlifunc — reserved for future use.

Syntax

difunc (handle symname rettype args)

Arguments

Returns
Description

Example

See Also

102

DllLoad

DllILoad — loads dynamic libraries.
Syntax

DllLoad (* filename ", verbose ? = nil)
Arguments

filename

The name of the dynamic library to be loaded.
verbose

When set td , shows the paths of load attempts.

Returns

An integer "handle" on success, or an error message.

Description

This function loads a DLL if the system supports it (Linux, QNX 6, and MS-Windows). The first search
path for the DLL is taken to b , next is/usr/cogent/dll/ , and finally the system DLL search
path, if any.

Example

Without using the optionalerbose parameter:

Gamma>DllLoad("gammagtk.so");
135024608
Gamma>

Using the optionaterbose parameter:

Gamma>DllLoad("gammagtk.so", t);

DllLoad: attempting to load: ./gammagtk.so

DllLoad: attempting to load: /usr/cogent/dll/gammagtk.so
135024608

Gamma>

See Also
AutoLoad

103

dimethod

dlimethod — reserved for future use.

Syntax

dimethod (handle class methodname symname rettype args)

Arguments

Returns
Description

Example

See Also

104

NoAutoLoad

NoAutoLoad — removes selectefjutoLoad rules.

Syntax

NoAutoLoad (" pattern ")

Arguments

pattern

A shell style pattern.

Returns

The_auto_load_alist_ (alist of all currently storedutoLoad rules) with the rules
corresponding to thpattern removed.

Description
This function removes from future consideration @ytolLoad rules that correspond to thpattern

The availablepattern s are as follows:

- * matches any number of characters, including zero.
- [c] matches a single character which is a member of the set contained within the square brackets.

« [~c] matches any single character which is not a member of the set contained within the square
brackets.

- ?matches a single character.
« {xx,yy } matches either of the simple strings contained within the braces.
- \c (a backslash followed by a character) - matches that character.

e This function is not part of the base Gamma executable. It is provided by a Gamma library
AutoLoadLib.g which can be accessed using the Gammetpiire function like this:
require (“/usr/cogent/require/AutoLoadLib.g");

Example

See the example fakutoLoad

See Also
AutoLoad , ClearAutoLoad

105

dlopen

dlopen — loads a dynamic library from a file.

Syntax

dlopen (filename flags)

Arguments

filename

The name of the file to open, as a string. If no absolute path is given, the file is searched for in the
usersLD_LIBRARY path, the'etc/ld.so.cache list of libraries, and theusr/lib/
directory.

flags
Must be eitheRTLD_LAZYor RTLD_NOWbptionally OR’ed withRTLD_GLOBAL
« RTLD_LAZY causes undefined symbols to be resolved as the dynamic library code executes.

« RTLD_NOMobrces undefined symbols to be resolved beftiopen returns, otherwisdlopen
fails.

- RTLD_GLOBAIlmakes any external symbols defined in the library available to subsequently
loaded libraries.

Returns

An integer "handle" if successful, else 0.

Description

This function is a wrapper for thélopen shell command. It loads a dynamic library from the file and
returns a "handle", which is an integer uniquely associated with the file for this application. The same
handle is returned each time the same library is opened, and the dI library counts the number of links
created for each handle.

If the library exports a routine namedhit , that will be executed befordlopen returns.

Example

Gamma>dlopen("libform.so",RTLD_LAZY|RTLD_GLOBAL);
134936808

Gamma>dlopen("libconsole.so",RTLD_NOW);

0

Gamma>dlopen("libconsole.so",RTLD_LAZY);

134935848

Gamma>dlopen("libconsole.so",RTLD_LAZY);

134935848

See Also

diclose

106

V. Profiling and Debugging

Table of Contents

=1 Lo Tox= 11 =To [o =1 | 3 108
(<22 | o T | SRS 109
L=< o =] | 110
L8] o3 1T T o || 111
FUNCHION_TUNTIME bbbttt b e et st st ettt ebenens 112
0 o PPN 113
OC_DIOCKSIZE bbb bbb e 114
OC_ENADIE e bbb bbbt bt e e 115
Lo Lo 1 =11 o] o Tt 116
Lo [o =Yo7 =TRSO PPPPR 117
o]0 11U 118
ST = LU [(0] = T = SRR 120
EST=T A 012 124 0111 | SR 121
L[0T PTPPTUPTSRRTRRPRIN 122
(1= ToT T 0 1 = Tt PSPPSR 123

107

allocated_cells

allocated_cells — gives the number of allocated and free cells.

Syntax

allocated_cells ()

Arguments

none

Returns

A list containing the number of allocated cells and the number of free cells currently held by the memory
management system.

Description

The memory management system allocates cells as required to continue execution, limited only by
operating system memory. Once cells have been allocated, they are placed on the heap by the garbage
collector and re-used. New cells are only allocated from the operating system if the garbage collector is
unable to fulfill a request for more memory from the running Gamma or Lisp program. This function
returns the number of cells which are currently in use, and the number of free cells remaining on the
heap. The sum of these numbers is the total number of cells allocated by the interpreter.

Example

This example shows 380 cells in use and 1620 cells free on the heap, for a total of 2000 cells available.

Gamma>allocated_cells();
(380 1620 0 0 0 0 0 0)
Gamma>

See Also

free_cells ,gc

108

eval _count

eval_count — counts evaluations made since a program started.

Syntax

eval_count ()

Arguments

none

Returns

A list of three values. First is the number of times any symbol has been evaluated. Second is the number
of times any function has been evaluated. Third is the number of times any other Gamma expression has
been evaluated.

Description

This function counts the number of evaluations of symbols, functions, and other Gamma expressions. All
of these are counted from the time the program started.

Example

Gamma>gc();

1
Gamma>eval_count();
0 20

Gamma>a = 5;

5
Gamma>eval_count();
041

Gamma>a,;

5
Gamma>eval_count();
@51

Gamma>

109

free_cells

free_cells — returns the number of available memory cells.

Syntax

free_cells ()

Arguments

none

Returns

The number of free memory cells available on the memory heap.

Example

Gamma>free_cells();
1620
Gamma>

See Also

allocated_cells

110

function_calls

function_calls — tells how often a function was called during profiling.

Syntax

function_calls (function)

Arguments

function

A function.

Returns

The number of times this function has been called while profiling was active.

Description

This function queries the system to determine the number of times that a function was called while
profiling was active (using the profile function).

Example

Gamma>profile(t);
t

for(i=0;i<10;i++)

{

princ("i:",i,"\n");

>> .0

>> il

>> 2

>> i3

>> 4

>> 5

>> 6

>> 7

>> .8

>> 9

Gamma>i;

9
Gamma>profile(nil);
t
Gamma>function_calls(princ);
10

See Also

profile , function_runtime

111

function_runtime
function_runtime — gives the time a function has run during profiling.

Syntax

function_runtime (function)

Arguments

function

A function.

Returns

The total number of seconds that flaection has run.

Description

This function returns the number of seconds (as a floating point number) that a function has run during
all complete invocations of the function while profiling has been active. The number of seconds is
measured using the QNX 4 tick clock, and thus represents elapsed time rather than CPU time, with a
granularity of one tick (typically 10ms). Invocations of the function which have not completed at the

time of the call tofunction_runtime are not included in the calculation.
Example
Gamma>function_runtime(cdr);
0.05341
See Also
function_calls , profile

112

gc — runs the garbage collector.

Syntax
gc O

Arguments

none

Returns

The number of cells freed by the garbage collector.

Description

Causes the garbage collector to run if possible. The garbage collector will not run during a timer or
signal handler, but it will flag the need for garbage collection, causing the garbage collector to run
immediately after the timer or signal handler exits.

Example
Gamma>gc();
68
Gamma>gc();
17
Gamma>fp = open("myfile.dat", "r", nil);
#<File:"myfile.dat">
Gamma>close(fp);
t
Gamma>gc();
67
Gamma>gc();
17
Gamma>

See Also

allocated_cells , free_cells

113

gc_blocksize

gc_blocksize — for internal use only.

Syntax

gc_blocksize (ncells)

114

gc_enable

gc_enable — for internal use only.

Syntax

gc_enable (enable_p)

115

gc_newblock

gc_newblock — for internal use only.

Syntax

gc_newblock ()

116

gc_trace

gc_trace — controls the tracing of garbage collection.

Syntax

gc_trace (on_flag)

Arguments

on_flag

If non-nil , turn on garbage collector tracing, else turn it off.

Returns

The new status of garbage collector tracing.

Description

This function turns on (on-flag is namit) or off (on-flag isnil) the tracing of garbage collection.

When garbage collection tracing is on, statistics are collected concerning the number of allocated cells,
number of collection calls, and the elapsed time spent within the garbage collector. These statistics can
be accessed using a call to allocated-cells.

Example

Gamma> gc_trace (t);
nil

See Also

allocated_cells

117

profile

profile ~ — collects statistics on function usage and run time.

Syntax

profile (on_p, tick_nanosecs ?)

Arguments

on_p

If non-nil , start profiling, else stop profiling.
tick_nanosecs

Reset the QNX 4 tick size to this many nanoseconds before beginning to profile.

Returns

The previous state of profiling.

Description

This function starts (or stops) collecting statistics on the usage and run time of all functions in the system.
The profile mechanism uses an interrupt on the QNX 4 tick clock, and so must run with root permissions.
If the optionaltick_nanosecs argument is provided, this function will reset the tick size. Otherwise,
it will profile using the current tick size. The smaller the tick size, the more precise is the profile result.

Example

The following program gives the output shown below.

#!/usr/cogent/bin/gamma
require_lisp("Profile.Isp™);

e_list = list();
i=0

function print_reverse()
{
with i in cdr(argv) do
{
e_list = cons(i, e_list);
j+

princ("The numbers in reverse order are:\n", e_list, "\n");

}

function main()

{
profile(t);
print_reverse();
profile(nil);

profiled_functions();

princ("Function calls: ", function_calls(cons),"\n");
princ("Function runtime: ", function_runtime(cons),"\n");

118

Entered on command line:
[sh]$ ex_profileg 1 2 3 4 5

Output:
The numbers in reverse order are:
54321
Function Calls Total Time
+++ 5 4e-06
cdr 1 0
cons 5 2e-06
for 1 2.3e-05
profile 1 1le-06
setq 5 3e-06
princ 1 0.006502
print_reverse 1 0.006534
progn 6 0.006546

Function calls: 5
Function runtime: 1.9999999999999999095e-06

See Also

function_calls , function_runtime

profile

119

set_autotrace

set_autotrace — is reserved for future use.

Syntax

set_autotrace (state , functions ..)

Arguments

state

functions

Returns
Description

Example

See Also

120

set_breakpoint

set_breakpoint — is reserved for future use.

Syntax

set_breakpoint (state , functions ..)

Arguments

state

functions

Returns
Description

Example

See Also

121

time
time — gives command execution times.

Syntax

time (iterations , | command)

Arguments

iterations

The number of times to execute the command.
command

Any Gamma or Lisp command.

Returns

The number of seconds consumed performingctivamand for the given number aterations

Description

This function performs theommandfor the given number aterations and returns the clock time
consumed. This does not break down the time into user and system time. Times on successive calls to this
function will differ slightly due to operating system requirements, garbage collection and active timers.

Example

Gamma>time(10, list(1,2,3));
3.297225339338183403e_05
Gamma>

122

trace, notrace
trace, notrace — turn tracing on or off.

Syntax

trace (! code?)
notrace (! code?)

Arguments

code

If provided, limits the scope to this code.

Returns

With no argumentt , or with acode argument, the result of evaluating code.

Description

These functions turn tracing (execution tracking to standard output) on or off, either at the global level,
or for the duration of the evaluation obde , if provided.

Example

#!/usr/local/bin/gamma -d

/* here is an example of a troublesome function and its
return being debugged with the aid of trace() and
notrace() functions.

*/

a=0;
b =1;
trace();

function trouble_function(x,y) {y/x;}
results = trouble_function(a,b);
notrace();

princ(results, "\n");

Gamma generates the following:

(defun trouble_function (x y) (/ y X))
--> trouble_function
(trouble_function a b)
¢y ¥
--> inf
--> inf
(setq results (trouble_function a b))
--> inf
(notrace)
inf

123

V1. Miscellaneous

Table of Contents

=T 0] (0] 01 1= OSSP PPR 125
create_state ,enter_state |, eXit_State ..o s 126
[0 =T 01537/ 1 PRSPPI 127
a0 0 (U= RSO SOTTSTR 128
SEACK ettt b ettt e ebeeheeateeheeateebeehe e beaheeteshe et ebeebeenteeteeneesheeaeebenteens 129

124

apropos

apropos — finds all defined symbols in the current interpreter environment.

Syntax

apropos (pattern , predicate ?)

Arguments

pattern

A character string which specifies a search pattern
predicate

A function taking one argument which will return eith@t or nonil

Returns

A list of all symbols defined in the system which match the gigatiern , and if thepredicate is
supplied, whose values are true under that predicate.

Description

This function searches the names of all defined symbols in the currently running interpreter environment.
Thepattern can contain the following special characters:

- * matches any number of characters, including zero.
- [c] matches a single character which is a member of the set contained within the square brackets.

- [~c] matches any single character which is not a member of the set contained within the square
brackets.

« ?matches a single character.
« {xx,yy } matches either of the simple strings contained within the braces.
- \c (a backslash followed by a character) - matches that character.

Thepredicate is any function which accepts a single argument. Ifghedicate evaluates to

nonhil when given the value of a symbol, and if the symbol matches the pattern, then the symbol will
be reported by apropos. If thedicate is not supplied, then all symbols which match pagtern

will be reported. Thepattern is case-sensitive.

Example
Gamma>apropos("s*", function_p);
(setq strchr string symbol)
Gamma>apropos("?[slil{igc,er}*");
(SIGCHLD SIGCONT dlerror)

125

create_state |, enter_state , exit_state

create_state, enter_state, exit state — are part of the SCADALisp exception-driven
state machine mechanism.

Syntax

create_state (state_function , symbol ?...)
enter_state (state_machine , state)
exit_state (state_machine , state)
Arguments

state_function

The function to call upon entering this state.
symbol

One or more symbols which will act as triggers to cause this state to be re-evaluated.
state_machine

A state machine created through a call to (new StateMachine)
state

A state created through a call to (create-state...)

Returns
create_state : The new state definition.
enter_state : A status value.

exit_state . A status value.

Description

These functions are part of the exception-driven state machine mechanism built into SCADALIsp. This
mechanism is not fully supported, and will not be documented for this release. The reader may find the
library file StateMachine.lsp helpful in determining how to use state machines. In general, this function
should not be called directly from user code, as it is designed to provide support for the StateMachine
library functions.

Example

none

126

gensym

gensym — generates a unique symbol.

Syntax

gensym (prefix_string ?)

Arguments
prefix_string

A character string which will be used as the prefix for the newly generated symbol.

Returns

A unique symbol.

Description

This function generates a symbol which does not currently exist by attaching a unique number to the end
of the prefix_string . If the prefix_string isnil , use a default prefix.

Example

Gamma>gensym(“tag");
tagl
Gamma>gensym();
tmp_sym2
Gamma>tag3 = 1;

1
Gamma>gensym(“tag");
tag4

Gamma>

127

modules

modules — is obsolete, and returns nothing of value.

Syntax

modules ()

Arguments

none

nil

Returns
A string.

Description

This function is obsolete, and returns nothing of value.

128

stack

stack — lists all functions called so far.

Syntax

stack ()

Arguments

none

Returns

A list of all of the functions called up to this point in the execution of the Gamma program.

Description

A function that callsstack is presented in order, with the most recently called function at the end of the
function list.stack can be useful for debugging programs by requesting a stack trace when an error
occurs.

Example

The following program:

#!/usr/cogent/bin/gamma

function hms_to_sec(hms)

{
hms = list_to_array(string_splitthms, ™", -1));
(number(hms[0]) * 60 + number(hms[1])) * 60 + number(hms[2]);
stk = stack();

}

tocheck = list(12,5,13);
hms_to_sec("tocheck");
princ(stk,"\n");

Yields these results:

((hms_to_sec tocheck) (progn (setq hms (list_to_array (string_split hms
: (neg 1)))) (+ (* (+ (* (number (aref hms 0)) 60) (number (aref hms 1)
)) 60) (number (aref hms 2))) (setq stk #O0=(stack))) #O#)

See Also

print_stack

129

Table of Contents

= o o 1 o To GRS 131
(o [0] = T S 133
B L5530)Y = 1) 134
1 L= 53V o] o 135
1T] OSSOSO 136
557 o SRR 137
[OCALE_TASK ettt bbbt 138
[OCALE_TASK 10 ot 140
[TV gL = L1 = V] o SRR 141
(ST AY S0 (U1 YT 142
(=T 0 g 10)= o o QS 143
(0 T T T TS 144
7= [0 [OOSR 145
£ 1o = 1Y/ [P 147
£ T IS €1 o RS 148
Y=o JESY (1 T = 1577 oS 149
taskdied ,tASKSIAMEA et ettt 150
122 1] G 1010 TSRS 152

130

add_hook

add_hook — hooks a function to an event.

Syntax

add_hook (hook_sym, function_sym)

Arguments
hook_sym

One of several symbols used to identify the hook, as listed below.
function_sym

The function that is to run when the event occurs.

Returns

The hooked functionfgnction_sym) that was added.

Description

This function sets up a hook, which is a function that is called when a particular event takes place. The
arguments to the function identified by thenction_sym are determined by the particular event. A

hook function must be defined with the correct number of arguments, or else with optional or variable
length arguments. The currently available hooks and the respective events that trigger their functions are
as follows:

- taskstarted_hook : triggered whenever a task starts.
- taskdied_hook :triggered whenever a task dies.

- exception_hook :triggered whenever an exception for any point is emitted by the Cogent
DataHub.

- echo_hook : triggered whenever an echo for any point is emitted by the Cogent DataHub.
« gc_hook : triggered whenever the garbage collector runs.

- The following are related to tracing code executions, but haven't been fully documented.
trace_symbol_hook
trace_entry _hook
trace_exit_hook
breakpoint_hook
One common use of this function is to add the intetaakstarted ortaskdied functions, with
thetaskstarted _hook or taskdied_hook . Whenever a task that is registered witservestarts
or dies,nservesends a message to all Gamma applications running IPC. Any of these applications that
has added theskstarted_hook or taskdied_hook then runs their corresponding
function_sym function.

Example

This example program requirgserveandnserveto be running. It gives the output shown below:

#!/usr/cogent/bin/gamma

/IProgram: ex_addrunhooks.g

131

add_hook

function main ()

{
init_ipc ("x","x");
add_hook (#taskstarted_hook, #hook_started);
add_hook (#taskdied_hook, #hook_died);
run_hooks (#taskstarted_hook, "testing start");
run_hooks (#taskdied_hook, "testing died");
while(t)

next_event();

}

function hook_started ('a?...=nil)

{
princ ("Hooked task started: ", a, "\n");

}

function hook_died (!a?...=nil)

{
princ ("Hooked task died: ", a, "\n");

}

Output fromex_addrunhooks.g at startup:

Hooked task started: (testing start)
Hooked task died: (testing died)

Starting a new Gamma task nammagitask ...

Gamma>init_ipc("mytask”, "myqueue");
t
Gamma>

...elicits this output fronex_addrunhooks.g
Hooked task started: (mytask default myqueue O O 1874 0)

Checking process status witlsnames

[home/robert]$ nsnames

Name Domain Queue NID PID
mytask default myqueue 0 1874

X default x 0 1873

Terminatingmytask elicits this output fromex_addrunhooks.g
Hooked task died: (mytask default myqueue 0 O 1874 0)

See Also

run_hooks , remove_hook , init_ipc

132

close_task

close task — closes atask opened lycate task

Syntax

close_task (task)

Arguments

task

A task descriptor as assigned toaate_task call.

Returns
t if the task could be closed, elad

Description

When a task is opened (located) for interprocess communication, a communication link may be
established. This link must be cleaned up if it is to be re-used. There is no hard limit to the number of
tasks which may be open with QNX 4 message passing, but TCP/IP exerts an operating
system-dependent limit on the number of simultaneously open tasks. Tasks will automatically be closed
by the garbage collector when they are no longer referenced.

Example

Gamma>task = locate_task("Task 1"nil);
#<Task:9684>

Gamma>close_task(task);

t

Gamma>

See Also

locate_task

133

_destroy _task

_destroy_task — should never be used.

@ This function should not be used under any circumstances.

134

init_async_ipc

init_async_ipc — requests queue information from a task.
Syntax

init_async_ipc (other_task)

Arguments

other_task

A task descriptor as assigned ttoaate _task call.

Returns

Non-il on success, aril on failure.

Description

This function initializes the interprocess communication system to allow this task to make calls to
register_point , register_existing_point ,send_async andsend_string_async

It requests queue information from the given task. A deadlock situation could occur if two tasks attempt
to initialize asynchronous communication with one another at the same time. The queue server task,
gserve must be running for this call to succeed.

Example
Gamma>init_ipc("mytask","mytask_q");
t
Gamma>task = locate_task("server", t);
#<Task: 32271>
Gamma>init_async_ipc(task);
t

See Also

init_ipc ,locate_task , register_point ,send_async , send_string_async

135

init_ipc
init_ipc — sets up necessary data structures for IPC.

Syntax

init_ipc (my_name my_queue_name?, domain ?)

Arguments

my_name

A name for this task, as a string. It is only used internally.
my_queue_name

Optional queue name for this task, as a string. This is necessary for asynchronous communication,
and it must be unique on the system.

domain

Optional domain name for this task.

Returns

t on success, otherwisgl

Description

Sets up all of the data structures needed prior to attempting any interprocess communication from this
task. Messages can be neither sent nor received before this call is made. All Cogent DataHub functions
use IPC. If the value afny_queue_name is nil , no queue name is assigned and no asynchronous IPC

is possible.
Example

Gamma>init_ipc("myname","myqueue");

t

Gamma>
See Also
isend ,next event ,next event nb ,read_point ,read_existing_point ,
register_point ,send, send_async ,send_string ,send_string_async ,
write_point , write_existing_point

136

isend

isend — sends a synchronous message and doesn't wait for the result.

Syntax

isend (task , s_exp)

Arguments

task
A task descriptor as assigned ttoaate _task call.
s_exp

Any Gamma or Lisp expression.

Returns

t if the message was sent successfully, otherwike.

Description

This function sends a message via synchronous interprocess communication, but does not wait for the

result. The receiving task must respond immediately, prior to actually evaluating the message that was

sent. The result code can only show whether the message was sent successfully. This is a compromise
between synchronous and asynchronous messaging techniques.

Example
Gamma>init_ipc("mytask","myqueue");
t
Gamma>task = locate_task("other_task",nil);
<task id>
Gamma>isend(task,#list(do_something));
t

See Also

locate_task ,send, send_async

137

locate task

locate_task — finds and connects to tasks by name.

Syntax

locate_task (task_name , async_reqd)

Arguments

task_name

The name of the task to locate. The other task must have declared this name through or
name_attach

async_reqd

t if locate_task should automatically calhit_async_ipc for this task.

Returns

A task if successful, otherwigsl

Description

This function makes a call to the name locator task for the current operating system. If it finds the named
task it makes an IPC connection (in TCP/IP) or creates a virtual circuit (in QNX 4) to that task. If
async_reqd ist, theninit_async_ipc is also called.

When Gamma locates a task, it returns a printed representation of it, which looks like this:
#<Task:10120>. This representation cannot be read back into Gamma, so a symbol is usually
assigned when callinigcate_task to facilitate refering to or working with a task. We refer

to this symbol as the task descriptor. For instance, in the example below, the gginbisithe

task descriptor.

Example
@ The two tasks are initiated withit_ipc before callingocate_task

Task 1:

Gamma>init_ipc(“first","Q1");

t

Gamma>getpid();

9231

Gamma>tsk = locate_task("second",nil);
#<Task:9092>

Gamma>send (tsk, #princ("Are you there?\n"));
t

Gamma>

Task 2:

Gamma>init_ipc("second","Q2");
t

Gamma>getpid();

9092

Gamma>next_event

Are you there?

t

138

locate_task

Gamma>

See Also

locate_task_id

139

locate_task id

locate_task_id — finds and connects to tasks by task ID and network node.
Syntax

locate_task_id (task_id , node_id , channel_id , async_reqd)

Arguments

task_id

The task ID for this task (as a number).
node_id

The network node number for this task.

channel_id

The task ID for this task. This is required for QNX 6, ignored in QNX 4 and Linux.
async_reqd

t if locate_task should automatically calhit_async_ipc for this task.
Returns

A task if successful, otherwigsl

Description

This function makes a TCP/IP connection or QNX 4 virtual circuit to the named task based on the
task_id and thenode number on which the task is running.déync_reqd ist, then
init_async_ipc is also called. If thewode number is zero, the current node is used.

Example

Task 1:

Gamma>init_ipc("Task 1","14");
t

Gamma>getpid();

9271

Gamma>

Task 2:

Gamma>init_ipc("Task 2","25");

t
Gamma>locate_task_id(9271,1,nil);
#<Task:9271>

Gamma>

See Also

locate_task

140

name_attach

name_attach — attaches a name to a task.

Syntax

name_attach (task_name)

Arguments

task_name

The name to attach to this task.

Returns

t if the name was successfully attached, othenwite.

Description

This function sends a message to the QNX 4 name locator taskdloc) to attach a name on this
node. If the name locator is not running or the name has already been attached by another task, the call
will fail.

Example

/I attach my name
Gamma>name_attach("firsthame");

t

/I attach an alternate name
Gamma>name_attach("pseudonym");
t

/I attempt to attach my name again
Gamma>name_attach(“firstname");

nil

141

nserve_query

nserve_query — puts information frormserveinto an array.

Syntax

nserve_query ()

Arguments

none

Returns

An array of instances of the clasaskinfo , ornil on failure.

Description

This function retrieves all the information available in the Cascade NameSes@wé, and puts it into
an array. Each item in the array is an instance offthgkinfo class, as returned from the function
task_info . Please refer to the documentation of that function for more details.

e This function requires thanit_ipc be called first.

Example

Gamma>init_ipc("a", "aq");

t

Gamma>pretty_princ(nserve_query(), "\n");

[{Taskinfo (channel_id . 0) (domain . toolsdemo) (name . /dh/toolsdemo)
(node_id . 0) (node_name . 0) (pid . 5394)
(queue_name . /dh/toolsde) (queue_size . 0)}

{Taskinfo (channel_id . 0) (domain . toolsdemo) (name . control)
(node_id . 0) (node_name . 0) (pid . 16995)
(queue_name . controlg) (queue_size . 0)}

{Taskinfo (channel_id . 0) (domain . toolsdemo) (name . emul) (node_id . 0)
(node_name . 0) (pid . 16998) (queue_name . emulq)
(queue_size . 0)}

{Taskinfo (channel_id . 0) (domain . default) (name . a) (node_id . 0)
(node_name . 0) (pid . 16999) (queue_name . aq) (queue_size . 0)}]

t

Gamma>

See Also

task_info

142

remove_hook

remove_hook — removes a hooked function.

Syntax

remove_hook (hook_sym, function_sym)

Arguments
hook_sym

One of several symbols used to identify a hook, as listed below.
function_sym

The function that is to be removed.

Returns

The hooked functionfgnction_sym) that was removed.

Description

This function removes a hook that was previously set up aitth hook . The currently available hooks
are:

taskstarted_hook
taskdied_hook
exception_hook
echo_hook
gc_hook
trace_symbol_hook
trace_entry_hook
trace_exit_hook
breakpoint_hook

Example
Modifying the example imdd_hook by adding one line:

add_hook (#taskstarted_hook, #hook_started);
add_hook (#taskdied_hook, #hook_died);

run_hooks (#taskstarted_hook, "testing start");
run_hooks (#taskdied_hook, "testing died");

/* Remove the hook */
remove_hook (#taskstarted_hook, #hook_started);

while(t)

would remove theaskstarted _hook

See Also

add_hook , run_hooks , init_ipc

143

run_hooks

run_hooks — runs a hooked function.

Syntax

run_hooks (hook_sym, args ...?)

Arguments

hook_sym

One of several symbols used to identify a hook, as listed below.
args

The arguments of the function that is to run when the event occurs.

Returns

t on success amil on failure.

Description
This function runs a hook that was previously set up witldl _hook . The currently available hooks are:

taskstarted_hook
taskdied_hook
exception_hook
echo_hook
gc_hook
trace_symbol_hook
trace_entry_hook
trace_exit_hook
breakpoint_hook

Example

Please refer to the exampleadd_hook .

See Also

remove_hook , init_ipc

144

send

send — transmits expressions for evaluation.

Syntax

send (task , s_exp)

Arguments

task

A task descriptor as assigned toaate_task call.
s_exp

Any Gamma or Lisp expression.

Returns

A result depending on the receiving task, which could include:

- t if the message was delivered successfully.
- nil if the message could not be delivered.

« An expression in the form: (error "error message") if there was an erroergae .

Description

This function constructs an ASCII string representingghexp and transmits it via synchronous
interprocess communication to the receiviagk . Thetask processes the message and returns a
result based on that processing. If taek is another Gamma process, the message will be interpreted
as a Gamma expression and evaluated. The return value will be the result of that evaluation.

Example
Task 1:

Gamma>init_ipc ("a","a");

t

Gamma>tsk = locate_task("b",nil);
#<Task:9751>

Gamma>send(tsk, #princ("hello\n"));
hello

t

Gamma>send_async(tsk, #princ(cos(5), "\n"));
t

Gamma>send(tsk, #princ("goodbye\n™));
t

Gamma>

Task 2:

Gamma>init_ipc ("b","b");

t

Gamma>while(t) next_event();
hello
0.28366218546322624627
goodbye

145

send

See Also

isend ,locate_task ,send_async ,send_string ,send_string_async

146

send_async

send_async — transmits expressions asynchronously.

Syntax

send_async (task , s_exp)

Arguments

task

A task descriptor as assigned toaate_task call.
s_exp

Any Gamma or Lisp expression.

Returns

t if the message was successfully delivered, otherwiise.

Description

This function constructs a string representation of the given expression and delivers it via asynchronous
interprocess communication to the receiving task. If the message could not be debesr@tdasync

returnsnil . There is no indication of the status of the receiving task as a result of processing the
message.

Example
Task 1:

Gamma>init_ipc ("a","a");

t

Gamma>tsk = locate_task("b",t);
#<Task:9751>

Gamma>send_async(tsk, #princ("hello, b\n"));
t

Gamma>send_async(tsk, #princ(cos(5), "\n"));
t

Gamma>

Task 2:

Gamma>init_ipc ("b","b");

t

Gamma>while(t) next_event();
hello, b
0.28366218546322624627

See Also

isend , locate_task ,send,send _string ,send_string_async

147

send_string

send_string — transmits strings for evaluation.

Syntax

send_string (task , string)

Arguments

task

A task descriptor as assigned ttoaate _task call.
string

Any string.

Returns
A result depending on the receivitask .

Description

This function transmits thstring via synchronous interprocess communication to a non-Cogent
DataHub receivingask . Thetask processes the message and returns a result based on that
processing. If théask is a Gamma process, the message will be interpreted as a Lisp expression and
evaluated. The return value will be the result of that evaluation. If an error occurs during the evaluation,
an expression of the form: (error "error message") will be returned. If the message could not be
deliverednil is returned.

Example
Gamma>a = 5;
5
Gamma>b = 6;
5
Gamma>send_string(task,string("(+",a," ",b,")");
11

See Also

isend , locate_task ,send, send_async , send_string_async

148

send_string_async

send_string_async — transmits a string asynchronously.

Syntax

send_string_async (task , string)

Arguments

task
A task descriptor as assigned ttoaate _task call.
string

A string.

Returns

t if the message was successfully delivered, otherwilse

Description

This function delivers thetring via asynchronous interprocess communication to a non-Cogent
DataHub receivingask . If the message could not be deliverednd_string_async returnsnil
There is no indication of the status of the receiviagk as a result of processing the message.

Example
Task 1:

Gamma>init_ipc ("a","a");

t

Gamma>tsk = locate_task("b"t);

#<Task:9751>

Gamma>send_string_async(tsk, "2 + 2");

t
Gamma>send_string_async(tsk,string(list(#a,#b,#c)));
t

Gamma>

Task 2:

Gamma>init_ipc ("b","b");
t
Gamma>while(t) next_event();

See Also

isend , locate_task ,send, send_async , send_string

149

taskdied , taskstarted

taskdied, taskstarted — internal functions that call another function when a task starts or
stops.

Syntax

taskdied (task_name , gname, domain, node, task_id)
taskstarted (task_name , gname, domain, node, task_id)

Arguments

task_name

The name of the task which started or stopped.
node

The node on which the task started or stopped.
task_id

The process ID for the task.
gname

The name of the task’s queue, if any.
domain

The Cogent DataHub domain for this task.

Returns

User-defined.

Description

These functions are internal to Gamma. They nail hooks (#taskstarted_hook,

args...) andrun_hooks (#taskdied_hook, args...) respectively. They are called
whenever a task registered with the Cascade NameSeas@nv@ starts or stops. You can set up hooks
to use these functions through theéd _hook function.

150

taskdied , taskstarted

These functions were originally available to programmers, and have been internalized to allow
for the greater flexibility of theadd_hook andrun_hook functions. However, if you have
existing code that you don’t want to change, you can define your own versitaskofied
andtaskstarted that shadow the built-in functions and do what they always used to do. Your
old code will not break, but it will hide the hook version of tteskdied andtaskstarted
functions.

On the other hand, you could get both with something like this:
builtin_taskdied = taskdied,;
builtin_taskstarted = taskstarted,;

function main ()

{
init_ipc ("x","x");
add_hook (#taskdied_hook, #hook_taskdied);
add_hook (#taskstarted_hook, #hook_taskstarted);
while(t)
next_event();
}
function taskdied ('a?...=nil)
{
princ (“task died: ", a, "\n");
funcall (builtin_taskdied, a);
}
function taskstarted ('a?...=nil)
{
princ (“task started: ", a, "\n");
funcall (builtin_taskstarted, a);
}
function hook_taskdied ('a?...=nil)
{
princ ("hook task died: ", a, "\n");
}

function hook_taskstarted ('a?...=nil)

{

princ ("hook task started: ", a, "\n");

151

task_info

task_info — gets information from a task descriptor.

Syntax

task_info (tsk)

Arguments

tsk

A task descriptor, as returned by tlheate_task function.

Returns

An instance of the clasBaskinfo , ornil on failure.

Description

This function returns an instance of Gammaaskinfo class. The instance variables of this class
correspond to information contained in the task descriptor, as follows:

channel_id

The channel ID number, which is used in QNX 6 but not in QNX 4 or Linux.
domain

The name of the Cogent DataHub domain fortiie .
name

The name of thésk , as recorded in the Cascade NameServer. This attribute is not contained in a
task descriptor, and thus is always returnedibs from this function.

node_id

The node ID number.
node_name

Thenode_id expressed as a string.
pid

The process ID number.

queue_name

The name of the Cascade QueueServer queue, as registered with the Cascade NameServer.
queue_size

The size of the Cascade QueueServer queue.

152

task_info

Example
Gamma>init_ipc("a", "aq");
t
Gamma>tsk = locate_task("/dh/toolsdemo”, nil);
#>Task:5394<
Gamma>task_info(tsk);
{Taskinfo (channel_id . 0) (domain . "toolsdemo") (name)
(node_id . 0) (node_name . "0") (pid . 5394)
(queue_name . "/dh/toolsde") (queue_size . 0)}
Gamma>

See Also

nserve_query

153

VIIl. Events and Callbacks

Table of Contents

add_set_function
flush_events
next_event , next_event_nb
remove_set_function
when_set_fns

154

add_set_function

add_set_function — sets an expression to be evaluated when a given symbol changes value.

Syntax

add_set_function (symbol , s_exp)

Arguments

symbol

A symbol.
S_exp

Any Gamma or Lisp expression.

Returns
t

Description

This function binds an expression to be evaluated whenever the valuegfittiml changes. This
expression is available globally, so if the value of §yenbol changes during a change in scope, the
expression will be evaluated. All changes in that sub-scope will trigger new evaluations of the
expression. This can be used to automatically maintain consistency between the program and a the
Cogent DataHub, or to implement forward chaining in calculation rules. The expression will not be
evaluated if the new value is eq to the previous value.

When a set expression (tkeexp) is being evaluated the special variakileis , value and
previous are all bound:

« this The symbol whose value has changed.
- value The current value of this as a result of the change.

« previous The value of this immediately prior to the change.

Example
Gamma>b = 5;
5
Gamma>add_set_function(#b,#princ("changed\n"));
(princ "changed\n")
Gamma>b = 4;
changed
4
Gamma>

The following code automatically sounds an alarm whenevemaputed tank_level rises above
10000 and silences the alarm whenever it drops below 10000. The Cogent DataHub is automatically
updated to maintain the same value as the Gamma task.

function send_to_datahub (point)

{

write_point(point, value);

}

function check_alarm (value)

155

add_set_function

{

if (value == 1)
sound_alarm();
else

silence_alarm();

send_to_datahub(this);
}

function check_tank_level (depth)

{
if (depth > 10000)
high_alarm = 1,
else
high_alarm = 0;

send_to_datahub(this);
}

add_set_function(#high_alarm, #check_alarm(high_alarm));
add_set_function(#computed_tank_level,#check_tank_level(computed_tank_level));

See Also

when_set_fns , remove_set_function

156

flush_events

flush_events — handles all pending events, then exits.

Syntax

flush_events ()

Arguments

none

Returns

The result of executing all pending events, then exits.

Description

This function ensures that an appropriate event-handling function is called to handle all pending events
from: a window system (where applicable), other tasks (interprocess communication messages), timers,
or signals. Upon completiofiush_events causes the program to exit.

Example

Gamma>flush_events();
(the result of any pending events)

[/user/cogent/bin]$

See Also

next_event

157

next event , next _event _nb

next_event, next_event_nb — wait for an event and call the event handling function.

Syntax

next_event ()
next_event_nb ()

Arguments

none

Returns

The result of executing the next event. If no event was processatl,event nb will return
undefined, andext_event will not return.

Description

next_event blocks, waiting for an event from: a window system (where applicable), another task (an
interprocess communication message), a timer, or a signal. An event handling function is automatically
called if one has been defined for the event. The resulegf _event s the result returned from the

event handler, onil if no event handler had been defined.

next_event_ nb behaves exactly likeaext_event , exceptthahext event nb (nb stands for
non-blocking) returns immediately with undefined if no event is waiting to be processed.

Example

1. Here is the simplest use néxt_event , causing Gamma to wait for and process the next event.

Gamma>while(t) next_event();

2. This program does basically the same thing, creating a main loop for program event processing, but it
features error protection as well.

while (t)

{

try

{
next_event();

}

catch

{
princ("last error: ", _last_error_," calling stack: ",
stack(),"\n");

}

}

158

remove_set_function

remove_set_function — removes a set function from a symbol.
Syntax

remove_set_function (symbol , s_exp)

Arguments

symbol

The symbol from which to remove the expression.
s_exp

An expression set for theymbol , such as that added lagld_set_function

Returns

The expression, in Lisp syntax, which was removedyibr if none was removed.

Description

This function removes a set expression fromgsimbol . Thes_exp is compared to all of the current
expression set for theymbol using the comparison functiey.

Example
Gamma>b = 5;
5
Gamma> add_set_function(#b,#princ("changed\n™));
(princ "changed\n")
Gamma>b = 4;
changed
4
Gamma>remove_set_function(#b,#princ("changed\n™));
(princ "changed\n")
Gamma>b = 3;
3
Gamma>

See Also

add_set_function , when_set_fns

159

when_set fns

when_set_fns — returns all functions set for a symbol.

Syntax

when_set_fns (symbol)

Arguments

symbol

A symbol.

Returns

The expressions, in Lisp syntax, that have been set to be evaluated wheneyenlio 's value
changes.

Example
Gamma>b = 5;
5
Gamma>add_set_function(#b,#princ("Changed.\n"));
(princ "Changed.\n")
Gamma>add_set_function(#b,#princ("Update now.\n"));
(princ "Update now.\n")
Gamma>b = 4;
Update now.
Changed.
4
Gamma>when_set_fns(#b);
((princ "Update now.\n") (princ "Changed.\n"))
Gamma>

See Also

add_set_function , remove_set_function

160

IX. Time, Date, and Timers

Table of Contents

= 1 L=

block _timers , UNDIOCK_LIMEIS oo e
CANCED bbb e et b et b e e e

EVEIY ettt ete e e ettt e s te e st ettt te e et e Rt et Rt Re e Ee Ao e et e Rt e Re Rt eE et e At e Rt e Rt e ReeEeEe et et eReetenteseententeneenenrens
(o 001 110 0TSSR
[0 Yoz 11110 [OOSR

161

after

after — atimer that initiates an action after a period of time.

Syntax

after (seconds , action ...

Arguments

seconds

A number of seconds, which may be fractional.
action

One or more statements to be executed. This argument is evaluated, so literal statements must be
quoted.

Returns

An integer timer number which may be used as the argumerarioel

Description

This function specifies an action to be performed after a given period of time in seconds has elapsed. The
number ofseconds may be specified to arbitrary precision, but will be limited in fact by the timer
resolution of the operating system. In most cases this is practically limited to 20 milliseconds (0.05
seconds).

The timer functiongfter , every andat all cause an action to occur at the specified time, regardless
of what is happening at that time, except if the timer expires during garbage collection. In this case, the
timer will be serviced as soon as the garbage collection finishes.

For Gamma to notice a timer, you must make a cafiést _event

Example
Gamma>after(30, #princ("Time’s up\n“));
1
Gamma>next_event();
(30 seconds pass)
Time's up!
nil
Gamma>

See Also

at ,every ,cancel ,_timers_ in Predefined Symbosl

162

at

at — atimer that initiates an action at a given time, or regularly.

Syntax

at (day, month, year, hour, minute , second, actions ..)

Arguments

day

Restriction on the day of the month-B1), ornil for none.
month

Restriction on the month of the yedr-(2), ornil for none.
year

Restriction on the yead@94 -2026), ornil for none.
hour

Restriction on the hour of the da@{3), ornil for none.
minute

Restriction on the minute in the ho-69), ornil for none.
second

Restriction on the second in the minu@j9), ornil for none.
actions

The actions to perform when the specified time arrives.

Returns

An integer number which may be used as the argumecancel

Description

This function specifies an action to be performed at a given time, or to occur regularly at certain times of
theminute , hour , day, month oryear . A restriction on a particular attribute of the time will cause
at to fire only if that restriction is true.

A restriction may be any number in the legal range of that attribute, or a list of numbers in that range.
lllegal values for the time will be normalized. For example, a time specified as July 0, 1994 00:00:00 will
be treated as June 30, 1994 00:00:0@illf is specified for any attribute of the time, this implies no
restriction andat will fire cyclically at every legal value for that attribute.

For Gamma to notice a timer, you must make a callégt_event . To notice repeating timers, the call
tonext_event can be used with a call tohile(t)

Example

/I[To print "hello" at 12:00 noon on June 2, 1994:
at(2,6,1994,12,0,0,#princ("hello\n"));

/[To print "hello" at 12:00 noon on the first day

/lof every month in 1994:
at(1,nil,1994,12,0,0,#princ("hello\n"));

163

at

/ITo print "hello" every half minute at 30 seconds

/land on the minute on the 1st and 15th of every month
/lexcept July and August, for any year:

at(list(1,15), list(1,2,3,4,5,6,9,10,11,12),list(0,30), #(princ "hello\n"));

/[To print "hello" every 10 seconds during the hour

/lof 3:00pm every December 21st.
at(21,12,nil,15,nil,list(0,10,20,30,40,50), #princ("hello\n"));

See Also

after ,every ,_timers_ in Predefined Symbosl

164

block timers , unblock_timers

block_timers, unblock_timers — block and unblock timer firing.

Syntax

block_timers ()
unblock_timers ()

Arguments

none

Returns
t

Description

Timers are potentially handled by a different mechanism from operating system signals. It may be
desirable to block all timers from firing for the duration of an operation, which may not be possible using
theblock_signal mechanism. If a timer fires while timers are blocked, the timer function will be
called as soon as timers are unblocked. This will not delay subsequent timers.

For example, if a timer is intended to fire every 5 seconds at 5, 10, ... seconds after the minute and the
5-second timer is blocked until second 7, the next timer in the sequence will still fire at 10 seconds. If the
5-second timer were blocked until second 27, then the 5, 10, 15, 20 and 25-second timeralixoeld

at second 27 and the next timer would fire at second 30. Code which blocks timers should be surrounded
by a call tounwind_protect

Example

Gamma>block_timers();

t
Gamma>protected_function();
<function return>
Gamma>unblock_timers();

t

See Also

block_signal , unblock_signal ,after ,at every , timers_ in Predefined Symbosl

165

cancel

cancel — removes a timer from the set of pending timers.

Syntax

cancel (timer_number)

Arguments

timer_number

An integer number returned from a callafter ,at orevery .

Returns

The complete timer definition for the canceled timemibr if no timer was canceled.

Description

Removes a timer from the set of pending timers based on its unique timer ID as returned by the function
which created the timer. If no timer could be found with the corresponding timer number, nothing
happens.

Example

To set a timer to repeat every 5 seconds, then stop it:

Gamma>every(5, #princ("hello\n"));

1

Gamma>cancel(1);

[945884155 683256506 5 ((princ "hello\n")) 1]
Gamma>

See Also

timers in Predefined Symbols

166

clock , nanoclock

clock, nanoclock — get the OS time.

Syntax

clock ()
nanoclock ()

Arguments

none

Returns

The current clock value in seconds from the operating system as a long imageclock includes
the nanoseconds as well.

Description

This function gets the operating system clock setting in seconds. The time is usually expressed as the
number of seconds from midnight January 1, 1970 on UNIX systems, though it may differ across
implementations.

Example

Gamma>clock();
999810273
Gamma>nanoclock();
999810273.66378700733
Gamma>

See Also

date , date_of

167

date

date — gets the OS date and time; translates seconds into dates.

Syntax

date (seconds ?, is_utc ?)

Arguments

seconds

A number of seconds, such as returned from a catldok .
is_utc

A value oft puts the date in Coordinated Universal Time (formerly known as Greenwich Mean
Time, GMT).

Returns

The date as a character string.

Description

This function returns a character string which represents the current date and time in human-readable
form. This form depends on the operating system, but will look like "Sat Mar 21 15:58:27 2000" on most
UNIX systems. Theseconds parameter returns the date that corresponds to the number of seconds
since Jan 1, 1970, Coordinated Universal Time.

Example

Gamma>date();

"Fri Mar 31 09:18:27 2000"
Gamma>date(987654321);
"Thu Apr 19 00:25:21 2001"
Gamma>date(987654321,t);
"Thu Apr 19 04:25:21 2001"
Gamma>date(0,t);

"Thu Jan 1 00:00:00 1970"
Gamma>

See Also

clock

168

date of

date_of —is obsolete, sedate

Syntax

date_of (seconds)

Arguments

seconds

A system time as a long integer, which may be obtained fronclibek function.

Returns

The date as a character string.

Description

This function has been supercededdaye . It returns a character string which represents the given date
and time in human-readable form. This form depends on the operating system, but will lodkrlike "
Feb 16 21:50:32 1973 " on most UNIX systems.

Example

Gamma>date_of(987654321);
"Thu Apr 19 00:25:21 2001"

See Also

clock ,date

169

every

every — atimer that initiates an action every number of seconds.

Syntax

every (seconds , action ...

Arguments

seconds
The number of seconds. This may be fractional. Realistically the operating system will not be able
to keep up with numbers below about 0.05. This will differ from machine to machine.

action

The actions to perform continuously every given number of seconds.

Returns

An integer number which may be used as the argumecanael

Description

This function specifies an action to be performed every time the numisecohds elapses. The

return value is a unique timer number which may be used to cancattten prior to the time

expiring by callingcancel . The number of seconds may be specified to arbitrary precision, but will be
limited in fact by the timer resolution of the operating system. In most cases this is practically limited to
20 milliseconds (0.05 seconds).

The timer functionsfter , every andat all cause the action to occur at the specified time, regardless
of what is happening at that time, except if the timer expires during garbage collection. In this case, the
timer will be serviced as soon as the garbage collection finishes.

For Gamma to notice a timer, you must make a cafiegt_event . To notice repeating timers, the call
tonext_event can be used with a call while(t)

Example

Print hello every 5 seconds.

Gamma>every(5, #princ("Hello\n"));
1

Gamma>while(t) next_event();
Hello

Hello

Hello

See Also

after ,at, timers_ in Predefined Symbosl

170

gmtime

gmtime — transforms Unix time to UTC time and date in ASCII format.

Syntax

gmtime (time_t)

Arguments

time_t

The time, usually expressed as the number of seconds from midnight January 1, 1970 on UNIX
systems, though it may differ across implementations.

Returns

A instance of the clagsn, whose members are as follows:

.sec

The number of seconds after the minude 69).
.min

The number of minutes after the holr{59).
.hour

The number of hours past midniglt { 23).
.mday

The day of the monthi(- 31).
.mon

The number of months since Janualy-(11)
.year

The number of years since 1900.
.wday

The number of days since Sund&y-(6).
.yday

The number of days since January0l-(365)
.isdst

1 if daylight saving time is in effecQ if not, and a negative number ifthe information is not
available.

Example

Gamma>pretty_princ ("UTC breakout:\t", gmtime (1149261975.5000002), "\n");
UTC breakout: {tm (hour . 15) (isdst . 0) (mday . 2) (min . 26)
(mon . 5) (sec . 15) (wday . 5) (yday . 152) (year . 106)}

Gamma>

171

gmtime

See Also

gmtime , mktime

172

localtime

localtime — transforms Unix time to local time and date in ASCI| format.

Syntax

localtime (time_t)

Arguments

time_t

The time, usually expressed as the number of seconds from midnight January 1, 1970 on UNIX
systems, though it may differ across implementations.

Returns

An instance of the clagsn, whose members are as follows:

.sec

The number of seconds after the minude 69).
.min

The number of minutes after the holr{59).
.hour

The number of hours past midniglt { 23).
.mday

The day of the monthi(- 31).
.mon

The number of months since Janualy-(11)
.year

The number of years since 1900.
.wday

The number of days since Sund&y-(6).
.yday

The number of days since January0l-(365)
.isdst

1 if daylight saving time is in effecQ if not, and a negative number ifthe information is not
available.

Example

Gamma>pretty_princ ("Local breakout:\t", localtime (1149261975.5000002), "\n");
Local breakout: {tm (hour . 11) (isdst . 1) (mday . 2) (min . 26)
(mon . 5) (sec . 15) (wday . 5) (yday . 152) (year . 106)}

Gamma>

173

localtime

See Also

gmtime , mktime

174

mktime

mktime — converts the ASCII date and time data itha class to Unix time.

Syntax

mktime (time_t)

Arguments

tm

A tm class, as created bgcaltime orgmtime

Returns

The time, usually expressed as the number of seconds from midnight January 1, 1970 on UNIX systems,
though it may differ across implementations.

Example

Gamma>princ ("Local breakout to Unix:\t", mktime (localtime(1149261975.5000002)), "\n");
Local breakout to Unix: 1149261975

Gamma>

See Also

gmtime , localtime

175

timer_is_proxy

timer_is_proxy — controls timer handling in Gamma.

Syntax

timer_is_proxy (tor_nil)

Arguments
t or_nil

An expression that evaluatesttar nil

Returns

The passed argumertt Or nil).

Description

This function controls how timers are fundamentally handled within Gamma. By default, timers are
handled by the processing of proxies which allows Gamma to delay the timer, if necessary, if a critical
system process is occurring.

Callingtimer_is_proxy with nil makes all timers operate by using signals. In the QNX 4
operating system SIGUSERL1 (SIGALRM?) is used, and the attach code is run as a handled signal.

@ Running timers via signals has some very dramatic consequences. When running in this mode
ALL TIMER CODE MUST BE SIGNAL SAFE.

Example
Gamma>timer_is_proxy (nil);
nil
Gamma>timer_is_proxy (t);
t
Gamma>

See Also

every ,at,after ,block timers ,nunblock timers ,cancel

176

X. Cogent DataHub

Table of Contents

add_exception_function yadd_echo_function .. 178
o o G oo o | S 180
1011 A (013 (=T T 181
[T 1 T = Va0 1S =To 0] T £SO 182
POINE_SECONAS ettt bbb b et et b et b et b et b et be st e e s 183
POINE_SECUILY ettt bbb bbbt e et 184
read_existing_point L TEAT_POINT e st 185
FEQISIEr_All_POINTS bbb bbb 186
FEOISIEI_EXCEPLION ittt bbbt bbb e e 187
register_point ,register_existing_pPoiNt e 188
(=T 0 aTo A= =Tod o To TN {1 T o TSR 190
remove_exCeption_fUNCHON bbb e e 191
KTl | oL] 1o | AT 192
£ S (0] 2= 11 S 193
ST A== 1 112 194
8o T =To 1S3 (=] G o010 T 196
when_echo _fns , when_exception_fNS e 197
write_existing_point BT 1 (= o o 11 1 | S 198

177

add_exception_function , add_echo_function

add_exception_function, add_echo_function — assign functions for exceptions or
echoes on a point.

Syntax

add_exception_function (symbol , s_exp);
add_echo_function (symbol , s_exp);
Arguments

symbol

A point name, as a symbol.
s_exp

Any Gamma or Lisp expression.

Returns
t

Description

When a Gamma or Lisp program is run in conjunction with the Cogent DataHub, process points may
change at any time, causing point change events to occur. A point change event is referred to as an
exception. Itis possible to bind any Gamma or Lisp expression to a symbol to be evaluated when an
exception occurs. If a program can both write a point on the DataHub and react to exceptions on that
point, it is possible that the DataHub will "echo” a point written by the program itself. If this is not
handled, an infinite loop between the program and the DataHub could occur. The DataHub tags point
echoes so that a different function can be called in the program when that echo arrives back at its origin.
Only the originating task will see a point exception as an echo. All other tasks will see a normal
exception.

When an exception handler (tseexp argument) is being evaluated the special variathles |,
value andprevious are all bound:

- this The symbol which received the exception.
- value The current value athis as a result of the exception.

- previous The value othis immediately prior to the exception.

Example

Gamma>add_exception_function(#temp, #princ("temp change\n"));
(princ "temp change\n")
Gamma>add_echo_function(#temp,nil);
nil

Gamma>next_event();

temp change

®

Gamma>read_point(#temp);

30

Gamma>write_point(#temp,25);

t

Gamma>next_event();

178

add_exception_function ,add_echo_function

(ni)

Gamma>

See Also

register_point , when_echo_fns, when_exception_fns , remove_echo_function ,
remove_exception_function

179

lock_point

lock_point — locks or unlocks points.

Syntax

lock_point (symbol , locked)

Arguments

symbol

A point name, as a symbol.
locked

t to set alocknil to release a lock.

Returns

t if the function is successful, otherwisd

Description

This function locks or unlocks a point in the Cogent DataHub. The current security level must be greater
than or equal to the security level on the point.

Example
Gamma>init_ipc("locker","Iq");
t
Gamma>write_point(#a,5);

t

Gamma>lock_point(#a,t);

t
Gamma>write_point(#a,300);
nil
Gamma>lock_point(#a,nil);

t
Gamma>write_point(#a,300);
t

Gamma>

See Also

set_security , point_locked

180

point_locked

point_locked

Syntax

point_locked (symbol)

Arguments

symbol

A point name, as a symbol.

Returns

t if locked, ornil

Example

Gamma>lock_point(#f,t);

t

Gamma>next_event();

nil

Gamma>point_locked(#f);

t

Gamma>lock_point(#f,nil);

t

Gamma>next_event();

nil

Gamma>point_locked(#f);

nil
Gamma>

See Also

lock_point

— indicates if a point is locked.

if not locked.

181

point_nanoseconds

point_nanoseconds — gives the nanoseconds frqmint_seconds that a point value changed.

Syntax

point_nanoseconds (symbol)

Arguments

symbol

A point name, as a symbol.

Returns

A number of nanoseconds.

Description

This function returns the number of nanoseconds afbémt_seconds that a given point’s value
changed.

Example

Gamma>clock();
938631678
Gamma>write_point(#1,44);
t

Gamma>next_event();

nil
Gamma>point_seconds(#l);
938631693
Gamma>point_nanoseconds(#l);
735100000

Gamma>

See Also

point_seconds

182

point_seconds

point_seconds — gives the time the point value changed.

Syntax

point_seconds (symbol)

Arguments

symbol

A point name, as a symbol.

Returns

A time in seconds.

Description

This function returns the time in seconds when a given point’s value changed.

Example

Gamma>clock();
938631678
Gamma>write_point(#1,44);
t

Gamma>next_event();

nil
Gamma>point_seconds(#l);
938631693

Gamma>

See Also

point_nanoseconds

183

point_security

point_security — gives the security level of a point.
Syntax

point_security (symbol)

Arguments

symbol

A point name, as a symbol.

Returns

The security level.

Example
Gamma>set_security(5);
0
Gamma>secure_point(#f,3);
t
Gamma>point_security(#f);
3
Gamma>

See Also

secure_point , set_security)

184

read_existing_point , read_point

read_existing_point, read_point — retrieve points.
Syntax
read_existing_point (symbol)

read_point (symbol)

Arguments

symbol

A point name, as a symbol.

Returns

The value of a point in the Cogent DataHub. If the point is unavailableiienis returned. For
read_existing_point , if the point does not exist thamil is returned. Foread_point , if the
point does not exist then the point is created and a default value is returned.

Description

These functions makes a call to the DataHub to retrieve the point whose name is the same as the
symbol . If the point does not exist in the DataHulkad_existing_point returnsnil and does
not create the pointead_point will create a point in the DataHub if necessary, whose value and
confidence are both zero. If the point name is pre-qualified with a domain name and a: golbis(
function will search that domain’s data rather than the DataHub for the default domain.

Example

This example uses data points entered invthige_point reference entry example.

Gamma>init_ipc("reader","rq");
t

Gamma>read_point(#my);

600
Gamma>read_point(#dog);
130
Gamma>read_point(#has);
140
Gamma>read_point(#fleas);
150
Gamma>read_existing_point(#cat);
nil

Gamma>read_point(#cat);

0

Gamma>

See Also

register_point , Write_point

185

register_all_points

register_all_points — registers an application to receive exceptions for all points.
Syntax

register_all_points (domain ?, newflag ?)

Arguments

domain

The Cogent DataHub domain in which to register.
newflag

A flag determining whether to automatically register all future points from the DataHub.

Returns

t on success, amil on failure.

Description

This function registers the current application to receive exceptions from the Cogent DataHub for all
points in the given domain. Once this function has been called, any changes to the value of any point in
the DataHub will be transmitted to the input queue of the application. These changes are events, and as
such must be processed by callimgxt_event ornext_event nb before the application will

recognize the new value of the point.

If the domain isnil , then the current default domain (setdst_domain) will be used. If the domain

is named, even if it is the default domain, then the DataHub will transmit all points as fully qualified
names, in the domain:name format. If thewflag is given and is nomil , then any points which are
created on the DataHub after this call is made will be automatically registeneelvffag isnil or

not provided, then the DataHub will not automatically register points which were created since this call.

Example
Gamma>register_all_points(nil,t);
t
Gamma>write_point(#b,22);

t

Gamma>next_event();

nil

Gamma>b;

22
Gamma>register_all_points("plant”,t);
t

Gamma>

See Also

register_point

186

register_exception

register_exception — not yet documented.

Syntax

register_exception (symbol , s_exp, execute_p ?)

Arguments

symbol
s_exp

execute_p

Returns
Description

Example

See Also

187

register_point , register_existing_point

register_point, register_existing_point — register an application to receive
exceptions for a single point.

Syntax

register_point (symbol)
register_existing_point (symbol)
Arguments

symbol

A point name, as a symbol.

Returns

The current value of the point in the Cogent DataHub. If the point does not eeggster _point
will create the point in the DataHub and return a default value. However
register_existing_point will return nil if the point does not exist.

Description

These functions register an application to receive changes in the value of a point whenever they occur.
The current value of the point is returned as a result of the registration. Once this function has been
called, any changes to the value of the point in the DataHub will be transmitted to the input queue of the
application. These changes are events, and as such must be processed byedlligent or
next_event_nb before the application will recognize the new value of the point.

A function may be attached to the value change event usingliea exception andwhen_echo

functions. Regardless of whether an event is attached to the point, the interpreter will update the value of
the symbol whose name is the same as the point name. This means that once a point has been registered
its value will always be current in the global scope of the interpreter. If the point name is pre-qualified

with a domain name and a colon (:), this function will search that domain’s data rather than the DataHub
for the default domain.

Example

Gamma>register_point(#f);

26

Gamma>write_point(#f,85);

t

Gamma>f;

26

Gamma>next_event();

nil

Gamma>f;

85
Gamma>register_existing_point(#newpoint);
nil

Gamma>register_point("newpoint");

0
Gamma>register_point("acme:newpoint");
0

188

register_point , register_existing_point

See Also

init_ipc ,next_event ,next event nb ,when_echo, when_exception

189

remove_echo_function

remove_echo_function — removes an echo function from a symbol.

Syntax

remove_echo_function (symbol , echo_fn)

Arguments

symbol

The point name, as a symbol, from which to remove the echo function.
echo_fn

The echo function body.

Returns

The echo function which was removed,ror if no function was removed.

Description

This function removes an echo function (Cogent DataHub echo handler) frosgriieol . The
echo_fn is compared to all of the current echo functions for ¢lgenbol using the comparison
functioneq.

Example

Gamma>add_echo_function(#temp,#princ("echo\n"));
(princ "echo\n")

Gamma>write_point(#temp,28);

t

Gamma>next_event();

echo

t1

Gamma>remove_echo_function(#temp #princ("echo\n"));
(princ "echo\n")

Gamma>write_point(#temp,32);

t

Gamma>next_event();

®

Gamma>

See Also

add_echo_function

190

remove_exception_function

remove_exception_function — removes an exception function from a symbol.
Syntax

remove_exception_function (symbol , exc_fn)

Arguments

symbol

The point name, as a symbol, from which to remove the exception function.
exc_fn

The exception function body.

Returns

The exception function which was removedndr if no function was removed.

Description

This function removes an exception function (Cogent DataHub exception handler) fraynthel .
Theexc_fn is compared to all of the current exception functions fordimabol using the comparison
functioneq.

Example

Gamma>add_exception_function(#temp, #princ("temp change\n"));
(princ "temp change\n")

Gamma>next_event();

temp change

®

Gamma>temp;

40

Gamma>remove_exception_function(#temp, #princ("temp change\n"));
(princ "temp change\n")

Gamma> next_event();

nil

Gamma>temp;

35

Gamma>

See Also

add_exception_function

191

secure_point

secure_point — alters the security level on a point.

Syntax

secure_point (symbol , security)

Arguments

symbol

The point to alter, as a symbol.
security

The new security level for this point.

Returns

t on success, amil if an error occurred.

Description

This function alters the security level on a point in the Cogent DataHub. If the current process security
level is lower than the named poirgynbol), then the function returnsil , otherwise it returns. The
initial security level for a process .

Example
Gamma>init_ipc("spt","spg");
t
Gamma>secure_point(#d,5);
nil
Gamma>set_security(9);

0
Gamma>secure_point(#d,5);

t
Gamma>secure_point(#d,12);
nil

Gamma>set_security(15);

9
Gamma>secure_point(#d,12);
t

Gamma>

See Also

point_security , Set_security

192

set_domain

set_domain — sets the default domain for future calls.

Syntax

set_domain (domain_name)

Arguments

domain_name

A string.

Returns

Thedomain_name argument.

Description

This function sets the default Cogent DataHub domain for all future catksatd_point

read_existing_point , register_point , register_existing_point , Write_point
andwrite_existing_point . The default domain can be overridden by explicitly placing the

domain name at the beginning of the point name, separated by a colon (:). For example, a variable named
tank_level in the default domain would have to be nansxne:tank_level in the "acme"

domain.

@ There is a possibility of aliasing points. If the default domain is "acme" then the point

tank_level and the poinicme:tank_level refer to the same DataHub point. If both of
these names are used in a Gamma program then one of them will not behave correctly. It is the
responsibility of the programmer to ensure that there is no aliasing in the assigned names, either
by always explicitly naming a point’s domain or by programming carefully.

Example

Gamma>set_domain("acme");

t

Gamma>read_point(#tank_level);
125
Gamma>set_domain("steamplant");
t

Gamma>read_point("tank_level");

4.35
Gamma>read_point("acme:tank_level");
125
See Also
read_point ,read_existing_point , register_point ,write_point

write_existing_point

193

set_security

set_security — changes the security level for the current process.
Syntax

set_security (security_level)

Arguments

security_level

The new security level for this process.

Returns

The previous security level for this process.

Description

This function changes the security level for the current process to the given value. There is no restriction
on the security level argument. A low-security process can alter its own security level to be higher.

If it is necessary to have a process’s security level to be unalterable, theettisecurity function
can be re-bound after the security level is originally set (see second example). The only use of security
level is in conjunction with the Cogent DataHub.

Example
Gamma>init_ipc("spt","spqg");
t
Gamma>secure_point(#d,5);
nil
Gamma>set_security(9);

0
Gamma>secure_point(#d,5);

t
Gamma>secure_point(#d,12);
nil

Gamma>set_security(15);

9
Gamma>secure_point(#d,12);
t

Gamma>

The example below sets the current process’s security to 5, and then reséindscurity so that
the program can no longer alter its security. Tise function is used in the re-binding, as it will accept
any number of arguments without error, and will have no side-effects.

Gamma>set_security(5);

0

Gamma>set_security = list;
(defun list (&optional &rest s_exp...) ...)
Gamma>set_security(9);

C)
Gamma>secure_point(#g,10);
nil
Gamma>secure_point(#g,6);
nil
Gamma>secure_point(#g,4);
t

Gamma>

194

set_security

See Also

point_security , Secure_point

195

unregister_point

unregister_point — stops echo and exception message sending.

Syntax

unregister_point (symbol)

Arguments

symbol

The point to unregister.

Returns

t on success, amil on failure.

Description

This function causes the Cogent DataHub to immediately stop sending echo and exception messages for
the named point. It is possible that exceptions and echos which are queued to the task will arrive after
this function is called, but the DataHub will not generate any new messages.

Example
Gamma>register_all_points(nilt);
t
Gamma>b;

55
Gamma>unregister_point(#b);
t
Gamma>write_point(#b,33);
t
Gamma>write_point(#c,77);
t

Gamma>next_event();

nil

Gamma>b;

55

Gamma>c;

77

Gamma>

See Also

register_point , register_all_points

196

when_echo _fns , when_exception_fns

when_echo_fns, when_exception_fns — indicate the functions for echos or exceptions on a
point.

Syntax

when_echo_fns (symbol)
when_exception_fns (symbol)

Arguments

symbol

A point name, as a symbol.

Returns

A list of expressions to be evaluated when an echo or exception occurs synthel .

Example

Gamma>add_echo_function(#temp,#princ("echo\n"));
(princ "echo\n")
Gamma>add_echo_function(#temp,#temp/2);
(/ temp 2)
Gamma>when_echo_fns(#temp);
((/ temp 2) (princ “echo\n") t)
Gamma>write_point(#temp,22);
t
Gamma>next_event();
echo

A1ty
Gamma>

See Also

add_echo_function, add_exception_function , remove_echo_function ,
remove_exception_function

197

write_existing_point , Write__point

write_existing_point, write_point — write point values.
Syntax
write_existing_point (symbol , value , seconds ?, nanoseconds ?)

write_point (symbol , value , seconds ?, nanoseconds ?)

Arguments

symbol

A point name, as a symbol.
value

Any numeric or string expression.
seconds

Number of seconds since Jan 1st, 1970.
nanoseconds

Number of nanoseconds within the second.

Returns

t on success anil on failure.

Description

These functions write a point value to the Cogent DataHub. If the point does not exist in the DataHub,
write_point will create the point and set its valugrite _existing_point will return nil if
the point does not exist.

Example
Gamma>init_ipc(“writer","wq");
tG_amma>Write_existing_point("my",150);
r(!!almma>write_point(#my,120);
tGamma>write_point(#dog,130,450000000);
tGamma> write_point("has",140);
tGamma>write_point("ﬂeas",150,1210947,2134444);
tGamma>Write_existing_point("my",GOO);
tGamma>

These points can be viewed in the DataHub (sorted in alphabetical order) usiitgviees command at
the shell prompt:

Point Name Conf Value
1 dog 100 130
2 fleas 100 150

3 has 100 140
4 my 100 600

198

write_existing_point , write_point

See Also

read_point ,read_existing_point , register_point

199

Table of Contents

[0 =LY (== (o S 201
[0 =YY= L] o SRS 203
] N T T 204
0> oSS 205
(O U1 T o T 1101 PP PRPR 207
ONX_NAME_ALIACKH oo e 208
ONX_NAME_ETACH .o et 209
ONX_NAME_IOCALE ..ottt bbbt b et bt a bt st b e e b e ekt b et bt e s b 210
ONX_OSINTO et b et b bbbt e b e b e bbbt bt e e 211
ONX_OSSTAL e e e e b e 214
ONX_PrOXY_AHACKH et b e st b e bbb e e e bbb s 215
Lo gD G o] (o)1 Y o =] 7= Te o KSR 216
ONX_ProXy_FeM_attaCh e e bbb b 217
(oD o1 ()Y (=1 1 o (=1 7= T o S 218
(o DTG (=0T 1Y/ 219
(o 10D G 1] o] /S 220
o DT~ 1 o S 221
ONX_SPAWN_PIOCESS weeueeteeeeereesseeseeseesseessesseessasseassessesseessessesssessesseessesseessessesssesesseessesseeseessesseessessenns 222
(o o e 1T T[T TSRS 225
ONX_VC_AEEACKH itttk b et b bbb 226
ONX_VC_AELACKH ittt b e e b et b et bbbttt 228
ONX_VC_NAME_AACKH et sttt et eene e e e 229

200

dev _read

dev_read — is a modification of QNX 4lev_read .

Syntax

dev_read (devno, nchars , min_chars , time , timeout)

Arguments

devno

A device id number returned from dev_open.
nchars

The number of characters to read.
min_chars

The minimum number of characters to read.
time

The inter-character time limit.
timeout

A timeout value for the entire read.

Returns

A buffer containing the characters which were successfully returned from this call, oif an error
occurred.

Description

This function is a modification of the QNXdev_read function. It is currently only available in QNX
4,

This function does not support the proxy and armed arguments to dee Gead function. The
characters read from the device are returned in a buffer rather than filled in to a buf argument as with the
C function. Otherwise, the function of this call is identical to the QN&e4 read function.

The min, time, and timeout values are used as follows:

Table 1.dev_read min, time, and timeout values

min time timeout Description
0 0 0 Returns immediately with as many bytes as are currently available
(up to nchars bytes).
M 0 0 Return with up to nchars bytes only when at least M bytes are
available.
0 T 0 Return with up to nchars bytes when at least one byte is available,

or T *0.1 sec has expired.

M T 0 Return with up to nchars bytes when either M bytes are available or
at least one bytes has been received and the inter-byte time between
any subsequently received characters exceeds T * 0.1 sec.

0 0 t Reserved.

201

dev_read

sec

tly

sec

tly

min time timeout Description
M 0 t Return with up to nchars bytes when t * 0.1 sec has expired, of
bytes are available.
0 T t Reserved.
M T t Return with up to nchars when M bytes are available, ort* 0.1
has expired and no characters are received, or at least one byte has
been received and the inter-byte time between any subsequen
received characters exceeds T * 0.1 sec.
0 T t Reserved.
T t Return with up to nchars when M bytes are available, ort* 0.1
has expired and no characters are received, or at least one byte has
been received and the inter-byte time between any subsequen
received characters exceeds T * 0.1 sec.

If an error occurs the errno is set.

The following error constants are relevant:

« EAGAIN The O_NONBLOCK flag is set on the devno.

- EBADF The devno argument is invalid or not open for read

- EINTR The function was interrupted by a signal

« EIO The process cannot read data from the devno

« ENOSYSThis function is not supported for the given devno

Example
Gamma>id = dev_open('/dev/serl",0O_RDWR);

4

Gamma>x = dev_read(id,5,1,0,100);

#[104 101 108 108 111]
Gamma>buffer_to_string(x);

"hello”

See Also

fd_open , fd_close

, Ser_setup

202

dev_setup

dev_setup —is obsolete, seser_setup

Syntax

dev_setup (devno, baud, bits /char , parity , stopbits , min, time)
Description

This function has been renamselr_setup , and is documented in detail on that page.

203

inp , inpw
inp, inpw — query hardware ports.

Syntax

inp (port)
inpw (port)

Arguments

port

A hardware port address.

Returns

The byte (np) or word (npw) located at the hardware port address.

Description

These functions query a hardware port. In order for these functions to succeed, the interpreter must be
running with root permissions and a privity of 1, otherwise these functions may cause a segmentation
fault.

Theinp function reads a single byte from the specified port location.ifipe function reads a word
(two bytes) from the specified port location.

Example

Examples of this function are beyond the scope of this documentation.

See Also

outp , outpw

204

mmap

mmap— implements the @hmapfunction call.

Syntax

mmap (size , prot_flags , share_flags , shm_file , offset)
Arguments

size

The size (in bytes) of the shared memory segment to map.
prot_flags

Access capability flags.
share_flags

Sharing flags.
shm_file

A file descriptor as returned by shm_open.
offset

An offset from the beginning of the shared memory area.

Returns

A buffer which is mapped to the shared memory regiomibr on failure witherrno set.

Description

This function is currently only available in QNX 4. It implements then@apfunction call, returning a
buffer which maps to the shared memory region. $hm_open function needs to be called before
using this function.

Theprot_flags specifies the access capability. Vatiobt_flags are bitwise OR-ed combinations
of:

« PROT_EXEC The region can be executed.

« PROT_NOCACHE Disable caching of the region (use for dual port RAM).
« PROT_NONE The region cannot be accessed.

+ PROT_READ The region can be read.

« PROT_WRITE The region can be written.

Theshare _flags specify the handling of the memory region. Vasdare_flags are bitwise
OR-ed combinations of:

- MAP_PRIVATE Changes are private.
« MAP_SHARED Share changes.
Remember to require the "const/mman.Isp" file before using these constants.

Possible errors when using this function are:

205

mmap

« EACCES The shm_file is not open for the correct mode

« EAGAIN The mapping could not be locked in memory due to a lack of resources
- EBADF The passed shm_file is bad.

« EINVAL Theprot_flags of share_flags argumentis invalid

« ENODEV The shm_file arg refers to an argument for which mmap is meaningless

- ENOMEM The mapping could not be locked because it would require more space than the system is
able to supply

« ENOSYSThe function mmap is not supported by this implementation
- ENOTSUP MAP_PRIVATE was specified but the implementation does not support this functionality

« ENXIO The offset or size arguments are invalid.

Example

/IThis code maps the first 1000 bytes from video
//Imemory (0xA0000) into a buffer named buf.

require_lisp(“"const/filesys");
require_lisp("const/mman");

fd = shm_open("Physical",0_RDONLY, 00777);
buf = mmap(1000, PROT_READ , MAP_SHARED, fd, 0xA0000);

See Also

shm_open

206

outp , outpw

outp, outpw — write values to hardware ports.

Syntax

outp (port , value)
outpw (port , value)

Arguments

port

A hardware port address.
value

A value to write to the port.

Returns

The value.

Description

These functions write a value to a hardware port. In order for these functions to succeed, the interpreter
must be running with root permissions and a privity of 1, otherwise these functions may cause a
segmentation fault.

Theoutp function writes a single byte to the specifipdrt location. Theoutpw function writes a
word (two bytes) to the specifiggbrt location.

Example

Examples of this function are beyond the scope of this documentation.

See Also

inp , inpw

207

gnx_name_attach

gnx_name_attach — registers a local or global name.

Syntax

gnx_name_attach (node, name)

Arguments

node

The node (0 is local node).
name

The name to attach.

Returns

A name id, useful when calling ttgnx_name_detach function. On failure this function returns -1
and sets errno.

Description

This function registers a local or global name. Names can be up to 32 characters long. If a name starts
with a slash '/’ then it is considered to be a global name. Global names are registered with optionally run
global process name servers (hameloc).

Errors are:

EAGAIN Name space used up on this node EBUSY Specified hame already exists on that node

Example

Examples of this function are beyond the scope of this documentation.

See Also

gnx_name_detach , gnx_name_locate , ProfilingandDebugging

208

gnx_name_detach

gnx_name_detach — detaches a name.

Syntax

gnx_name_detach (node, name_id)

Arguments

node

The node.
name_id

The name id returned bynx_name_attach

Returns

true if able to detach, els@l , and errno is set.

Description
Detaches a name attached by ¢tjimx_name_attach function.

Errno can be set to :

- EINVAL The name does not exist, or if it does, you do not own it

Example

Examples of this function are beyond the scope of this documentation.

See Also

gnx_name_attach , gnx_name_locate

209

gnx_name_locate

gnx_name_locate —is an implementation of the C functi@mx_name_locate

Syntax

gnx_name_locate (node, name, size)

Arguments

node

The node on which to locate the name, or O for global name service.
name

The name to locate.
size

The initial size of a virtual circuit buffer, if necessary.

Returns

A list of the form(taskid . number_of instances) , ornil if no name was located.

Description

This is an implementation of thgnx_name_locate C function. The only difference is that the return
value contains both the located task ID and the number of copies of the name found. The task ID is the
car of the return value, and the number of copies is the cdr of the return value.

Example

Gamma> gnx_name_locate(0,"gnx/pipe",0);
(35 .1)

See Also

gnx_name_attach , gnx_name_detach

210

gnx_osinfo

gnx_osinfo — returns a class very similar to QNXstruct_osinfo

Syntax

gnx_osinfo (node)

Arguments

node

The node to query.

Returns

An instance of the clag9sinfo , ornil on failure.

Description

This function returns a class very similar to the QNXtduct _osinfo . Itis currently only
available in QNX 4. The instance variables of this class are:

« bootsrca single integer value that is the ASCII value for the character 'F’ for floppy, 'H’ for hard, or
"N’ for network. Use char() function to convert.

« Cpu processor type, typically given as the last 3 digits (386,486,586,686,etc.)

« cpu_speech measure of the CPU speed using a 16-bit algorithm. A classic PC/XT is 96. A 133MHz
Pentium is approx. 18000-19000.

- fpu the floating point processor type given as the last 3 digits of the chip (387,487,587,687,etc.)
. freememkfree memory in the system

« machinemachine name

- max_nodesthe number of nodes you are licensed for

« nodenamelogical node numberof this cpu

« num_handlersmaximum number of interrupt handlers

« num_namesmaximum number of names

« num_procsmamimum number of processes (programs + virtual curcuits + proxies)
« num_sessionsnaximum number of sessions

« num_timers maximum number of timers

« pidmask process ID bit mask

- releasea single number that is the ASCII equivalent of the release letter. Use char() function to
convert.

- reserve64kRelocation offset
- sflagsSystem flags, see below
- tick_sizetick size, in microseconds

« timeselsegment in which the time is kept

211

gnx_osinfo

« totmemk total memory (kB) in the system

- versionthe QNX 4 version number * 100

« The following system flags are availablenil

+ _PSF_PROTECTEDThe system is running in protected mode

« PSF_NDP_INSTALLED An 80x87 numeric processor is installed
« PSF_EMULATOR_INSTALLED An 80x87 emulator is running

« PSF_EMU16_INSTALLED The 16-bit 80x87 emulator is running
« PSF_EMU32_INSTALLED The 32-bit 80x87 emulator is running
« PSF_APM_INSTALLED Advanced Power Management is running in the BIOS of this system
« _PSF_32BIT_KERNEL This system is running with a 32 bit kernel
« _PSF_PCI_BIOSThis system has a PCI BIOS

« _PSF_32BITProc32 is running

+ PSF_RESERVE_DOSThe lower 640k is reserved for DOS

. _PSF_RESERVE_DOS327??

Example

Gamma>sin = gnx_osinfo(0);
<instance of Osinfo class>
Gamma>char(sin.bootsrc);
e

Gamma>sin.cpu;

586
Gamma>sin.cpu_speed,;
18883
Gamma>sin.freememk;
18260
Gamma>sin.machine;
"PCI"
Gamma>sin.max_nodes;
34
Gamma>sin.nodename;

2
Gamma>sin.num_handlers;
64
Gamma>sin.num_names;
100
Gamma>sin.num_procs;
500
Gamma>sin.num_sessions;
64
Gamma>sin.num_timers;
125

Gamma>sin.pidmask;

511
Gamma>char(sin.release);
"G
Gamma>sin.reserve64k;

0

Gamma>sin.ticksize;

9999
Gamma>sin.totmemk;
32384

Gamma>sin.version / 100;
4.23

/[These examples use loaded constants. Any return value greater

212

gnx_osinfo

/lthan zero indicates a positive result.
require_lisp("const/QNXOS");

Gamma>sin.sflags & _PSF_PROTECTED;

1

Gamma>sin.sflags & _PSF_NDP_INSTALLED;

2

Gamma>sin.sflags & _PSF_EMULATOR_INSTALLED
0

Gamma>sin.sflags & _PSF_RESERVE_DOS

0

See Also

gnx_osstat

213

qnx_osstat

gnx_osstat — lists processor loads and number of READY processes at each priority level.

Syntax

gnx_osstat (node)

Arguments

node

The node for which to collect statistics. Zero indicates the current node.

Returns

A list of two arrays of 32 elements.

Description

This function is currently only available in QNX 4. It returns a list of two arrays of 32 elements. The first
array contains the average processor load at each priority level. The number are relative to one another
and have a sum of 1. The second array contains the number of processes in the READY state at each
priority level.

Example

info = gnx_osstat(0);
load = car(info);
for(i=0;i<32;i++)
{
princ(format("%2d. %2f\n",i,aload[i] * 100));
}

See Also

gnx_osinfo

214

gnx_proxy_attach

gnx_proxy_attach ~ — creates a proxy message for a process.

Syntax

gnx_proxy_attach (pid , command, priority ?)

Arguments
pid
The process ID of the task to receive the message.
command
The message code.
priority

The priority of the message (optional).

Returns

The process ID of the proxy, else -1.

Description

This function creates a message proxy that will deliver a standard message to a task whenever it is called.
The proxy will accept any message from any other task, but will always send it's one message to the task
identified withpid . The sending process will not block, and its message data will be discarded by the
proxy.

Proxies are used to wake receive-blocked processes that are waiting for messages. They can also be used
to send non-blocking messages between processesehditasync is probably more useful for this.

Proxy messages are queued, so if a proxy is triggered 95 times, its receiving task will get 95 identical
messages. A proxy may have at most 65535 messages pending.

In case of error, the following errnos are possible:

« EAGAIN No process entries free to make a proxy.

« EINVAL The proxy message exceeds the maximum.

- ENOMEM The process manager doesn’t have enough memory to hold the message.
« ESRCH The process IDfid) does not exist.

Example

Examples of this function are beyond the scope of this documentation.

See Also

gnx_proxy_detach

215

gnx_proxy_detach

gnx_proxy_detach — removes a proxy.

Syntax
gnx_proxy_detach (proxyid)

Arguments
proxyid

The proxy ID number as returned lgnx_proxy_attach

Returns

0 on success, else -1.

Description

This function releases a proxy from its associated task. When a task dies all proxies attached to it are
automatically removed.

In case of error, the following errnos are possible:

- EPERM This task is not the owner of the proxy.
« ESRCH The proxy does not exist.

Example

Examples of this function are beyond the scope of this documentation.

See Also

gnx_proxy_attach

216

gnx_proxy_rem_attach

gnx_proxy_rem_attach — creates a remote proxy message for a task.

Syntax

gnx_proxy_rem_attach (node, proxyid)

Arguments

node
The node ID of the remote node.
proxyid

The proxy ID of the associated proxy.

Returns

The remote proxy ID number, else -1.

Description

This function creates and attaches a remote message proxy to task. The task must already have a local
proxy, which the remote proxy is associated with.

The remote proxy is activated by a callqox_trigger by any task on itsiode . A call to
gnx_trigger on the remote proxy causes a subsequent cagjhto trigger on its associated local
proxy. The receiving task sees no difference between a message from a local proxy or a remote proxy.

If the task’s own node number or zero is specifiedrfode , a local proxy is created instead of a remote
proxy.
In case of error, the following errnos are possible:

« EINVAL Invalid proxy.
- EPERM Proxy does not belong to task specified.
« ESRCH Proxy does not exist.

Example

Examples of this function are beyond the scope of this documentation.

See Also

gnx_trigger gnx_rem_proxy_detach

217

gnx_proxy_rem_detach
gnx_proxy_rem_detach — removes a remote proxy.

Syntax

gnx_proxy_rem_detach (node, proxyid)

Arguments

node

The node of the remote proxy.
proxyid

The proxy ID number of the remote proxy.

Returns

0 upon success, else -1.

Description

This function removes a remote proxy. When a task dies, all remote proxies attached to it will
automatically be detached.

In case of error, the following errnos are possible:

« EINVAL Invalid proxy.
- EPERM Proxy does not belong to task specified.
+ ESRCH Proxy does not exist.

Example

Examples of this function are beyond the scope of this documentation.

See Also

gnx_rem_proxy_attach

218

gnx_receive
gnx_receive — performs a QNX &Receive .

Syntax

qgnx_receive (taskid)

Arguments

taskid

Task id of the acceptable sender, or O to receive from any task.

Returns

A list whose car is the process ID of the sending task and whose cdr is a character string containing the
message which was sent, or -1 on error.

Description

This function performs a QNX 4 Receive. Once a message has been received the sending task is blocked
until the recipient issues a reply message usingjthe reply function.

This function should only be used to receive a specific message from a specific task. There is no need to
make your own event loop in Gamma since there is a choioextf event , next_event nb ,and
PtMainloop.

Possible errno values are:

« EFAULT invalid buffer size
« EINTR the function call was interrupted by a signal

« ESRCH the process ID does not exist

Example

Examples of this function are beyond the scope of this documentation.

See Also

gnx_send , gnx_reply ,send,send_async ,next_event ,next_event nb ,PtMainLoop

219

gnx_reply

gnx_reply —replies tognx_receive messages.
Syntax

gnx_reply (taskid , message)

Arguments

taskid

The task which will get the reply.
message

A string containing the reply.

Returns

Returns zero on success and -1 on failure. Errno is set on error.

Description

Thegnx_reply function is a wrap of the C function Reply. Any message that you receive using the
gnx_receive function should be replied to. This function should only be used if you are also using
gnx_receive . The event handling functionsext_event ,next event nb , andPtMainLoop

are the preferred choice for Gamma programs since that automatically handle receiving, replying, and
signal, timer, Cogent DataHub events, and Photon messages.

The errno possile values for this function are:

« EAGAIN Out of queue packets to network manager
« EFAULT Invalid message

« EINTR Function call interrupted by signal

« EINVAL invalud virtual circuit buffer

- ENOMEM not enough memory for operation

« ESRCH the process ID does not exist

Example

Examples of this function are beyond the scope of this documentation.
See Also

gnx_send , gnx_receive ,send,send_async ,next event ,next event nb
PtMainLoop

220

gnx_send
gnx_send — implements QNX 45end.

Syntax

gnx_send (taskid , message)

Arguments

taskid

The task to whom the message is sent.
message

The message, as a string, to send.

Returns

Returns a reply message character string from the recipient task. On an error this functiomigturns
and sets errno.

Description
This function implements the QNX 8end function. The reply is returned as a character string.

Possible values of errno are:

« EAGAIN No queue packets available for network manager

« EFAULT invalid message

« EHOSTUNREACH Destination node not in the netmap, or physical I/O error has occurred
- EINTR The function was interrupted by a signal

- EINVAL invalid message length

- ENOMEM not enough memory available for operation

« ESRCH the process ID does not exist

Example

Examples of this function are beyond the scope of this documentation.
See Also

gnx_reply ,gnx_receive ,send,send_async ,next event ,next_event nb ,
PtMainLoop

221

qnX_spawn_process

gnx_spawn_process — is an implementation of the C functiamx_spawn .
Syntax

qgnx_spawn_process (exec, node, priority , scheduler

flags, program , arg_list , file_list , ctfile)

Arguments

exec

If non-nil , then execute the process, otherwise spawn a separate task.
node

The node on which to spawn, or zero for the current node.
priority
The scheduler priority of the new task.

scheduler

the scheduler algorithm for the new task.
flags

The spawn flags.
program

The program name.
arg_list

Arguments to the program, as a list, excluding the program name.
file_list

A list of up to 10 files to be associated with the first 10 file descriptors of the new process. If any
element in the list is a non-file, then use the corresponding file descriptor in the current process. A
nil file-list indicates that all 10 file descriptors will be inherited from the calling task.

ctfile

A file associated with the controlling terminal for the new process.

Returns

The task ID of the new task, or -1 if an error occurs, and the errno is set.

Description

This is an implementation of thgnx_spawn C function. It is currently only available in QNX 4. This
is the lowest level function for creating a new process.

Passing -1 to the priority option will cause the new task to inherit its priority from the parent, otherwise a
value from 1-31 is acceptable.

Passing -1 to the scheduler option will cause the new task to inherit its scheduler activities from the
parent, otherwise the following flags are defined for the scheduler option:

« SCHED_FIFO First-in, First-Out scheduling algorithm.

222

gnx_spawn_process

SCHED_RR Round-robin scheduling algorithm.
SCHED_OTHER Adaptive scheduling.

The following spawn flags are defined for the flags option:

_SPAWN_BGROUNDThe process will be started with SIGINT and SIGQUIT ignored.
_SPAWN_DEBUG The process will be started with the single step flag set. Rarely used.
_SPAWN_HOLD The process will be started in a STOPPED state.
_SPAWN_NEWPGRPThe new process will start a new process group.
_SPAWN_NOHUP The process will be started with SIGHUP ignored

_SPAWN_NOZOMBIE When the new process terminates it will not become a zombie waiting for its
father to do a wait on its death. The parent process will not see the child process die and a SIGCHILD
will not be set.

_SPAWN_SETSIDThe new process will start a new session.
_SPAWN_SIGCLR The new process will not inherit ignored signals from its parent.

_SPAWN_TCSETPGRPThe new process will start a new terminal group. ALL keyboard breaks will
be directed a it.

_SPAWN_XCACHE Instruct the file system to place the executable in cache in hopes that it will be
loaded again soon.

The library "const/QNXOS" should be required to use these constants

Errors that can happen when using this function:

E2BIG The sum of the bytes used by the new process image’s argument list and environment is too
big.

EACCES No permissions to execute program.

EAGAIN No free process entries or local memory.

EINVAL The priority or the scheduling policy is invalid.

ENAMETOOLONG The length of the program name, expanded to it’s full path, is too long.
ENOENT The program does not exist.

ENOEXEC The program is not the correct format (not an executable).

ENOLIC Insufficient licenses to use this function.

ENOMEM Not enough system memory.

ENONDP The program needs an 80x87. A co-processor is not installed and the emulator (emu87) is
not running.

ETXTBUSY The program to launch is open for write (busy).

The ctfile is a file descriptor associated with the new process. This parameter is only meaningful if the

_SPAWN_SETID flag is set. If you wish to start a new session without a controlling terminal then pass

-1.

Example

Examples of this function are beyond the scope of this documentation.

223

gnx_spawn_process

See Also

exec , fork , wait

224

gnx_trigger

gnx_trigger — tells a proxy to send its message.

Syntax

qnx_trigger (pid , command, priority ?)

Arguments
proxyid

The process ID of the proxy.
command

The message code.
priority

The priority of the message.

Returns
The process ID of the proxy triggered, else -1.

Description

This function is a mapping of the QNX 4 kernel functidrigger . It triggers a proxy to send its
message to the receiving task. Its calling process does not block, and if more thgmxotréggger
call is sent while the task is busy, up to 65535 proxy messages will be queued for later delivery.

In case of error, the errno ESRCH means the proxy does not exist.

Example

Examples of this function are beyond the scope of this documentation.

225

gnx_vc_attach

gnx_vc_attach — establishes a virtual circuit between two processes on two computers.
Syntax

gnx_vc_attach (node, taskid , max_msg_length , flags)

Arguments

node

The node to which to attach.
taskid

The task id to which to attach.
max_msg_length

The maximum message size which will be passed between tasks.
flags

Virtual circuit flags.

Returns

A task id of a virtual circuit, or -1 on error, with errno set.

Description

This function establishes a network link between two processes on two computers. Once this link is
established the two processes can communicate using the IPC function
gnx_send/gnx_receive/gnx_reply

Legal virtual circuit flags that can be OR-ed together are:

« 0 (zero)A new virtual process and a new buffer will be allocated on both ends.
« _VC_AT_SHARE Use an existing virtual circuit, if it exists.

« VC_AT_REM_ZOMBIE The remote virtual circuit id (vid) will become a zombie process when the
remote process ID terminates.

Possible values for errno are:

+ EAGAIN Proc to Net enqueuing failed

- EHOSTUNREACH Destination node not in netmap or physical I/O error
- EINVAL buffer too big

« ENOLIC no license to communicate with this node

- ENOMEM not enough memory to complete operation

- ENOVPE not enough proc entries to new vc

« ENOSYSno Net manager found

+ ESRCH process ID not valid

226

gnx_vc_attach

Example

Examples of this function are beyond the scope of this documentation.

See Also

gnx_vc_name_attach ,gnx_send , send, send_async

227

gnx_vc_detach

gnx_vc_detach — detaches a virtual circuit.

Syntax

gnx_vc_detach (taskid)

Arguments

taskid

The task id returned by gnx_vc_attach.

Returns

t on successjil on failure, witherrno set.

Description

This function detaches a virtual circuit previously attached with_vc_attach or
gnx_vc_hame_attach

Possible values for errno are:

. EAGAIN Proc to Net enqueuing failed
« ESRCH pid not valid
« EPERM the vid is not your to detach nil

Example

Examples of this function are beyond the scope of this documentation.

See Also

gnx_vc_attach , gnx_vc_name_attach

228

gnx_vc_name_attach

gnx_vc_name_attach — attaches a virtual circuit with a name instead of a process ID number.
Syntax

gnx_vc_name_attach (node, max_msg_length , name)

Arguments

node

The node for the attachment.
max_msg_length

The maximum message size which will be passed between tasks.
name

The name of the task to attach.

Returns

Virtual circuit ID on success, -1 on failure, with errno set.

Description

This function performs the same operatiorgag_vc_attach except that a name attached with
gnx_name_attach can be specified instead of a process ID number. The function is currently only
available in QNX 4.

Possible errno values are:

« EAGAIN Proc to Net enqueuing failed

+ EHOSTUNREACH Destination node not in netmap or physical I/O error
« EINVAL buffer too big

+ ENOLIC no license to communicate with this node

- ENOMEM not enough memory to complete operation

« ENOVPE not enough proc entries to new vc

« ENOSYSno Net manager found

« ESRCH pid not valid

Example

Examples of this function are beyond the scope of this documentation.

See Also

gnx_vc_attach , gnx_vc_detach

229

Index

Symbols

A

_destroy_taskl34

absolute_pati39
access40
add_echo_functior, 78
add_exception_functiori,78
add_hook 131
add_set_functiorl 55
after,162
allocated_cells108
apropos

Gamma,125
at,163
atexit,65
AutolLoad,95
autoload_undefined_symb@i7
AutoMapFunction98

basenamefl
block_signal 66
block_timers,165

cancel,166

cd, 42
chars_waiting43
ClearAutoLoad99
clock, 167

close 4
close_task133
Create_statel, 26

date,168
date_of,169
dev_read201
dev_setup203
directory,44
dirname 45
diclose,100
dlerror,101
difunc, 102

DllLoad, 103
dimethod, 104
dlopen,106
drain,46

enter_state] 26
errno,67
eval_count]109
every,170
exec,68
exit_programg9
exit_state126

fd_close5
fd_data_function6
fd_eof_function,7
fd_open38
fd_read,10

fd_to file,11
fd_write, 12

file, 16

fileno, 14
file_date 47
file_size 48
flush,49
flush_events]157
fork, 70
free_cells110
function_calls 111

function_runtime 112

gc, 113
gc_blocksizel14
gc_enable115
gc_newblock]116
gc_tracell7
gensym]127
getcwd,50
getenv,72
gethostnameZ3
getnid,74
getpid,75
getsockopt76
gmtime,171

230

init_async_ipc135
init_ipc, 136
inp, 204

inpw, 204
ioctl, 15
isend, 137
is_busy51
is_dir,52
is_file,53
is_readable54
is_writable,55

kill, 78

localtime, 173
locate_task138
locate_task_id140
lock_point,180

mkdir, 56
mktime, 175
mmap,205
modules 128

name_attach 41
nanoclock167
nanosleep/9
next_event158
next_event_nhl58
NoAutoLoad,105
notrace 123
nserve_queryl42

open,16
outp,207
outpw,207

path_node58
pipe, 18
point_locked 181
point_nanosecond$32
point_seconds] 83
point_security184
pretty_princ,19
pretty print,19
pretty write,36
pretty_writec,36
princ,19

print, 19
profile,118

pty, 21

ptytio, 21

gnx_name_attacl208
gnx_name_detac209
gnx_name_locat10
gnx_osinfo211
gnx_osstat214
gnx_proxy_attach215
gnx_proxy_detact216
gnx_proxy_rem_attac217
gnx_proxy_rem_detac218
gnx_receive219
gnx_reply,220
gnx_send221
gnx_spawn_procesg22
gnx_trigger,225
gnx_vc_attach?226
gnx_vc_detach228
gnx_vc_name_attacB29

read

Gamma23
read_char24
read_double24
read_eval_file26
read_existing_point, 85
read_float24
read_line27
read_longz4
read_n_charg8
read_point,185
read_short24
read_until 29

231

register_all_points] 86
register_exceptiort,87

register_existing_point,88

register_point188

remove_echo_functior,90
remove_exception_functiof91

remove_hook143
remove_set_functior,59
renameb9

root_path60
run_hooks144

secure_point192
seek,30

send,145
send_asyncl47
send_string148
send_string_asyn&49
ser_setup32
setenv30
setsockopt76
set_autotracel,20
set_breakpointl 21
set_domainl193
set_securityl94
shm_open81
shm_unlink,83
signal,84

sleep,86
stack,129
strerror,87
system88

task,138
taskdied 150
taskstarted
Gamma,150
task_info,152
tcp_accept89
tcp_connect90
tcp_listen 91
tell, 33
terpri, 34
time, 122
timer_is_proxy,176
tmpfile, 61
trace,123

unblock_signal66
unblock_timers165
unbuffer_file,62
unlink, 63
unread_cha5
unregister_point] 96
usleep86

wait, 92
when_echo_fns]97
when_exception_fng,97
when_set_fns]60
write

Gammag36
writec, 36
write_existing_point198
write_n_chars37
write_point,198

232

Colophon

This book was produced by Cogent Real-Time Systems, Inc. from a single-source group of SGML files.
Gnu Emacs was used to edit the SGML files. The DocBook DTD and related DSSSL stylesheets were
used to transform the SGML source into HTML, PDF, and QNX Helpviewer output formats. This
processing was accomplished with the help of OpenJade, JadeTeX, Tex, and various scripts and

makefiles. Details of the process are described in our book: Preparing Cogent Documentation, which is
published on-line at

http://developers.cogentrts.com/cogent/prepdoc/bookl.html .
Text written by Andrew Thomas, Mark Oliver, Bob Mcllvride, and Elena Devdariani.

233

	
	Gamma Reference Volume 2
	Table of Contents
	List of Tables
	Chapter 1. What is Gamma?
	Chapter 2. System Requirements
	I. Input/Output
	Table of Contents
	close
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	fdclose
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	fddatafunction
	Syntax
	Arguments
	Returns
	Description
	See Also

	fdeoffunction
	Syntax
	Arguments
	Returns
	Description
	See Also

	fdopen
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	fdread
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	fdtofile
	Syntax
	Arguments
	Returns
	Description
	See Also

	fdwrite
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	fileno
	Syntax
	Arguments
	Returns
	Description
	See Also

	ioctl
	Syntax
	Arguments
	Returns
	Description

	open
	Syntax
	Arguments
	Returns
	Description
	Examples
	See Also

	pipe
	Syntax
	Arguments
	Returns
	Description
	Example

	princ, print, prettyprinc, prettyprint
	Syntax
	Arguments
	Returns
	Description
	Examples
	See Also

	pty, ptytio
	Syntax
	Arguments
	Returns
	Description
	Example

	read
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	readchar, readdouble, readfloat, readlong, readshort
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	readevalfile
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	readline
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	readnchars
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	readuntil
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	seek
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	sersetup
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	tell
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	terpri
	Syntax
	Arguments
	Returns
	Description
	Example

	unreadchar
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	write, writec, prettywrite, prettywritec
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	writenchars
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	II. File System
	Table of Contents
	absolutepath
	Syntax
	Arguments
	Returns
	Description
	Example

	access
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	basename
	Syntax
	Arguments
	Returns
	Example
	See Also

	cd
	Syntax
	Arguments
	Returns
	Description
	Example

	charswaiting
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	directory
	Syntax
	Arguments
	Returns
	Example

	dirname
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	drain
	Syntax
	Arguments
	Returns
	Description
	Example

	filedate
	Syntax
	Arguments
	Returns
	Example
	See Also

	filesize
	Syntax
	Arguments
	Returns
	Example

	flush
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	getcwd
	Syntax
	Arguments
	Returns
	Example

	isbusy
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	isdir
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	isfile
	Syntax
	Arguments
	Returns
	Example
	See Also

	isreadable
	Syntax
	Arguments
	Returns
	Example
	See Also

	iswritable
	Syntax
	Arguments
	Returns
	Example
	See Also

	mkdir
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	pathnode
	Syntax
	Arguments
	Returns
	Description
	Example

	rename
	Syntax
	Arguments
	Returns
	Description
	Example

	rootpath
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	tmpfile
	Syntax
	Arguments
	Returns
	Description
	Example

	unbufferfile
	Syntax
	Arguments
	Returns
	Description
	Example

	unlink
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	III. OS APIs
	Table of Contents
	atexit
	Syntax
	Arguments
	Returns
	Description
	Example

	blocksignal, unblocksignal
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	errno
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	exec
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	exitprogram
	Syntax
	Arguments
	Returns
	Description
	Example

	fork
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	getenv
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	gethostname
	Syntax
	Arguments
	Returns
	Example

	getnid
	Syntax
	Arguments
	Returns
	Example
	See Also

	getpid
	Syntax
	Arguments
	Returns
	Example
	See Also

	getsockopt, setsockopt
	Syntax
	Arguments
	Returns
	Description
	Example

	kill
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	nanosleep
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	setenv
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	shmopen
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	shmunlink
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	signal
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	sleep, usleep
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	strerror
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	system
	Syntax
	Arguments
	Returns
	Description
	Example

	tcpaccept
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	tcpconnect
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	tcplisten
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	wait
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	IV. Dynamic Loading
	Table of Contents
	AutoLoad
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	autoloadundefinedsymbol
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	AutoMapFunction
	Syntax
	Arguments
	Returns
	Description
	See Also

	ClearAutoLoad
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	dlclose
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	dlerror
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	dlfunc
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	DllLoad
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	dlmethod
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	NoAutoLoad
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	dlopen
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	V. Profiling and Debugging
	Table of Contents
	allocatedcells
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	evalcount
	Syntax
	Arguments
	Returns
	Description
	Example

	freecells
	Syntax
	Arguments
	Returns
	Example
	See Also

	functioncalls
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	functionruntime
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	gc
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	gcblocksize
	Syntax
	

	gcenable
	Syntax
	

	gcnewblock
	Syntax
	

	gctrace
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	profile
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	setautotrace
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	setbreakpoint
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	time
	Syntax
	Arguments
	Returns
	Description
	Example

	trace, notrace
	Syntax
	Arguments
	Returns
	Description
	Example

	VI. Miscellaneous
	Table of Contents
	apropos
	Syntax
	Arguments
	Returns
	Description
	Example

	createstate, enterstate, exitstate
	Syntax
	Arguments
	Returns
	Description
	Example

	gensym
	Syntax
	Arguments
	Returns
	Description
	Example

	modules
	Syntax
	Arguments
	Returns
	Description

	stack
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	VII. IPC
	Table of Contents
	addhook
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	closetask
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	destroytask
	
	
	
	
	
	
	

	initasyncipc
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	initipc
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	isend
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	locatetask
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	locatetaskid
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	nameattach
	Syntax
	Arguments
	Returns
	Description
	Example

	nservequery
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	removehook
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	runhooks
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	send
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	sendasync
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	sendstring
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	sendstringasync
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	taskdied, taskstarted
	Syntax
	Arguments
	Returns
	Description

	taskinfo
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	VIII. Events and Callbacks
	Table of Contents
	addsetfunction
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	flushevents
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	nextevent, nexteventnb
	Syntax
	Arguments
	Returns
	Description
	Example

	removesetfunction
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	whensetfns
	Syntax
	Arguments
	Returns
	Example
	See Also

	IX. Time, Date, and Timers
	Table of Contents
	after
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	at
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	blocktimers, unblocktimers
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	cancel
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	clock, nanoclock
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	date
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	dateof
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	every
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	gmtime
	Syntax
	Arguments
	Returns
	Example
	See Also

	localtime
	Syntax
	Arguments
	Returns
	Example
	See Also

	mktime
	Syntax
	Arguments
	Returns
	Example
	See Also

	timerisproxy
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	X. Cogent DataHub
	Table of Contents
	addexceptionfunction, addechofunction
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	lockpoint
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	pointlocked
	Syntax
	Arguments
	Returns
	Example
	See Also

	pointnanoseconds
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	pointseconds
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	pointsecurity
	Syntax
	Arguments
	Returns
	Example
	See Also

	readexistingpoint, readpoint
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	registerallpoints
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	registerexception
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	registerpoint, registerexistingpoint
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	removeechofunction
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	removeexceptionfunction
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	securepoint
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	setdomain
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	setsecurity
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	unregisterpoint
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	whenechofns, whenexceptionfns
	Syntax
	Arguments
	Returns
	Example
	See Also

	writeexistingpoint, writepoint
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	XI. QNX 4
	Table of Contents
	devread
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	devsetup
	Syntax
	Description

	inp, inpw
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	mmap
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	outp, outpw
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxnameattach
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxnamedetach
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxnamelocate
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxosinfo
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxosstat
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxproxyattach
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxproxydetach
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxproxyremattach
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxproxyremdetach
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxreceive
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxreply
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxsend
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxspawnprocess
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxtrigger
	Syntax
	Arguments
	Returns
	Description
	Example

	qnxvcattach
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxvcdetach
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	qnxvcnameattach
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

	Colophon

