6_; Logent

Real-Time Systems Inc.

Documentation Library

Gamma™ Reference Volume 1

Version 7.2

Cogent Real-Time Systems, Inc.

August 15, 2012

Gamma™ Reference Volume 1: Version 7.2

A dynamically-typed interpreted programming language specifically designed to allow rapid development of
control and user interface applications. Gamma has a syntax similar to C and C++, but has a range of built-in
features that make it a far better language for developing sophisticated real-time systems.

Published August 15, 2012
Cogent Real-Time Systems, Inc.

162 Guelph Street, Suite 253
Georgetown, Ontario
Canada, L7G 5X7

Toll Free: 1 (888) 628-2028
Tel: 1 (905) 702-7851
Fax: 1 (905) 702-7850

Information Email: info@cogent.ca
Tech Support Email: support@cogent.ca
Web Site: www.cogent.ca

Copyright © 1995-2011 by Cogent Real-Time Systems, Inc.

Revision History

Revision 7.2-1 September 2007
Updated DataHub-related functions for 6.4 release of the DataHub.
Revision 6.2-1 February 2005
Simplified TCP connectivity.
Revision 4.1-1 August 2004
Compatible with Cogent DataHub Version 5.0.
Revision 4.0-2 October 2001
New functions in Input/Output, OSAPIs, Date, and Dynamic Loading reference sections.
Revision 4.0-1 September 2001
Source code compatible across QNX 4, QNX 6, and Linux.
Revision 3.2-1 August 2000
Renamed "Gamma", changed function syntax.
Revision 3.0 October 1999
General reorganization and update of Guide and Reference, released in HTML and QNX Helpviewer formats.
Revision 2.1 June 1999
o Converted from Word97 to DocBook SGML.
Revision 2.0 June 1997
Initial release of hardcopy documentation.

Copyright, trademark, and software license information.

Copyright Notice

© 1995-2011 Cogent Real-Time Systems, Inc. All rights reserved.

Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written consent of Cogent Real-Time Systems, Inc.

Cogent Real-Time Systems, Inc. assumes no responsibility for any errors or omissions, nor do we assume liability for damages resulting from the
use of the information contained in this document.

Trademark Notice

Cascade DataHub, Cascade Connect, Cascade DataSim, Connect Server, Cascade Historian, Cascade TextLogger, Cascade NameServer, Cascade
QueueServer, RightSeat, SCADALisp and Gamma are trademarks of Cogent Real-Time Systems, Inc.
All other company and product names are trademarks or registered trademarks of their respective holders.

END-USER LICENSE AGREEMENT FOR COGENT SOFTWARE

IMPORTANT - READ CAREFULLY: This End-User License Agreement ("EULA") is a legal agreement between you (either an individual or a
single entity) and Cogent Real-Time Systems Inc. ("Cogent") of 162 Guelph Street, Suite 253, Georgetown, Ontario, L7G 5X7, Canada (Tel:
905-702-7851, Fax: 905-702-7850), from whom you acquired the Cogent software product(s) ("SOFTWARE PRODUCT" or "SOFTWARE"),
either directly from Cogent or through one of Cogent’s authorized resellers.

The SOFTWARE PRODUCT includes computer software, any associated media, any printed materials, and any "online" or electronic
documentation. By installing, copying or otherwise using the SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA. If you
do not agree with the terms of this EULA, Cogent is unwilling to license the SOFTWARE PRODUCT to you. In such event, you may not use or
copy the SOFTWARE PRODUCT, and you should promptly contact Cogent for instructions on return of the unused product(s) for a refund.

SOFTWARE PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by copyright laws and copyright treaties, as well as other intellectual property laws and treaties. The
SOFTWARE PRODUCT is licensed, not sold.

1. EVALUATION USE: This software is distributed as "Free for Evaluation”, and with a per-use royalty for Commercial Use, where "Free for
Evaluation" means to evaluate Cogent’s software and to do exploratory development and "proof of concept" prototyping of software
applications, and where "Free for Evaluation" specifically excludes without limitation:

i. use of the SOFTWARE PRODUCT in a business setting or in support of a business activity,

ii. development of a system to be used for commercial gain, whether to be sold or to be used within a company, partnership, organization
or entity that transacts commercial business,

iii. the use of the SOFTWARE PRODUCT in a commercial business for any reason other than exploratory development and "proof of
concept" prototyping, even if the SOFTWARE PRODUCT is not incorporated into an application or product to be sold,

iv. the use of the SOFTWARE PRODUCT to enable the use of another application that was developed with the SOFTWARE PRODUCT,

v. inclusion of the SOFTWARE PRODUCT in a collection of software, whether that collection is sold, given away, or made part of a
larger collection.

vi. inclusion of the SOFTWARE PRODUCT in another product, whether or not that other product is sold, given away, or made part of a
larger product.

2.COMMERCIAL USE: COMMERCIAL USE is any use that is not specifically defined in this license as EVALUATION USE.

3. GRANT OF LICENSE: This EULA covers both COMMERCIAL and EVALUATION USE of the SOFTWARE PRODUCT. Either clause
(A) or (B) of this section will apply to you, depending on your actual use of the SOFTWARE PRODUCT. If you have not purchased a
license of the SOFTWARE PRODUCT from Cogent or one of Cogent’s authorized resellers, then you may not use the product for
COMMERCIAL USE.

A. GRANT OF LICENSE (EVALUATION USE): This EULA grants you the following non-exclusive rights when used for
EVALUATION purposes:

Software: You may use the SOFTWARE PRODUCT on any number of computers, either stand-alone, or on a network, so long as
every use of the SOFTWARE PRODUCT is for EVALUATION USE. You may reproduce the SOFTWARE PRODUCT, but only as
reasonably required to install and use it in accordance with this LICENSE or to follow your normal back-up practices.

Subject to the license expressly granted above, you obtain no right, title or interest in or to the SOFTWARE PRODUCT or related
documentation, including but not limited to any copyright, patent, trade secret or other proprietary rights therein. All whole or partial
copies of the SOFTWARE PRODUCT remain property of Cogent and will be considered part of the SOFTWARE PRODUCT for the
purpose of this EULA.

Unless expressly permitted under this EULA or otherwise by Cogent, you will not:

i. use, reproduce, modify, adapt, translate or otherwise transmit the SOFTWARE PRODUCT or related components, in whole or in
part;

i. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;
iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;

v. use a multi-processor version of the SOFTWARE PRODUCT in a network larger than that for which you have paid the
corresponding multi-processor fees;

vi. decompile, disassemble or otherwise attempt or assist others to reverse engineer the SOFTWARE PRODUCT,;

Vii.

circumvent, disable or otherwise render ineffective any demonstration time-outs, locks on functionality or any other restrictions
on use in the SOFTWARE PRODUCT;

viii. circumvent, disable or otherwise render ineffective any license verification mechanisms used by the SOFTWARE PRODUCT;

ix. use the SOFTWARE PRODUCT in any application that is intended to create or could, in the event of malfunction or failure,
cause personal injury or property damage; or

x. make use of the SOFTWARE PRODUCT for commercial gain, whether directly, indirectly or incidentally.

B. GRANT OF LICENSE (COMMERCIAL USE): This EULA grants you the following non-exclusive rights when used for
COMMERCIAL purposes:

Software: You may use the SOFTWARE PRODUCT on one computer, or if the SOFTWARE PRODUCT is a multi-processor version -
on one node of a network, either: (i) as a development systems for the purpose of creating value-added software applications in
accordance with related Cogent documentation; or (ii) as a single run-time copy for use as an integral part of such an application. This
includes reproduction and configuration of the SOFTWARE PRODUCT, but only as reasonably required to install and use it in
association with your licensed processor or to follow your normal back-up practices.

Storage/Network Use: You may also store or install a copy of the SOFTWARE PRODUCT on one computer to allow your other
computers to use the SOFTWARE PRODUCT over an internal network, and distribute the SOFTWARE PRODUCT to your other
computers over an internal network. However, you must acquire and dedicate a license for the SOFTWARE PRODUCT for each
computer on which the SOFTWARE PRODUCT is used or to which it is distributed. A license for the SOFTWARE PRODUCT may
not be shared or used concurrently on different computers.

Subject to the license expressly granted above, you obtain no right, title or interest in or to the SOFTWARE PRODUCT or related
documentation, including but not limited to any copyright, patent, trade secret or other proprietary rights therein. All whole or partial
copies of the SOFTWARE PRODUCT remain property of Cogent and will be considered part of the SOFTWARE PRODUCT for the
purpose of this EULA.

Unless expressly permitted under this EULA or otherwise by Cogent, you will not:

i. use, reproduce, modify, adapt, translate or otherwise transmit the SOFTWARE PRODUCT or related components, in whole or in
part;

i. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;

iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;

<

. use a multi-processor version of the SOFTWARE PRODUCT in a network larger than that for which you have paid the
corresponding multi-processor fees;

vi. decompile, disassemble or otherwise attempt or assist others to reverse engineer the SOFTWARE PRODUCT,;

Vil.

circumvent, disable or otherwise render ineffective any demonstration time-outs, locks on functionality or any other restrictions
on use in the SOFTWARE PRODUCT;

viii. circumvent, disable or otherwise render ineffective any license verification mechanisms used by the SOFTWARE PRODUCT, or

ix. use the SOFTWARE PRODUCT in any application that is intended to create or could, in the event of malfunction or failure,
cause personal injury or property damage.

4. WARRANTY: Cogent cannot warrant that the SOFTWARE PRODUCT will function in accordance with related documentation in every
combination of hardware platform, software environment and SOFTWARE PRODUCT configuration. You acknowledge that software bugs
are likely to be identified when the SOFTWARE PRODUCT is used in your particular application. You therefore accept the responsibility of
satisfying yourself that the SOFTWARE PRODUCT is suitable for your intended use. This includes conducting exhaustive testing of your
application prior to its initial release and prior to the release of any related hardware or software modifications or enhancements.

Subject to documentation errors, Cogent warrants to you for a period of ninety (90) days from acceptance of this EULA (as provided above)
that the SOFTWARE PRODUCT as delivered by Cogent is capable of performing the functions described in related Cogent user
documentation when used on appropriate hardware. Cogent also warrants that any enclosed disk(s) will be free from defects in material and
workmanship under normal use for a period of ninety (90) days from acceptance of this EULA. Cogent is not responsible for disk defects
that result from accident or abuse. Your sole remedy for any breach of warranty will be either: i) terminate this EULA and receive a refund

of any amount paid to Cogent for the SOFTWARE PRODUCT, or ii) to receive a replacement disk.

5.LIMITATIONS: Except as expressly warranted above, the SOFTWARE PRODUCT, any related documentation and disks are provided "as
is" without other warranties or conditions of any kind, including but not limited to implied warranties of merchantability, fitness for a
particular purpose and non-infringement. You assume the entire risk as to the results and performance of the SOFTWARE PRODUCT.
Nothing stated in this EULA will imply that the operation of the SOFTWARE PRODUCT will be uninterrupted or error free or that any
errors will be corrected. Other written or oral statements by Cogent, its representatives or others do not constitute warranties or conditions of
Cogent.

In no event will Cogent (or its officers, employees, suppliers, distributors, or licensors: collectively “Its Representatives") be liable to you for
any indirect, incidental, special or consequential damages whatsoever, including but not limited to loss of revenue, lost or damaged data or
other commercial or economic loss, arising out of any breach of this EULA, any use or inability to use the SOFTWARE PRODUCT or any
claim made by a third party, even if Cogent (or Its Representatives) have been advised of the possibility of such damage or claim. In no event
will the aggregate liability of Cogent (or that of Its Representatives) for any damages or claim, whether in contract, tort or otherwise, exceed
the amount paid by you for the SOFTWARE PRODUCT.

These limitations shall apply whether or not the alleged breach or default is a breach of a fundamental condition or term, or a fundamental
breach. Some jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, or certain limitations
of implied warranties. Therefore the above limitation may not apply to you.

6. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS:

Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be separated for use
on more than one computer.

Termination. Without prejudice to any other rights, Cogent may terminate this EULA if you fail to comply with the terms and conditions of
this EULA. In such an event, you must destroy all copies of the SOFTWARE PRODUCT and all of its component parts.

7.UPGRADES: If the SOFTWARE PRODUCT is an upgrade from another product, whether from Cogent or another supplier, you may use or
transfer the SOFTWARE PRODUCT only in conjunction with that upgrade product, unless you destroy the upgraded product. If the
SOFTWARE PRODUCT is an upgrade of a Cogent product, you now may use that upgraded product only in accordance with this EULA. If
the SOFTWARE PRODUCT is an upgrade of a component of a package of software programs which you licensed as a single product, the
SOFTWARE PRODUCT may be used and transferred only as part of that single product package and may not be separated for use on more
than one computer.

8. COPYRIGHT: All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images, photographs,
animations, video, audio, music, text and 'applets”, incorporated into the SOFTWARE PRODUCT), any accompanying printed material, and
any copies of the SOFTWARE PRODUCT, are owned by Cogent or its suppliers. You may not copy the printed materials accompanying the
SOFTWARE PRODUCT. All rights not specifically granted under this EULA are reserved by Cogent.

9. PRODUCT SUPPORT: Cogent has no obligation under this EULA to provide maintenance, support or training.

10.RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as provided in DFARS
227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (OCT 1988), FAR 12.212(a)(1995), FAR 52.227-19, or FAR
52.227-14 (ALT Ill), as appropriate. Manufacturer is Cogent Real-Time Systems Inc. 162 Guelph Street, Suite 253, Georgetown, Ontario,
L7G 5X7, Canada.

11. GOVERNING LAW: This Software License Agreement is governed by the laws of the Province of Ontario, Canada. You irrevocably attorn
to the jurisdiction of the courts of the Province of Ontario and agree to commence any litigation that may arise hereunder in the courts
located in the Judicial District of Peel, Province of Ontario.

Table of Contents

L. WAL IS GAITHMA?. ...ttt b e e se et s e bt b b e b e b et e st eae e b e sbese e s emeeseebesaesbenbenbe e eneenens 1
SV (=10 A = To [U T (=T =T) S 2
LI = 1= =] Tt TSRS ??
(IS Y]] oo LS3R= T ol I =T = LSS 4
Data TYPeS and PrediCates. ... coco i iirereieseceeese sttt see e s ne e nnens 5
undefined_p , undefined_Symbol_p .o 8

Y =T = SRS 9
Predefined SYMDOIS.......ccoic e 11
LTSS V=T V.Y 0] o R 14
LTRSS 15

] PSR 16
JAMME, PROAIMMAL ..ottt st et s b e e sb e b e 17

(1@ o T=T = 1 (o] £ TSP RSV PPT P TR 19
Operator Precedence and ASSOCIALIMILY..........coureereerirenneeree et 20
ATTNMELIC OPEIALOIS.....cvieiieeiiieet ettt b bbbt b e s s 21
ASSIGNMENT OPEIALOLS.evevieetireetereetese ettt sr et re et eb bt e et se s s e s eae st seneesennese s 22
Binary Operator SNOhandS...........ooc e e 23

2 Y RS @ e T=] = 1o £ TSSO 25
ClASS OPEIALOLS. .. .cviueeuerieeieeteste e ree ettt sie et e e et st st sbesbeseeseaaeesesaesaesbenbaneeneeaesbesbeseeseensaneas 27
COMPATISON OPEIALOLS ... ciuiitirterterieeeterterie et et et eresbe e see e eseesesaesbesbesbese e esesbesbeseeseeneaneas 29
Evaluation Order OPEIatOLS.cociiiruerieerertesie e seeesiesie st seeste e e bt s ses e e s saesaesseseneenes 30
Increment and Decrement OPEIAtQOLS.......c.oueiereieeirerieriesie et 31

(oo [or= I @] 01=T =1 o] =TS 32
1018 T0) (S @] o1=T =1 (0] £ J PSPPSR 33
Symbol Character OPEratOLS........ccccceieieeiereeeeseeree e see e e e e e e sae e sse e e sreeneennes 34
LS T Vg A @] 01T = 1o) PRSPPSO 35

11y r= 1 =T 0 1] o PSPPSR 36
ClASS ettt b et E AR e bbb e b e b et b e be et 37
oo Lo 11 1o o TSRS 39

L0 TSRS 40
L8111 o TSR 41

] OSSR 43

[OCAI e bbb bttt b 45

011 10T o a7
Progn, PrOgL e e e e nne e 49
ProtECT UNWINGA oo e bbb bbb 50
£S11T/1 (o PSRRI 51

LV o2 1 (o] OO 53

171 T TSRS 55

17 1 TSRS 56

YA @) (= U] 1o L= TSR 58
o7 || OSSR TRPRSRR 60

(o Fo TSR = o (o I o1 = | SRR 61

(o Fo TSI = o (o I V7= | SRR 62

o F= TS =0 1 = SO SRR 63

Lo F= T o R 64
(oS3 (0] = 1SR PRRRR 65
defmacro, defMacrOe ... e 66
EfUN | AEIUNE .ttt s b e e e 67

Vi

[0 1Y 10 011 1 1 1o Yo TR 68

(0 V7 T OSSPSR 69
ESIITOY ettt e bbbt bt e b e b e bR R e bR b b e bt b e b e 70
E0, EQUAD et bbb bbbt b et b e 71
L] 4 (0] TSP PP PO T PP PRPTOPPRPRPIN 73
L2V | USSP 74
L=V | 1) SRS 75
L2V = LS (0o T USSP 76
(0] (oI=TN (o] (o{=To IRNN (o] o =To [o [N USRS 77
18] o= | USRS 78
TUNCHON_BIOS ettt bbb et b e e e 79
L8 T Tox 1o o T Lo Lo | 80
L8 1T 1o o T F= U 1= 81
[0 [=]10]] o TR URPOPRTRTIN 82
= S V7= 1 OSSPSR 83
= S 7= 1 OSSPSR 84
INSTANCE_VAIS ooitieiecieeeett st esee st see et e e te e e s te s e e s teess e teeseeaesaeenaestesseentenseensessennnensess 85
IS_ClasSS_MEMDET oot e e r e b e se e 86
3= UG 1Y/ = R 87
[0 0= To] o PSSP URPRPRRRP 88
BV ...ttt ettt etk b e b b £ e e a e eh R R 4R R R R R SR SRR R e R oA e R e b e R R e R e e R e Rt eh e R b e 90
0TV (= 0 o = U1 R 91
L1 L] = T G 92
[S1(0] 01T 1= OSSPSR 93
UOLE, DACKQUOLE et et et 94
1= T0 {81 [7= U 95
1] ST =] (o ST CY (oo PP 97
511 10] (0] TP P PP 98
51T (0] (0] 01T TP U P PP 99
LU =T S =T 1 (o TP 100
UNWINA_PIOTECT ettt b bbb bbb 101
1177 =T 0 oSSR 102
V. LISES @NG ATTAYS. .. cteeeteieteiesteie sttt sttt e bbb s st re bt e bt b e b e e b e e b et e s e b e bt b st nnens 103
=T 0] 0 1= [0 O OSSO PSPPSR PTRTPRPRPRPRPRN 104
S USSR 105
BUTAY eeeeteeteet et e et ettt e s te s h e e eeabeeae e et ehe e e e sheeRe e be SR £ e aeeeReeRE e Rt eREeEeeheeRe e beeReeneeReeneaResaeerenreans 106
o=\ Y (o T £ SOOI 107
L2 OO PRPURURRPRTPRI 108
ASSOC , BSSOC_EUUAIL ettt e et bbb e b ebe b e 109
DSEAICI e bbb e 110
Car , CAr , AN OtNEIS ... et sbe s seen 111
[o0] 0 1= J OO PRSP R PRSPPI 112
[oT0] o)Y PR PR 113
(oT0] o)V 1 (=T PRSP 114
BIBTE bbb ettt bbbt et ne b b nre e 115
IffEIENCE ettt st st e b et saene 116
LT IS {1 To J =0 U - | P 117
1 ET=] ¢ SO S S T 118
Y= £57=T1 o] o OSSR 119
1= T T 120
1S A 11 (o 121

IST_EO_@ITAY oottt sttt 122

MBKE_BITAY .eeeeeieete ettt sttt sttt b st b et bt e bt s e b e st b et b et b et bbb ne b e 123
(T 0] 61=1 0T IR SO O S USRS 124
NIFEIMOVE ettt et ettt et e e e s he e st e e bt e s be e sa e e e et e b e e she e e aeeeabe e sbeeemeeeaneebeesneesaneenbeenneennnean 125
nreplace , Nreplace_equal .. 126
NEh_Car |, NEN_CAr et e 127
L] 001017 SOV TRTURUSTPRU 128
FEVEISE eiiieeeeete et etesteeeesaeeeesbeehe e besbe e e e oAt e aeesEeeheea b e eb e e aseebe e ae e eEesReeabeebeeaseeneeaneseesanerenreans 129
(0] = Tor= R ¢ o] =Yoo [P 130
SNOMEN_AITAY oot b et st e ettt b e s b b e b e e e besbesbeseens 131
S] SO STPUSTPPURUUTPRTUR 132
(8101 To] o ST TSP SRR PP 133
VI, StHNGS @Nd BUFEIS.....ccuiceeee ettt re e sresnean 134
DAEIBLE e bbb bbb s 135
o110 E57= o PSPPSR PRPRP 136
o101 ST S U PSR PR PP 137
Lo TU Y3 =T (o T 1 o SRS 138
L(0]1 14 F= L USSR PP PSPPI 139
LT LT o1 (= T 141
Lo 0= o TS 111V S 142
[0V EST =TI 141 T 143
L=\ 0 0 T=T 0 0T O PP PRRRP 145
£ 1= | 22T Lo o S 146
ShOMEN_DUTEr bbbt 147
S (o1 SR 1 1 | G 148
SEICMP | SIFCMIP ettt s b e st st b et sbene 149
£S] 111 TSRS PSTPPRTPRPRPRPRRN 150
] 11T oSO ST PSP PPRPRPRRTN 151
String_file_DUfEr e 152
SHING_SPIL bbb b bbb 153
RS 0] o TR (o T o (= SRR 154
ST 1031 PP 155
ES] 11 1= o OSSR 156
SEINCMP |, SINICMP etttk b e e b e b n e snene 157
] 1 (2O TPPURUSRPRU 158
] 1] | USRS TRPURUSPPRUI 159
ES U 011 | SOOI 160
L0 (0111 = SRS 161
L(0] o] 01T CH OOV URURURTPR 162
VII. Data TYPE CONMVEISION.....cuieeuirieriietesie e reeeetesie st sttt sbe st b e e s sbesbesae b e se e e e eresbesbeses 163
o]] USSPV 164
(o3 0= OSSR OO SRRPRPRPTIN 165
Lo o= T - | SRS 166
[0 =T o U ST U TR PRRTPRPRPTIN 167
PIBX et b E R e e R b bRt e et ere bt s 168
] OSSR 169
L1000 o= OSSOSO 170
o o3 S P T T PRPURP PP 171
53121 0T | P 172
Y4 =i o OSSPSR 173
ACOS , SIN , AtAN , ALANZ ..o bbb 174

F= L Lo I a0 AR o | GO 175

(o F= 100 N o] 0 (o] NN o To T N o) *Co | (NP 176
Lo =Y | OO RORRSURRSTRPRO 177
o3 =1 [0 TR o1 {0 T 178
(oo] | HE 1= A oo 0 | USSR 179
LoT0 1S TRE=]1 HAR -V o RS RRSRRP 180
0 YOS 181
123 o USSR TPRURTUUTPRU 182
100 o] USRS 183
ToTo TN (o To) K0 R [T | o SR TRTRPR 184
L= o ST U ST UPTURUSTPRPI 185
01011 TSSO PSR R PRSPPI 186
(7= 1o (o] o 0 RSSO 187
[0 18] o ISP SRR 188
LT A = 1o (o o 0 PSS 189
LS | PR PR 190
LS | SRRSO PRTR 191
o =S ??
... 196

List of Tables

=

P PP OOPRAODNEPRE

. Data Types and Related PrediCates.. ...t st a e e ee e s
B 101 (=T 0 =T T PSPPSR
c REAI NMUMDEIS.....ce bbbttt sttt aebe e b e et
BT 0= To T LAY = 101
)11 T R
Y 14 o)£ T
@ 11 [=T DT - T Y] 1=
. Symbols that are predefined iN GAMIMAL.........ccccceiierie s e
Yo (0 S (=T AV =T T TN CT= U] = ST
. Operator Precedence and ASSOCIALIVILY.cccrurireirieirieiirersees e

2?

2?

2?

27

2?

27

2?2

2?

27

)

Xi

Chapter 1. What is Gamma?

Gamma is an interpreter, a high-level programming language that has been designed and optimized to
reduce the time required for building applications. It has support for the Photon GIU in QNX, and the
GTK GUI in Linux and QNX 6. It also has extensions that support HTTP and MySQL.

With Gamma a user can quickly implement algorithms that are far harder to express in other languages
such as C. Gamma lets the developer take advantage of many time-saving features such as memory
management and improved GUI support. These features, coupled with the ability to fully interact with

and debug programs as they run, mean that developers can build, test and refine applications in a shorter
time frame than when using other development platforms.

Gamma programs are small, fast and reliable. Gamma is easily embedded into today’s smart appliances
and web devices.

@ Gamma is an improved and expanded version of our previous Slang Programming Language for
QNX and Photon. Gamma is available on QNX 4, QNX 6 and Linux, and is being ported to
Microsoft Windows.

The implementation of Gamma is based on a powerful SCADALIisp engine. SCADALisp is a dialect of
the Lisp programming language which has been optimized for performance and memory usage, and
enhanced with a number of internal functions. All references in this manual to Lisp are in fact to the
SCADALIisp dialect of Lisp.

You could say Gamma’s object language is Lisp, just like Assembler is the object language for C.
Knowing Lisp is not a requirement for using Gammea, but it can be helpful. All necessary information on
Lisp and how it relates to Gamma is in the Input and Output chapter of this guide.

Chapter 2. System Requirements

ONX 6

« QONX 6.1.0 or later.

QNX 4

+ QNX 4.23A or later.
+ (For Gamma/Photon) Photon 1.14 or later.

Linux

« Linux 2.4 or later.
« (For Gamma/GTK) GTK 1.2.8.

« The SRR IPC kernel module, which includes a synchronous message passing library modeled on the
QNX 4 send/receive/reply message-passing API. This module installs automatically, but requires a C
compiler for the installation. You can get more information and/or download this module at the Cogent
Web Site.

This module may not be necessary for some Gamma applications, but it is required for any use
of timers, event handling, or inter-process communication.

|. Reference

Table of Contents

[SYMDOIS AN LILEIAIS......ecuiieeiietieee bbbttt 4
IR @] o<1 = 1 (o £ TSP USROS TR 19
1LY £= =T 41T o TSP USRS 36
[V, COIE FUNCHIONS. ...ttt sttt b ettt b bbbt b e bt bbb et b et b et s e e ene st ene s 58
V. LISES @NO AITAYS ..ottt ettt ettt b ettt e st b e s e b se b e se b et b e st sb e bt s b eb e se ek e reeb e st eb e e ebe e ebeneas 103
V1. SENGS AN BUTEIS ..ottt ettt b e e b e b nnene s 134
VII. Data TYPE CONMVEISION ...c.ueiuitiieieieeeeteste st steeeesesiessestesbesee e esesbesbesaessesasesseasesbesbesbeseeneesessesaeseens 163

VL IMIBEN ettt b b s bt b et Rt b st e bt se b ne bt ne R e r e n e 173

|. Symbols and Literals

Table of Contents

Data TYPES ANd PreTiCALES.......cciieeeeieriete sttt sttt s e e st e e s te e te s te e e aesaeeseesneensesteenaansesnnennas 5
undefined_p , undefined_SYMDOI_ P oo e 8
[T =1 TSP USSP PRSP 9
Predefined SYMDOIS.......o e e e n e ae e neenen 11
RESEIVEU WOTUS.......eiiieeieitieiecte ettt ettt ettt e e e stesae e be st e eaeeebeebeeeesaeentesbeeaeenbesteensesbeeneestesseentents 14
USRS 15
| ettt et e te et e heeeeeheeheebeeteeatebeeaeeteeheetebeeaeebeeheeteaheentesbeeheenbenteerenreennenrens 16

Data Types and Predicates

— testing for data types.

Unlike many languages, just about every expression in Gamma is a data type. This gives the flexibility to
manipulate functions, arrays, lists, classes, instances and so on as if they were data.

The following data types are defined in Gamma. Beside each data type is the name of a function which
can be used to test an expression for that type. These functions are called predicates, and wilifreturn
the test is true (the expression is that data typeijlor if it is false.

Table 1. Data Types and Related Predicates

Type Predicate Comments

alist alist_p An association list. Seassoc .

array array_p Seearray and Lists and
Arrays.

autotrace autotrace_p

breakpoint breakpoint_p

buffer buffer_p Seebuffer

builtin builtin_p

class class_p Seeclass .

cons cons_p Seecons andlist

constant constant_p Constants can be assigned or
defined. Sedefvar and::= .

destroyed instance destroyed_p Seenew (instance)

file file_p Seeopen andopen_string

fixed-point real fixed_point_p See Numeric Types.

function function_p Seefunction

instance instance_p Seenew (instance)

integer int. p ,long_p Seeliterals

list list p Seelist and Lists and Arrays.

macro macro_p Seemacro .

method method_p (obsolete, always | Seemethod .

returnsnil)

nil nil_p Seenil

number number_p Integer and floating point value$
are both considered numbers.
Seeliterals

real real_p Seeliterals

registered registered_p Seeregister_point

string string_p Seel.iteralsandstring

sym-alist sym_alist_p A symbol-indexed association
list. Seeassoc .

symbol symbol_p Seeliterals

t true_p Seet.

task descriptor none Seelocate_task

Data Types and Predicates

Type Predicate Comments

undefined undefined_p Seeundefined_p
undefined symbol undefined_symbol_p Seeundefined_symbol_p
Predicates

Predicates are used to test a Gamma object for a given type, as listed. If a Gamma object is of that type,
the predicate will return the value

Syntax

alist_p (s_exp)
array_p (s_exp)
autotrace_p (s_exp)
breakpoint_p (s_exp)
buffer_p (s_exp)
builtin_p (s_exp)
class_p (s_exp)
cons_p (s_exp)
constant_p (s_exp)
destroyed_p (s_exp)
file_p (s_exp)
fixed_point_p (s_exp)
function_p (s_exp)
instance_p (s_exp)
int_p (s_exp)

list_p (s_exp)
long_p (s_exp)
macro_p (s_exp)
method_p (s_exp)
nil_p (s_exp)
number_p (s_exp)
real_p (s_exp)
registered_p (s_exp)
string_p (s_exp)
sym_alist_p (s_exp)
symbol_p (s_exp)
true_p (s_exp)
none_p (s_exp)
undefined_p (s_exp)
undefined_symbol_p (s_exp)

Arguments

any expression

Returns

t ornil

Data Types and Predicates

Example

Here is an example for the predicditemction_p . All the other predicates work in a similar way.

Gamma>function_p(div);

t
Gamma>function_p(strcmp);
t

Gamma>function_p(5);

nil

Gamma>

undefined_p , undefined_symbol p

undefined_p, undefined_symbol p — test for undefined types and symbols.

Syntax

undefined_p (s_exp)
undefined_symbol_p (s_exp)

Arguments
s_exp

Any Gamma or Lisp expression.

Returns

t if the value ofs_exp is not defined; otherwiseil

Description

These two functions perform a similar task, checking to see itlexp is defined. However, they
differ in two important ways:

- undefined_p examines the value a&f exp directly, whereasindefined_symbol _p expects
the value ofs_exp to be a symbol, and examines the value of that resulting symbol.

- undefined_p evaluates its argument in a protected scope where@ymbol is undefined
errors will be trapped and disregardeddefined_symbol_p evaluates its argument without
protection, so it is possible that &ymbol is undefined " error could be thrown if the
evaluation ofs_exp generates such an error.

Example

Gamma>a = #xyz

Xyz

Gamma>undefined_p (a);

nil

Gamma>undefined_symbol_p (a);
t

Gamma>xyz = t;

t

Gamma>undefined_symbol_p (a);
nil

Gamma>undefined_p (y);

t

Gamma>undefined_symbol_p (y);
Symbol is undefined: y

debug 1>

See Also

Data Types and Predicates

Literals

— defined for integers, reals, strings, and symbols.

Integers

An integer is any group of digits defining a number between -2e+31 and 2e+31 - 1. It cannot contain a
decimal point or an exponent. Integers have several different literal notations, but regardless of notation,
all integers are 32 bit signed numbers. They are flagged internally with their respective notations and
Gamma attempts to maintain and return the notation when the integer is printed.

Table 1. Integers

Notation Description Example
Decimal notation 539
Ob Binary notation 0b1011
0o Octal notation 00462
0x Hexadecimal notation 0x35fc
Y Contents are a character. ‘™

Real numbers

A real number is any group of digits defining a number less than -2e+31, greater than 2e+31 - 1, or
containing a non-zero mantissa. It can contain a decimal point, and it may end with the letter e followed
by a signed exponent.

Table 2. Real numbers

Notation Description Example

[0-9].[0-9]e[+]-][0-9] Double-precision 64 bit floating-point number. 2.56e-7

There are four special floating point values that can be generated by the computer’s floating point
processor. These are generated in different ways based on the floating point operation and the operands.

Table 3. Special Values

Notation Description Example
-1.#QNAN Quiet Not a Number See below.
-1.#INF Negative infinity x /0
1.#INF Positive infinity x /0
-1.#IND Indeterminate 0 / 0 orsgrt(-1)

Normally you can only createl. #QNAN by constructing a floating point representation of an illegal bit
pattern by casting memory to a float. There is &g\ which is like QNANout will cause the floating
point processor to throw an error instead of returnimgfaNfloating point representation.
You can test for an invalid floating point number like this:

if (strchr(string(point.value), '#) = -1)

princ ("The point: ", point, " has an invalid floating point value\n");
Strings

A string may have any number of characters. The special forms \n, \t, \f and \r denote newline, tab, form
feed, and carriage return respectively. The double quote (") and backslash (\) characters may be

Literals

embedded in a string by preceding them with a backslash.

Table 4. Strings

Notation Description Example

" Contents are a string. "Good morning."

Symbols

Generally, symbol names are made up of alpha-numeric characters and underscores.

Table 5. Symbols

Notation Description Example

[a-z,A-Z,0-9] | One or more characters chosen from : a-z, A-Z, 0-9 arg Epax15
valid for symbol names.

A _ (underscore) is allowed in any part of a symbol name. my_var_name
This symbol is generally used to separate words in a
symbol name. The use of this character at the beginning
and end of a symbol is reserved for system use.

\ Any non-alphanumeric character other than must be Ft\:+\$sq
preceded by a backslash to be used in a symbol name.

Other Data Types

The literal representation for all other Gamma data types is discussed in the reference entry associated
with creating or accessing that data type, as given in the table below.

Table 6. Other Data Types

Data type Reference entry
Array array
Buffer buffer

List list
Instance new
Function function
Method method
Class class
File open
Task locate_task

10

— atable.

Table 1. Symbols t

Predefined Symbols

hat are predefined in Gamma

Gamma was compiled in, as a string.

Symbol Name Description Accessibility

_all_tasks_ The list of tasks opened usimhgcate_task read-only

_auto_load_alist | A list of rules used byAutoLoad . read/write

_case_sensitive_| Used by reader to control case sensitivitynilf , then all read/write
symbols are treated as lower-case. Default is

comma Internal symbol. not available

commasplice | Internal symbol. not available

_current_input_ | The currently open file for reading. read-only

debug Not used. not available

eof Gamma representation of the end-of-file status from a read read-only
operation.

eol Gamma representation of the end-of-line status from a reagdread-only
operation.

_error_stack The stack at the time the last error occurred. read-only

_eval_silently | If settot , then references to undefined symbols are returnecead/write
undefined instead of stopping the program with an errpr.

_eval_stack_ Contains the definition of the function being currently read-only
evaluated.

event The QNX Windows event name. read-only

_fixed_point_ Controls whether calculations with reals are done in double @ad/write
fixed-point.

gui The name of the graphical user interface that this version ofread-only
Gamma was compiled against, as a string.

_qgui_version_ | The version number of the graphical user interface that this read-only
version of Gamma was compiled against, as a string.

_ipc_file_ String file used by IPC functions to create buffers for not available
send/receive/reply sequence.

_jump_stack_ Internal symbol. not available

_last_error_ String containing last error. read-only

_load_extensiong List of strings containing shell-match patterns of acceptableread/write
input files.

0S The name of the operating system (OS) that this version of| read-only
Gamma was compiled in, as a string.

_0s_version_ The version number of the operating system that this versioreafd-only

11

Predefined Symbols

Symbol Name Description Accessibility
_0s_release_ The release number of the operating system that this versioreafl-only
Gamma was compiled in, as a string.
_require_path_ | List of strings of paths to search foequire and read-write
require_lisp
_signal_handlers| Seesignal . read-only
SIGABRT Seesignal . read-only
SIGALRM Seesignal . read-only
SIGBUS Seesignal . read-only
SIGCHLD Seesignal . read-only
SIGCONT Seesignal . read-only
SIGFPE Seesignal . read-only
SIGHUP Seesignal . read-only
SIGILL Seesignal . read-only
SIGINT Seesignal . read-only
SIGIO Seesignal . read-only
SIGIOT Seesignal . read-only
SIGKILL Seesignal . read-only
SIGPIPE Seesignal . read-only
SIGPOLL Seesignal . read-only
SIGPWR Seesignal . read-only
SIGQUIT Seesignal . read-only
SIGSEGV Seesignal . read-only
SIGSTOP Seesignal . read-only
SIGTERM Seesignal . read-only
SIGTRAP Seesignal . read-only
SIGTSTP Seesignal . read-only
SIGTTIN Seesignal . read-only
SIGTTOU Seesignal . read-only
SIGURG Seesignal . read-only
SIGUSR1 Seesignal . read-only
SIGUSR2 Seesignal . read-only
SIGWINCH Seesignal . read-only

12

Predefined Symbols

Symbol Name Description Accessibility
timers An array of active timers, in this format: read-only
[[secs nsecs fires ((s-exp ..)..) number]...]
secs
The clock time in seconds when the timer was set.
nsecs
The additional nanoseconds when the timer was set.
fires
The set interval of time to fire, in seconds.
s-exp
Action(s) associated with the timer, inside a list of
lists.
number
The timer number.
undefined The Gamma representation of the undefined symbol state.| read-only
_unwind_stack | The stack at the time that an error was recovered. read-only

&noeval , ! Symbol directing Gamma to not evaluate the next argumerntnot available
&optional Symbol directing Gamma to treat the following argument asnot available
? optional.

=>&rest , Symbol directing Gamma to expect an optional number of | not available

arguments starting at last argument. Passed as a list.

13

Reserved Words

— atable.

The following table provides a list of words which are reserved by the Gamma language. No symbols
can be defined by the user that are identical to these reserved words.

Table 1. Words reserved in Gamma

Reserved Word Used In

class Class declaration
collect with loop

do with loop

else if statement

for for loop

function Function declaration
if if statement

local Local variable declaration
method Method declaration
tcollect with loop

while while loop

with with loop

14

t — alogically true value.

Syntax

t

Returns
t

Description

The special object,, is a logically true value which has no other meaning. All Gamma objects other
thannil are logically true, but only the special objects the logical negation dfiil .t is created by a
call to notil), or by reading the symbal.

The predicaterue_p explicitly tests for the valué. However, in all conditional statements, any
nonnil value is considered to be true for the purpose of the test.

Example
Gamma>x = 3;
3
Gamma>x > 2;
t
Gamma>x == 3;
t
Gamma>nil;

t

Gamma>10 < 25;
t

Gamma>

See Also

, il

15

nil

nil — the logically false value.

Syntax

nil

Returns

nil

Description

The special valuajil , is a zero-length list. It is the only logically false value in Gamma. All other

Gamma values are considered to be logically true. A common mistake for first-time Gamma
programmers is to treat the number zero as logically false.

Example

Gamma>x = b5;
5

Gamma>x > 10;
nil
Gamma>int_p(x);
t
Gamma>real_p(x);
nil

Gamma>!3;

nil

Gamma>lt;

nil

Gamma>

See Also
t

16

gamma, phgamma

gamma phgamma— start Gamma and Gamma/Photon from the shell prompt.

Syntax

gamma [-options] [program_name [program_arg]...]
phgamma [- options] [program_name [program_arg]...]
Options

-c command

Execute the named command.

-C
Declare all constants at startup.
-d
Keep file and line # information on all cells .
-e
Do not enter interactive mode.
-f filename
'Require’ (read and process) the named file and setah#fag. As many files as desired can be
processed by repeating this option. Although the file is run just like the executable named in
program_name , the two are not the same, because no program arguments can be passed to a file
using the-f option. When the file has been completely processed, Gamma moves on to the next
option, if any, and will not necessarily enter the interactive mode.
-F
Declare all functions at startup.
-G
Run as Gamma, regardless of name.
-h
Print a help message and exit.
-H heapsize
Set the heap growth rate increment (default 2000).
-i filename
'Require’ the named file. This is identical to thef option, except that Gamma will enter the
interactive mode after all options have been processed.
-1
Force entry into interactive mode after completion of the named application.
-L
Run as Lisp, regardless of name.
-m
Do not run the main function automatically.
P

Protect functions from the garbage collector. (Functions should not be redefined.)

17

gamma phgamma

-q
Do not print copyright notice.
-S
Set the local stack size in longwords.
-V
Print the version number.
-X

Exit immediately (usually used with/).
program_name

The name of an executable program.
program_arg

The program arguments.

Returns

A Gamma prompt.

Description

This command starts Gamma or Gamma/Photon in interactive mode at the shell prompt. Flags are
processed in the order given on the command line, and can appear more than once.

If the name of the executable contains the word 'Lisp’, then it will use the Lisp grammar, otherwise it
will use the Gamma grammar.

The-c and-f used together make possible several interesting ways to invoke and use Gamma. For
example:

gamma -f domainA.g -c "init = methodA(3);" my_application "thing"

permits a user to specify a particular file to be processed, perhaps containing application-specific
methods, then execute an arbitrary initialization expression, and finally start the intended application
with specified arguments.

The-c argument used witke has Gamma execute a command and exit without going into interactive
mode. For example:

gamma -i hanoi.g -c ’princ (hanoi (3), "\n"); -e
would load the Tower of Hanoi code, print the solution to the 3-disk hanoi problem, and then exit. (The
single quotes are used to hide the double quotes from the shell.)

Example

[~/usr/devtools]$ gamma -m

Gamma(TM) Advanced Programming Language

Copyright (C) Cogent Real-Time Systems Inc., 1996-2001. All rights reserved.
Version 4.0 Build 31 at Aug 12 2001 09:57:56

Gamma>

18

ll. Operators

Table of Contents

Operator Precedence and ASSOCIALIVITY........ccvieereierie s sees e eree s sae et ree e e e e sreeneennes 20
F 11 gL gL (o @ 01T = 1o 21
ASSIGNMENT OPEIALOIScueeveiieititetereeeete s e ste st e st eee e s e sreste e steeeseatesteseessessesessesaessesensenseseasestessesseensens 22
Binary Operator SNOMhaNGS.........ccciviiiiiriee e et re e ae e sne e eneens 23
AT @ 1=y = (0] £ 25
(O E T @ 01T = 1o] £ OSSOSO 27
COMPATISON OPEIALOIS.....ceeueeete et sttt sttt sttt ettt et b et b e bt s b e bt st e b e se e b et s b et e b e st s benesbebe e ebe e ebens 29
Evaluation Order OPEIALOISccoiueiiieirieiirieteseet sttt b e b e bbbt b s e e s b s 30
Increment and DECremMENT OPEIALOIS.cc.cureirieririetirerieest ettt seeb e s e ss e b bbb e s ssese s 31
LOGICAI OPEIALOIScuieetieeteeet ettt ettt b bbbt s bbb bt e bt e bt e b et b e b e e b st b st s s s 32
(O 1810 (@] o1=] = 1o] £ TP SRPRPRP 33
SYMDBDOI Character OPEIATOIS.ciuieeeeere ettt ettt see st se et ae et e be e e s e e et eaesaesbesbe e e e ene 34
BE=T0E= 1 g A O o] = 1o] ST U U PR UR PRSP 35

19

Operator Precedence and Associativity

— atable.

Table 1. Operator Precedence and Associativity

Precedence Operator Associativity

Lowest ELSE Right
= Right
[Left
& & Left
<, > <=,>=,==,1= Left
[, & Left
-+ Left
Unary -, +, ! Left
A Left
++, -- Left
[Left
by s Left
O Left

Highest # Left

The associativity of operators refers to order in which repeated use of the same operator will be
evaluated. For example, the expression 1+2+3 will be evaluated as (1+2)+3 since the " + " operator
associates the leftmost operator instances first. In contrast, the statement A = B = C will first perform the
B = C assignment, and then the result is assigned to A.

Associativity should not be confused with precedence, which determines which one of different
operators will be evaluated first. In the exampte?_3+4 , the multiplication is performed first due to
precedence, while the left addition is performed before the rightmost addition due to associativity,
causing the expression to be evaluate(ilag2 3))+4

See Also

Arithmetic OperatorsAssignment Operator8itwise OperatorsComparison Operatorincrement and
Decrement Operatorkogical OperatorsQuote Operators

20

Arithmetic Operators

Arithmetic Operators — (-0,

Syntax

number + number
number - number
number * number
number / number
number % number

Arguments

number

Any integer or real number. Non-numbers are treated as zero.

Returns

The mathematical result of the operation.

Description

These operators perform simple mathematical operations on their arguments.
+ gives the sum of the two arguments.

- gives the difference between the first and second arguments.

* gives the product of the two arguments.

/ gives the first argument divided by the second argument.

% gives the modulus of the first argument by the second, that is, the remainder of the integer division of
the first argument by the second.

Example
Gamma>5 + 6;
11
Gamma>12 / 5;
2.3999999999999999112
Gamma>div(12,5);
2
Gamma>19 % 5;
4
Gamma>

21

Assignment Operators

Assignment Operators —(==,0=)
Syntax

symbol = s_exp

symbol = s_exp

symbol = s_exp

Arguments

symbol

Any valid symbol.
s_exp

Any expression.

Returns

The assigned value.

Description

= is used to assign a value to a variable.

:= is used to assign a value only if no value is currently assigned teytimbol . If the symbol already
has a value then treymbol keeps its original value.

;= is used to assign a constant. Once the assignment has been made no changssritbdheare
allowed. Attempted changes to tegmbol will generate an error.

Example
Gamma>a = 5;
5
Gamma>a = 6;
5
Gamma>a;
5
Gamma>b = 7;
7
Gamma>b = 8;
Assignment to constant symbol: b
debug 1>
Gamma>b = 9;
Defvar of defined constant: b
debug 1>
Gamma>

See Also
defvar

22

Binary Operator Shorthands

Binary Operator Shorthands — (+=,-=,*=, /=, %5 &=, "=, <<=, >>=3)

Syntax

symbol += number
symbol -= number
symbol *= number
symbol /= number
symbol %= number
symbol &= number
symbol “= number
symbol <<= number
symbol >>= number

Arguments

symbol

A symbol with a numeric value.
number

Any integer or real number.

Returns

The value of thesymbol as operated on with theumber .

Description

These operators provide a shorthand way of reassigning values to symbols.
+= gives the sum of theymbol and thenumber .

-= gives the difference between tegmbol and thenumber .

*= gives the product of theymbol and thenumber .

/= gives thesymbol divided by thenumber .

% gives the modulus of theymbol by thenumber , that is, the remainder of the integer division of the
symbol by thenumber .

&= performs thek operation on theymbol and thenumber .

A= performs the® operation on theymbol and thenumber .

<<= performs the<< operation on theymbol and thenumber .

>>= performs the>> operation on theymbol and thenumber .

Example
Gamma>a = 5;
5
Gamma>a += 8;
13
Gamma>a,;
13
Gamma>

23

Binary Operator Shorthands

See Also
Arithmetic OperatorsAssignment Operator8itwise Operators

24

Bitwise Operators

Bitwise Operators — (=<, >>,~, & | ,M)

Syntax

number << shift
number >> shift
~ number

number & number
number | number
number ~ number

Arguments

number

Any number,
shift

The number of bit shifts to perform.

Returns

An integer which is the result of the particular operation.

Description

<<, >> return the first argument with a left or right bitshift operation performed the number of times of
the second argument.

~ returns the binary opposite of tieimber .

& compares each of the corresponding digits of therwmbers . If both digits are 1, returns 1 for that
place. Otherwise returns O for that place.

| compares each of the corresponding digits of theriwmbers . If either those digits is 1, returns 1
for that place. Otherwise returns 0O for that place.

A compares each of the corresponding digits of themwmbers . If both digits are the same, returns O
for that place. If they are different (ie. 0 and 1) returns 1 for that place.

Examples

Gamma>bin(10);
0b1010
Gamma>bin(10 << 1);
0b00010100
Gamma>bin(10 >> 1);
0b0101

Gamma>bin (~10);
0b11111111111111111111111111110101
Gamma>bin(10);
0b1010

Gamma>bin (9);
0b1001

Gamma>bin (9 & 10);
0b1000

Gamma>bin (9 | 10);
0b1011

Gamma>bin (9 ~ 10);

25

Bitwise Operators

0b0011
Gamma>

See Also

band, bnot , bor , bxor

26

Class Operators

Class Operators —(.,..)
Syntax

instance . variable = value
instance . variable

instance .. variable = value

instance .. variable

Arguments

instance

An instance of a class.
variable

An instance variable name.
value

A new value to write to the instance variable.

Returns

The value argument.

Description

These operators assign and evaluate object instance values, using familiar C/C++ structure/class
reference syntax. Thiastance and its instancgariable are separated by a period and the
assignment is made using theassignment operator. Using two periods betwiestance and
variable makes the reader interpret the instance variable.

Using either the or the.. without the= assignment operator causes #agiable to be evaluated at
that instance.

Examples

Gamma>class cmpny { name; address; }
(defclass cmpny nil [J[address name])
Gamma>company = new(cmpny);

{cmpny (address) (name)}
Gamma>company.name = "Acme Widgets";
"Acme Widgets"

Gamma>company.name;

"Acme Widgets"

Gamma>var = symbol("name");

name

Gamma>company..var;

"Acme Widgets"

Gamma>

Here is an example of how the syntax can be used to allow an instance of one class to access a
method of another class. This can be useful if a parent and child widget have different methods with the
same name, and you want an instance of one to use the method of the other.

Gamma>class A{}
(defclass A nil [I[1)

27

Class Operators

Gamma>class B{}

(defclass B nil [I[)

Gamma>class C B{}

(defclass C B [I[l)

Gamma>method A.get (){princ("Class A’'s method.\n");}
(defun A.get (self) (princ "Class A’'s method.\n"))
Gamma>method B.get (){princ("Class B’'s method.\n");}
(defun B.get (self) (princ "Class B’s method.\n"))
Gamma>a = new(A);

A}

Gamma>a.get();

Class A’s method.

t

Gamma>b = new(B);

{B}

Gamma>b.get();

Class B’s method.

t

Gamma>(b..A.get)();

Class A’s method.

t

Gamma>(a..B.get)();

Class B’s method.

t

Gamma>c = new(C);

€}

Gamma>(c..A.get)();

Class A’s method.

t

Gamma>(c..B.get)();

Class B’s method.

t

Gamma>

28

Comparison Operators

Comparison Operators —(I=,<,<=,==5,>,>=))
Syntax

number != number

number &It ; number

number &It ;= number

number == number

number > ; number

number > ;= number

Arguments

number

Any integer or real number. Non-numbers are treated as zero.

Returns

= t

if the firstnumber is not equal to the second, elsié .

< t if the firstnumber is less than the second, elsi¢ .

A
1

t
==

if the firstnumber is less than or equal to the second, elde .

if the firstnumber Is equal to the second, elsé

> t if the firstnumber is greater than the second, efske .

>=

if the firstnumber is greater than or equal to the second, eise.

Description

These functions perform a numeric comparison of their arguments. In mathematical (infix) notation, the
function would put the first argument on the left side of the comparison, and the second argument on the
right side of the comparison.

Example

Gamma>5 < 6;

t

Gamma>5 > 6;

nil

Gamma>5.00 == 5;

t

Gamma>"hello" == string("hel","l0");

t

Gamma>a = 5 + 1;

6

Gamma>a;

6

Gamma>a == 5;

nil

Gamma>

See Also

eq, equal , strcmp , stricmp

29

Evaluation Order Operators

Evaluation Order Operators — 5, ()

Syntax

symbol , symbol
(symbol operator symbol)

Arguments

symbol

Any symbol.
operator

Any operator.

Determine

Sequence of operation.

Description

Operations before a are performed before those after it.

Operations enclosed yand) are performed first.

Examples
Gamma>x = 3;
3
Gamma>princ("x = ", x, "\n");
x =3

t

Gamma>(2 + 3) * 4;
20

Gamma>2 + (3 * 4);
14

Gamma>

30

Increment and Decrement Operators

Increment and decrement operators —(++,)

Syntax
++symbol
symbol ++
-- symbol
symbol __

Arguments

symbol

A symbol whose value is a number.

Returns

The value of the symbol plus or minus one.

Description

These operators perform auto-increments or decrements on numeric symbols. Wheristpéaced

before a symbol, it performs a pre-increment, where the value is incremented and the result is the
symbol’s value + 1. Whenr+ is placed after a symbol, it performs a post-increment. Here the result of

the operation is the value of the symbol prior to being incremented:-Thaperator works in the same

way. These operators only take symbols as arguments. It is not possible to auto-increment or decrement
an array element, list element, or instance variable.

Examples

Gamma>a = 5;
5

Gamma>++ a;
6

Gamma>a,;

6

Gamma>a ++;
6

Gamma>a;

7

Gamma>a = 5;
5

Gamma>-- a;
4

Gamma>a,;

4

Gamma>a --;
4

Gamma>a;

3

Gamma>

31

Logical Operators

Logical Operators —(,&&])
Syntax

! s exp

s_exp && s_exp ...

s exp || ! s_exp ..

Arguments

S_exp

Any Gamma or Lisp expression.

Returns

Nonil ornil

Description

In Gamma or Lisp, any expression which is mdt is treated as being trué X for the purpose of
boolean logic. Applyind to any nonnil expression will produceil . Applying! tonil must
produce an arbitrary nond result. The generic nond value in Gamma i$.

&&evaluates each of its arguments in order, and continues so long as each argument evaluates to
nonil . If any argumentisil , thennil is returned immediately, without evaluating the rest of the
arguments. If no argumentisl , the last argument is returned.

[| returns nomil if any of its arguments is natil . Each argument is evaluated in turn, and as soon
as anomil value is reached, that argument is returned. Subsequent arguments are not evaluated.

Examples

Gamma>6;

6

Gamma>!6;

nil

Gamma>nil;

t

Gamma>5<6 && string("hi ","there");
"hi there"

Gamma>5>6 && string("hi ","there");
nil

Gamma>x = b5;

5

Gamma>y = 6;

6

Gamma>(x = t) || (y = 0);
t

Gamma>Xx;

t

Gamma>y;

6

Gamma>

See Also

and, not, or

32

Quote Operators
Quote Operators — (#,',Q@

Syntax
#s_exp
‘'s_exp
@_exp

Arguments
S_exp

Any Gamma or Lisp expression.

Returns

Does not evaluate the symbol; it returns the protected expression that follows it.

Description

Normally Gamma evaluates every expression as it parses through the codeopéetor protects the
contents of an expression from the evaluator. Thoperator does the same thing, but allows for
evaluation of sub-expressions. Any sub-expression tagged@afierator that occurs within a
back-ticked {) expression will be evaluated.

@ Any error messages involving ti@operator will use the expressiomomma_. This is because

the @operator in Gamma corresponds to a comma operajan(Lisp syntax. When a Gamma
expression is passed to Lisp, ti@perator is converted to a comma. But if the Lisp comma
operator is ever read back into Gamma, it is represented by the symdmoima_to avoid
confusion with the () operator used in Gamma function calls.

Examples

Gamma>name = "John";
"John"

Gamma>name;

"John"

Gamma>#name;

name

Gamma>x = 4;

4

Gamma>list (1,x);
14
Gamma>#list (1,x);
(list 1 x)
Gamma>list (1,#x);
(1 x)

Gamma>‘list (1,x);
(list 1 x)
Gamma>‘list (1,@x);
(list 1 4)
Gamma>

33

Symbol Character Operators
Symbol Character Operators —(\, %)

Syntax

\ symbol_character
$symbol_character_string

Arguments

symbol_character

A character that is normally not valid within the string of a symbol name.
symbol_character_string

A symbol name that contains one or more characters that are normally not valid within the string of
a symbol name.

Returns

A valid symbol name.

Description

These operators allow you to put non-valid characters into a symbol name. They must be used every time
the symbol is written, not just the first time.

\ makes the immediately following character valid.

$ makes the whole string valid, regardless of which individual characters are not normally valid.

Example

Gamma> my\:examplel = 5;

5

Gamma> x = my\iexamplel + 7;
10

Gamma> $my:example2 = 9;

9

34

Ternary Operator

Ternary Operator —(?)

Syntax

condition ? s_exp : s_exp

Arguments

condition

Any Gamma or Lisp expression.
s_exp

Any Gamma or Lisp expression.

Returns

The firsts_exp if the condition s true, otherwise the secosdexp .

Examples
Gamma>a =t ? 2 : §;
2
Gamma>a;
2
Gamma>b = (a == 7) ? 2 : 8;
8
Gamma>b;
8
Gamma>

Table of Contents

(o1 F= 13

{0

1o | TR o o 1 TP P TP
[T (o1 (=od S 011771 o S

LYY (o o TR
LY o (o OSSR
WHHIE et ettt e et e et e et e e s beeeae e e be e eheeeaee e be e ebeeeheeaabe e beeabeeahteebeeabeeeaeeanbeereenreeaans

[1l. Statements

36

class

class — defines a class.

Syntax

class class_name [parent]

{

[instance_var [= initial_value 1]
[static: class_var [= initial_value 111
}

Arguments

class_name

The name of the new class.
parent

The parent (base) class.
class_var

Class variable definition.
instance_var

Instance variable definition. This is provided in the form of a list of variable definitions. Each
variable definition is either a variable name or a list which contains a variable name and a default
value expression. Whenever a new instance is formed, the default value expression is evaluated to
the default value. If no default value is given, the instance variable’s value wililbe

initial_value

Initial value given tanstance_var , if none themil is assigned to that instance variable.

Returns

A class definition.

Description

This function constructs a class definition and binds the class-name symbol in the current scope to refer
to that class. The class mechanism allows only a single parent (base) class. None of the arguments to
class is evaluated. Ifnstance_var s are defined with the same names as inherited variables, the
inherited variables are overridden and cannot be accessed by instances of this class.

37

class

e + Theclass statement creates a new class.
« If the parent (base) class is omitted, onik , then the resulting class has no
parent (base).

« Each instance variable consists of a name (a symbol) and an optional initial
value that will be assigned whenever a new instance of the class is created using
thenew function.

- The resulting class definition, which is a data object in its own right, will be
assigned to the symbol, name.

Example

This example creates two classes: a base class, RegPolygon; and a class derived from it, Square.
RegPolygon has two attributes: sides and length. When Square is created, its parent (base) class
(RegPolygon) is explicitly assigned. In addition, the attibute sides is assigned a value of 4.

Gamma>class RegPolygon{sides; length;}

(defclass RegPolygon nil [l[length sides])
Gamma>class Square RegPolygon {sides = 4;}
(defclass Square RegPolygon [][length (sides . 4)])

This example creates a class with instance variables and class variables.

Gamma>class Other {ivarl; ivar2; static: cvarl; cvar2;}
(defclass Other nil [cvarl cvar2]fivarl ivar2])
Gamma>

See Also

Class Operatorglass_add cvar ,class_add_ivar , method, new

38

condition

condition — tests conditions.

Syntax

condition {case condition : statement
[case condition : statement]

[default: statement 1}

Arguments

condition

Any Gamma or Lisp expression.
statement

Any Gamma statement.

Returns

The return value of thetatement that corresponds to the first traendition or the default.
Otherwisenil

Description

This statement is similar to thewitch statement, except that it takes no arguments. It checks the truth
value of eaclcondition in turn. The first truecondition encountered returns with the return value
of the passedtatement . If no condition s true, it returns the return value of the default

statement , (ornil , if no default statement is given).

The words "case" and "default" and the symbols {, :, and } are unchanging syntactical elements.

Example

Gamma>a = 5;

5

Gamma>b = 9;

9

Gamma>condition {case a == b: princ("Equal\n"); case a != b: princ("Unequal\n");}
Unequal

t

Gamma>

Also see the example switch

See Also

switch

39

for

for — checks a condition and performs a statement.

Syntax

for (setup ; condition ; iteration) statement

Arguments

setup

An iteration setup, usually a variable with an initial value.
condition

The condition to test.
iteration

Any Gamma expression, usually used to increment the varialsietup.
statement

Any Gamma statement.

Returns

The value of theondition

Description

This statement is essentially identical toa loop in C, and the syntax is the same. It checks a
condition iteratively, and executes a statement when the condition is true.

Example

Thisfor loop counts from 0 to 10, printing out the value of i as it loops.

for (i=0;i<=10;i++)
{

princ("value of i: ", i, "\n");

}

See Also

Statementswhile , with

40

function

function — creates a new function.

Syntax

function name ([argument [, argument]...]) statement
Arguments

name

The name of the function.
argument

A symbol that names the argument.
statement

The body of the function.

Returns

A named function definition in Lisp syntax. When a function is called, the return value is the value of the
last expression to be evaluated in the function body.

Description

Thefunction statement declares a new function. flhction arguments are implicitly local to the
scope of the function. The argument list is denoted by parentheses, and contains zero or more argument
definitions, separated by commas. Eacument can be a symbol, which is the name of the argument,
along with any combination of the following modifiers:

I before theargument indicates that this argument will not be evaluated when the function is called.

? after theargument indicates that this argument is optional. Only the first optional argument has to
be marked as optional. All arguments after that are implicitly optional. An optional argument may have a
default value, specified by appending = expression after the question mark.

@ The only way to test whether an optional function parameter has been provided is by using the
predicateundefined_p , which tests for the undefined_ value.

after theargument indicates that this argument is a "catch-all" argument used to implement
variable length argument lists. Only the last argument in the argument list can haveafter it. An
argument modified by.. will always be eithenil , or a list containing all arguments from this
position onward in the function call.

When a function is called, its arguments are bound in a new local scope, overriding previous definitions
of those symbols for the duration of the function.

Example

This function, with one argument, returns an integer at least one greater than the argument.

function next (n)

{
ceil(n) + 1;

}

41

function

This function prints its first two arguments and optionally prints a new line (which is printed by default).
It returns a string concatenation of the first two arguments.

function print_two (first, second, newline?=t)

{
princ(first, " ", second);
if (newline)
terpri();
string(first, " ", second);
}

This function adds all of its arguments. It insists on having at least one argument. Notice that the optional
character '?’" and the rest character '..." are combined in the second argument.

function add_all (first, others...?)

{
local sum,x = 0;
sum = first;
if (lundefined_p(others))

for(x=others;x;x=cdr(x))

sum = sum + car(x);

}

sum;

}

See Also

method , Statements

42

if — conditionally evaluates statements.

Syntax

if (condition) statement [else statement]

Arguments

condition

A Gamma or Lisp expression to test.
statement

A statement to perform if the condition is naonil- .

Returns

The evaluation of thetatement that corresponds to the satisfieghdition

Description

Theif statement evaluates iceondition and tests the result. If the result is noih- , then the
statement is evaluated and the result returned.

Theelse option allows for another statement. If thendition isnil , theelse statement (if
included) is evaluated and the result returned. This statement could be a@hotstatement with another
condition ancelse statement, etc., permitting multipidse/if ~ constructs. The entirelse option
can be omitted if desired.

@ - Ifthecondition isnil and no elsstatement exists,nil is returned.
« Theelse partofanestedf statement will always be associated with the
closestf statement when ambiguity exists. Ambiguity can be avoided by
explicitly defining code blocks (using curly brackets).

« Ininteractive mode Gamma has to read two tokénsgndelse) before it
will process the statement. If you are not usingetse part, you have to enter a
second semicolon (;) to indicate that tihe statement is ready for processing.

Example
Gamma>x = 5;
5
Gamma>y = 6;
6

Gamma>if (x > y) princ("greater\n"); else princ("not greater\n");
not greater

t

Gamma>

The following code:
name = "John";

age = 35;

if ((name == "Hank") || (name == "Sue"))

{

princ("Hi ", name,"\n");

43

}
else if ((name == "John") && (age < 20))

{

princ("Hi ", name," Junior\n");

}
else if ((name == "John") && (age >= 20))

{

princ("Hi ", name," Senior\n");

princ("l don’t know you\n");

}
Will produce the following results:

Hi John Senior

See Also

Statementdor , while

44

local

local — allows for implementing local variables within functions.

Syntax

local ! variable [= s_exp] [, ! Vvariable [= s_expl.];

Arguments

variable

A symbol.
s_exp

Any Gamma or Lisp expression.

Returns

The value of thes_exp , ornil if no value was assigned.

Description

This statement is provided to allow other grammars to implement local variables within functions. It
defines new local variables in the current scope, overriding any outer scope that may also define those
variables. Eaclocal variable consists of a variable name (a symbol) and an optional initial value.

To test whether a symbol is bound in the current scope, use the pregicitined _p
Example

Gamma>i = 5;
5
Gamma> function print_three_local ()
{
local i;
for(i=1;i<=3;i++)
{
princ("value of i is: ", i, "\n");
}
}

<function definition>
Gamma> function print_three_global ()
{
/I local i
for(i=1;i<=3;i++)
{
princ("value of i is: ", i, "\n");
}
}
<function definition>
Gamma>i;
5
Gamma>print_three_local();
value of i is: 1
value of i is: 2
value of i is: 3
3
Gamma>i;
5

45

local

Gamma>print_three_global();
value of i is: 1

value of i is: 2

value of i is: 3

3

Gamma>i;

4

Gamma>

This example shows the variablereceiving the value 0. The two functions are defined identically,

except for their names and where the second function comments out the ’local’ command. When the first
function is run the internal scoping using the local directive protects the vaiuglobally. When the

function returnsi remains ab, even though it was the validg2 and3 within the scope of that function.

The second function has the ’local’ directive commented out (Ugingso the global variable is
modified. When the function returns and we check the valie dfis 4. The ‘for-loop’ within the
second function incremented the valud afntil it failed thei<=3 comparison. After the second
function is run the value df is 4. The global variablé hasnotbeen protected in the second function.

46

method

method — defines a method for a given class.

Syntax

method class . method_name ([argument [, argument]...]) statement

Arguments

class

The class for which this method is defined.
method_name

The name of the method.
arguments

The argument list for this method. This does not include the implied argument self, nor is self
defined when the arguments are bound as the method is called.

statement

The body code statment for this method. Within this statement the special varédibleis defined
as the instance on which this method is being applied.

Returns

A function definition of the resulting method function.

Description

This statement defines a method function for a given class. If a method already exists for this class with
this name, the previous definition will be replaced. If a method of the same name exists for any parent
(base) class of the given class, it will be overridden for instances of this class only. In Gamma methods
are run using the syntax:

instance.method_name(arguments);

which is the familiarobject.method syntax used in C++,

e « Themethod syntax creates a new method for a particular class. It is an error to
omit the class.
« The argument list fomethod is identical to the argument list féunction

Example

Gamma>class RegPolygon{sides; length;}

(defclass RegPolygon nil [J[length sides])

Gamma>method RegPolygon.perimeter (){.sides * .length;}
(defun RegPolygon.perimeter (self) (* (@ self sides) (@ self length)))
Gamma>class Square RegPolygon {sides = 4;}

(defclass Square RegPolygon [J[length (sides . 4)])
Gamma>method Square.area (){sqr(self.length);}

(defun Square.area (self) (sqr (@ self length)))
Gamma>sqB = new(Square);

{Square (length) (sides . 4)}

Gamma>sqB.length = 3;

3

47

Gamma>sqB.perimeter();
12

Gamma>sqB.area();

9

Gamma>

See Also

Class Operatorglass , defun , new

method

48

progn, progl

progn, progl — group several statements into one expression.
Syntax

progn {! statement [! statement] ..}

progl {! statement [! statement] ..}

Arguments

statement

Any valid Gamma statement.

Returns
progn : the return value of the last statement.

progl : the return value of the first statement.

Description

These two syntactical elements are not statements, but they transform a group of one or more statements
into a single Gamma expression. The value of the resulting expression is the return value of the last
statement foprogn or the first statement fggrogl . This is useful for performing complex actions

where only a single expression is permitted, such as in a callback. No new scope is entef@ddor a
oraprogl .

@ The syntax of these unique elements uses curly biagesbut don’t confuse them with
statements. They behave exactly like expressions.

Example

Gamma>a = 2;

2

Gamma>b = 5;

5

Gamma>progn{fa = 3; princ("a: ",a,"\n"); ¢ = a + b; princ("c: ",c,"\n");}%;
a: 3

c: 8

t

Gamma>string(progl{a = 5; b = 1;});
ng

Gamma>a,;

5

Gamma>b;

1

Gamma>

49

protect unwind

protect unwind — evaluates protected code, despite errors.

Syntax

protect statement unwind statement

Arguments

statement

Any Gamma or Lisp statement.

Returns

If no error occurs, the result of evaluating the prostatement and the unwindtatement . If an
error occurs, the result of the unwisthtement only.

Description

This function ensures that a piece of code will be evaluated, even if an error occurs within the protect
statement code. This is typically used when an error might occur but cleanup code has to be
evaluated even in the event of an error. The error condition will not be cleared by this statement. If an
error occurs, control will be passed to the innermcegd_error function or to the outer level error
handler immediately after the unwirsthitement is evaluated.

Example

This code will close its file and runwrite_all_output function even if an error occurs.

if (fp=open(“filename","w"))
{

protect close(fp); unwind write_all_output();

}

See Also

error , Statementdyy catch , Tutorial Il Error Handling

50

switch

switch — tests arguments with conditions.
Syntax
switch (symbol) {case condition

statement

[statement ...]

[case condition
statement
[statement ...]]

[default:
statement
[statement ..]}}

Arguments

symbol

A symbol with a value to test against the value of doadition (s).
condition

Any Gamma or Lisp expression.
statement

Any Gamma statement.

Returns

The return value of thetatement that corresponds to the first satisfisahdition or the default.
Otherwisenil

Description

This statement is similar to tteondition statement, except that it takes an argument. It checks the
value of the passeslymbol against the value of theondition for each case in turn. The first match
returns the return value of the corresponditatement . If there is no match, it returns the return
value of the defaulstatement | if any.

The words "case" and "default” and the symbols {, :, and } are unchanging syntactical elements.

Example

Gamma>a = "on";

“on"

Gamma>b = 6;

6

Gamma>c = "Nothing";

"Nothing"

Gamma>switch(a) {case "on": 75; case "off": 20; default: 0;}
75

Gamma>switch(b) {case "on"™: 40; case "off": 10; default: princ("Huh?\n");}
Huh?

t

Gamma>switch(c) {case "on": 1; case "off": 0;}

nil

51

Gamma>

#!/usr/cogent/bin/gamma

/*
This example demonstrates the switch and condition
statements. The switch statement checks the command
line argument and prints a response. The case argument
checks the command line argument and the result of the
switch statement.

*/

function main ()

{

a = number ((cadr(argv)));

switch (a)
{
case 1:
princ ("One\n");
case 2:
princ ("Two\n");
case 2+1:
princ (“Three\n");
case 4:
princ ("Four\n");
default:
princ ("Something else:

, a, "\n");

}

condition
{
case a ==
princ ("Condition a == 1\n");
case cadr(argv) == "Hello"
princ ("Condition a == Hello\n");
default:
princ ("No condition met\n");

See Also

condition

switch

52

try catch

try catch — catches errors in the body code.

Syntax

try statement catch statement

Arguments

statement

Any Gamma or Lisp statement.

Returns

If no error occurs, the result of evaluating ting statement . If an error occurs, the result of the
catch statement

Description

This statement catches any errors that may occur while evaluatitigythetatement code. If no

error occurs, thetry catch will finish without ever evaluating theatch statement . If an error
does occurtry catch will evaluate the catcktatement code immediately and the error condition
will be cleared. This is usually used to protect a running program from a piece of unpredictable code,
such as an event handler. If the error is not caught it will be propagated to the top-level error handler,
causing the interpreter to go into an interactive debugging session.

Example

The following code:

#!/usr/cogent/bin/gamma

try
{
2 + nil;
}
catch
{
princ("Error:\n”, _error_stack_, "\n");
}

Will give these results:

Error:

((trap_error #0=(+ 2 nil) (princ Error:
_error_stack_

) #0#)

The following piece of code will run an event loop and protect against an unpredictable event.

while(t)
{
try (next_event()) catch (print_trapped_error());
}
function print_trapped_error ()
{
princ("Error:\n", _error_stack_, "\n");
princ("Clearing error condition and continuing.\n");
}

53

See Also

error

, Statementdyap_error

, protect unwind

, Tutorial Il Error Handling

try catch

54

while

while — iterates, evaluating a statement.

Syntax

while (condition) statement

Arguments

condition

Any Gamma or Lisp expression.
statement

Any Gamma or Lisp statement.

Returns

The value ofcondition at the final iteration.

Description

This function iterates until itsondition evaluates tail
iteration. Thecondition is evaluated before theatement

iterate zero times.

Example

Gamma>x = 0;
0
Gamma>while (x < 5) { princ (x, "\n"); x++; }

o

A WDNPR

Gamma>x;
5
Gamma>

See Also

for ,if , Statements

, evaluating thestatement
, SO it is possible for avhile

loop to

55

with

with — traverses an array or list performing a statement.

Syntax

with symbol injon s_exp do statement

with symbol | infon s_exp symbol , = collect|tcollect statement
Arguments

symbol

Any Gamma or Lisp symbol.
S_exp

Any Gamma or Lisp expression.
statement

Any statement.

Returns

nil when using thelo option, and the result of threlatement when using theollect or
tcollect option.

Description

with symbol injon s_exp do statement

- A with loop using the iteration styli@ traverses an array or list as defined by an expression
(s-exp), performing thestatement with the iterationsymbol assigned to each element of the
array or listin turn.

- A with loop using the iteration stylen traverses a list defined by an expressis®exp),
performing thestatement with the iterationsymbol assigned to the car and then successive cdrs
of the list.

- The iterationsymbol is local in scope to theith statement.

with symbol infon s_exp symbol , = collect|tcollect statement

- A with loop using thecollect directive will collect the results of thetatement for each
iteration, and produce an array or list (depending on the type of the original array or list), whose
elements correspond on a one-to-one basis with the elements of the original array or list.

« A with loop using thecollect directive will collect the results of thetatement at each
iteration, ignoringnil results in the body. The resulting array or list will not have a one-to-one
correspondence with the original array or list.

« The result of avith loop usingcollect ortcollect will be assigned teymbol _, which is not
local in scope to thevith statement. The iteratiosymbol | is local in scope to thwith statement.

56

Examples
Gamma>A = array(1,2,3,4);
[1 23 4]
Gamma>with x in A do

{
X = x + 1
princ(x, "\n");

a b wnNY

nil
Gamma>

Gamma> L = list (1, 2, 3, 4, 5, 6);
(12345686

Gamma>with x on L do (princ(x,"\n"));
(12345686)

(2 345 6)

(345 6)

(4 5 6)

(5 6)

(6)

nil

nil

Gamma>with x in L y = collect x + 2;
3456728

Gamma>y;

3456728

Gamma>with x in L y = tcollect x < 4 ? x : nil;
@223

Gamma>y;

@223

Gamma>

See Also

for ,if , Statements

with

57

V. Core Functions

Table of Contents

(o3 | TS OTU TRV PSP 60
Lo F= RS- Vo o o3 7 S 61
(o3 E= 1T ST = o [o I V7= L 62
(o3 =TT 0 - 0 TS 63
(ol F= 113 o) OSSR 64
(0 =T (= 1SR 65
(o] (g aT=Tel (o T o (=] 1 g F= 1] (0 1 66
(o 1] {8 e 1= 11 TR 67
(0 =30 111 o o SR 68
[0S L7 T TS 69
(0TS 1)RS 70
L<To =T U | RS 71
=T (o] ST STTUPUR PRSPPI 73
L2V Z= | TSRS 74
L2222 |) S 75
L3z U] (12T 76
L{0] (eI (o] {o1=To IR (0] o7 =To o [N SR 77
FUNCAIL bbb e bbbt bRt ek stk ne b st b e b et et nean 78
L8 Lot o] o = [OOSR PSPPI 79
FUNCHION_DOOY ot bbbt b bt ek s b ettt et ne e 80
FUNCHION_NAIME bbb e b et b et b et b et b bt s ekt se b e st e b et et et et e e e 81
[0S0] (0] o TP P P 82
L F T 1Y 7= L RSSO 83
= T V7= T SRS 84
1S =T oY= U= USRS 85
(1S o= LTSI 41T 01 o 1= USSR 86
1Y 2= T 1Y/ 0 1= USSR 87
L0 F=T] {0 TP PSPPSRSO 88
LTS TSP PR UPTURPPTPRRO 90
[T L= T o = L= TS 91
L1 = T G 92
L0 0= 4 1TSS 93
QUOLE, DACKGUOLE e e b bbbt st 94
(=0 [0 1T [7= Lo S 95
ESTS] ST =] (o T (o o TP TP 97
EST<] 1 0]] o L TP 98
ESTS] 1 0] (0] 01T 99
(1= T oI =11 (o] GRS U UR USSR 100
8]0 1Y/ o [o] (] (=T o PSRN 101

whence

with

59

call

call — calls a class method for a given instance.
Syntax

call (instance , method, ! argument ...)

call (instance , class , method, ! argument ...)
Arguments

instance

An instance of a class.
method

A method name defined for the class of the instance.
class

A class name.
argument

The arguments to the method.

Returns

The result of calling the named method on the given instance with the provided arguments.

Description

This function explicitly calls a class method for the provided instance, using the same argument list as
would be required for a call usingnstance method ...) syntax in Lisp, or the

instance.method (...) syntax in Gamma. The second syntax of this function provides a means

for calling an explicit class method even if the class of the instance overloads the method name. Notice
that the arguments to call are all evaluated.

Example
e This example is based on the class and method developedtimod .

Gamma>call(sgB, Square, #perimeter);
12

Gamma>call(sqB, Square, #area);

9

Gamma>

See Also

method

60

class_add_cvar

class_add_cvar — adds new class variables.
Syntax

class_add_cvar (class variable init_value ? type ?);
Arguments

class

The class receiving the new class variable.
variable

The new variable to add to the class.
init_value

Optional argument for initial value of the variable.
type

Optional argument for the type of variable.

Returns

The value of the new argument.

Description

This function adds new class variables to either binary (built-in) or user-defined classes. Class variables
are special variables that are available to be set/read by any instance of the class, as well as any derived
classes or their instances, whether they were created before or after the class variable was defined.

Example
@ This example is based on the class and method developedthnod .

Gamma>class_add_cvar(RegPolygon, #linethickness, 2);
2

Gamma>polyD = new(RegPolygon);

{RegPolygon (length) (sides)}
Gamma>polyD.linethickness;

2

Gamma>sqB.linethickness;

2

Gamma>

See Also

class_add_ivar

61

class_add_ivar

class_add_ivar — adds an instance variable to a class.

Syntax

class_add_ivar (class , variable , init_value ?, type ?)

Arguments

class

A class.
variable

A symbol to be used as the instance variable name.
init_value

Any Gamma or Lisp expression to be used as an initial value.
type

An integer number which will be stored with the instance variable. This type is not used by the
interpreter, and may be anything.

Returns

The value of thénit_value

Description

This function dynamically adds an instance variable to a class. All instances of that class which are
created after this call will contain this instance variable. All instances created before this call will not
contain this instance variable. This function is typically called on a class before any instances are
created. Itis too late to call this function within an instance constructor. All subclasses of this class will
inherit the new instance variable. If the ivar already exists on the class, the only effect of this function is
to change the default value.

Example

e This example is based on the class and method developedtimnd . The instance sqB does not
have "color" as an instance variable because it was created before the instance variable "color"
was added.

Gamma>class_add_ivar(Square, #color, "red", 12);

"red"

Gamma>sqC = new(Square);

{Square (color . "red") (length) (sides . 4)}

Gamma>sgB;

{Square (length . 3) (sides . 4)}

Gamma>

See Also

instance_vars

62

class _name

class_name — gives the name of the class.

Syntax

class_name (class |instance)

Arguments

class|instance

A class or instance of a class.

Returns

The name of the class, as a symbol.

Example
@ This example is based on the class and method developedthnod .

Gamma>y = Square;

(defclass Square RegPolygon [(area . (defun Square.area (self) (sqr (@ self length))))][length (sides . 4)])
Gamma>class_name(y);

Square

Gamma>box = new(Square);

{Square (length) (sides . 4)}

Gamma>class_name(box);

Square

Gamma>

See Also

class_of

class_of

class_of — gives the class definition of a given instance.

Syntax

class_of (instance)

Arguments

instance

An instance of a class.

Returns

The class of thénstance

Description

This function returns the class definition of tinstance . If theinstance belongs to a derived
class, the most precise class definition is returned (the class which was used to create the instance
through a call tanew).

Example
@ This example is based on the class and method developedthod .

Gamma>class_of(sqB);
(defclass Square RegPolygon [(area . (defun Square.area (self) (sqr (@ self length))))][length (sides . 4)])
Gamma>

See Also

class_name

64

defclass

defclass

See

class

— is the function equivalent of thelass statement.

65

defmacro, defmacroe

defmacro, defmacroe — are the Lisp equivalents of teacro function.
Syntax
defmacro (! name, ! args , ! expression ..)

defmacroe (name, args , expression ..)

This version of themacro function is only supported by Lisp. Seeacro .

66

defun , defune |,

defun, defune

See

function

— are the function equivalents of tifienction

statement.

67

defmethod

defmethod

See

method

— is the function equivalent of thmethod statement.

68

defvar

defvar — defines a global variable with an initial value.

Syntax

defvar (! symbol , value , constant. p ?)

Arguments

symbol

A variable name which has not yet been assigned a value.
value

Any s_exp.
constant_p

If non-nil , the symbol will be assigned as a constant.

Returns

The value of the symbol.

Description

This function defines a global variable with an initial value. If tumstant_p argument is present

and nonnil , then thesymbol becomes a constant, and any attempt to set its value in any scope will
fail. If the symbol already has a value ambnstant_p is nonhil or absent, thedefvar will

return immediately with the current value of thgmbol . If constant_p is nonhil and the

symbol already has a value, then an error is generated.

The intent ofdefvar is to provide a value for a symbol only if that symbol has not yet been defined.
This allows a Gamma or Lisp file to contain default symbol values which may be overridden before the
file is loaded.

Example
Gamma>defvar(a,7,t);
7
Gamma>a,;
7
Gamma>a = 5;
Assignment to constant symbol: a
debug 1>

Gamma>b = 9;

9
Gamma>defvar(b,10);
9

Gamma>b;

9

Gamma>

See Also

set

69

destroy

destroy — destroys a class instance.

Syntax

destroy (instance)

Arguments

instance

An instance of any class.

Returns

t when successful, else error.

Description

This function destroys instances of classes. When a class instance is destroyed, its data type changes to
destroyed instancérou can test for a destroyed instance by using the predit=steoyed p

Example

Gamma>class RegPolygon{sides; length;}
(defclass RegPolygon nil [J[length sides])
Gamma>polyA = new(RegPolygon);
{RegPolygon (length) (sides)}
Gamma>destroy (polyA);

t

Gamma>polyA,;

#<Destroyed Instance>
Gamma>destroyed_p(polyA);

t

Gamma>

See Also

class , new

70

eq, equal

eq, equal — compare for identity and equivalence.

Syntax
eq (s_exp, s_exp)
equal (s_exp, s_exp)

Arguments

s_exp

Any Gamma or Lisp expression.

Returns

eq returnst if the two arguments are exactly the same Gamma or Lisp element, otheilvisequal
returnst if the two arguments "look" the same but are not necessarily pointers to the same memory.

Description

The interpreter’s storage mechanism allows a particular element to be referenced from more than one
location. Functions likeons andlist do not copy their arguments, but simply construct a higher level
entity (in these cases a list) which refers to their argumentsc®pg function will create a new

top-level structure but maintain references to the sub-elements of the original lisgqTfoaction tests

to see whether two elements are in fact references to the same elemeagiuBhefunction determines
whether two elements have identical contents, but are not necessarily references to the same element. All
things which are eq are also equal. Things which are equal are not necessarily eq.

Theequal function will travel lists, arrays and instances to compare sub-elements one at a time. The
two elements will be equal if all of their sub-elements are equal. Numbers are compared based on actual
value, so thaequal(3, 3.0) ist . Strings are compared usisgrcmp .

Symbols are always unique. A symbol is alwayggto itself.

Example

Gamma>a = #acme;
acme

Gamma>b = #acme;
acme
Gamma>equal(a,b);
t

Gamma>eq(a,b);

t

Gamma>a = "acme";
"acme"

Gamma>b = "acme";
"acme"
Gamma>equal(a,b);
t

Gamma>eq(a,b);

nil

Gamma>equal(5,5);
t

Gamma>eq(5,5);

nil

71

Gamma>x = list(#acme, list(1,2,3),
(acme (1 2 3) "hi")
Gamma>y = copy (X);

(acme (1 2 3) "hi")
Gamma>equal(x,y);

t

Gamma>eq(x,y);

nil
Gamma>equal(cadr(x),cadr(y));
t

Gamma>eq(cadr(x),cadr(y));

t

Gamma>

See Also

Comparison Operators

"hi);

eq, equal

72

error

error — redirects the interpreter.

Syntax

error (string)

Arguments

string

A string.

Returns

This function does not return.

Description

Theerror function causes the interpreter to immediately stop what it is doing and to jump to the
innermostrap_error , unwind_protect , interactive session or interprocess communication event
handler. The value oflast_error_ is set to the argument string.

Example

This function will return its argument if the argument is a number, or generate an error and never return
if the argument is not a number.

function check_number (n)
{
if ('number_p(n))

error(string(n,” is not a number."));

}

This statement will immediately cause an error if the user pré8se€ at the keyboard. This is
useful for breaking a running program and going to a debugging prompt.

signal (SIGINT, #(error ("Keyboard Interrupt")))

See Also

trap_error , unwind_protect

73

eval

eval — evaluates an argument.

Syntax

eval (s_exp)

Arguments
S_exp

Any Gamma or Lisp expression.

Returns

The result of evaluating the argument. Note that the argument is also evaluated as part of the function
calling mechanism.

Description

Theeval function forms the basis for running a Gamma program. Every data type has a defined
behavior to theeval call. These are:

- symbol Look up the symbol in the current scope and return the value bound to the symbol. If the
symbol is not bound, generate an "Undefined symbol" error.

- list Evaluate the first element of the list. If the result is a function, call that function with the rest of the
list as arguments. If the first element evaluates to an instance of a class, look up the second element as
the method name and resolve that method name in the class or its ancestors. Call the method with the
instance bound to self and all other list elements as arguments.

- all others All other data types evaluate to themselves.

Theeval function can be useful when constructing code which must be conditionally executed at a later
date, and passed about as data until that time. It may be useful to provide a piece of code as an argument
to a generic function so that the function can evaluate it as part of its operation.

Example

@ Note: The# operator is used to protect an expression from evaluationQ8ete Operatorfor

more information.
Gamma>a = 5;
5
Gamma>b = #a;
a
Gamma>b;
a
Gamma>eval(b);
5
Gamma>

See Also

eval_list

74

eval_list

eval_list — evaluates each element of a list.

Syntax

eval_list (list)

Arguments
list
A list.

Returns

A new list whose elements are the results of evaluating each of the elements of the adigtmeit
turn.

Description

Evaluates each element of i . Returns the results as a new list whose elements correspond on a
one-to-one basis with the elements of lise

Example

e The# operator is used to protect an expression from evaluationQ8e& Operatorfor more

information.
Gamma>a = 5;
5
Gamma>b = 3;
3
Gamma>c = list (#a, #b, "Their sum", #(a+b));
(@ b "Their sum" (+ a b))
Gamma>eval_list(c);
(5 3 "Their sum" 8)
Gamma>

See Also

eval

75

eval_string

eval_string — evaluates a string.

Syntax

eval_string (string)

Arguments

string

A string.

Returns

The result of evaluating th&tring as if it were a Lisp expression.

Description

This function evaluates a string as if it were a Lisp expression, regardless of whether the file syntax is
Gamma or Lisp.

Example
Gamma>eval_string("(+ 5 6)");
11
Gamma>testvalue = 75;
75
Gamma>eval_string("testvalue");
75
Gamma>

76

force , forceq , forceqq

force, forceq, forceqq — assign a value to a symbol, forcing the evaluation of change
functions for the symbol.

Syntax

force (symbol , s_exp)
forceq (! symbol, s_exp)
forceqq (! symbol, ! s_exp)

Arguments

symbol

A symbol.
s_exp

Any Gamma or Lisp expression.

Returns

Thes_exp argument.

Description

These functions are idential to tket setq andsetqq functions, except in addition to assigning a value
to a symbol, and being the functional equivalent ofth@ssignment) operator, these functions force
Gamma to evaluate the change functions for the symbol even if the value has not changed.

This function is particularly useful when working with DataHub points that contain arrays. Gamma
handles arrays from the DataHub by mapping them automatically into Gamma arrays, so you can
address individual elements. However, in Gamma, if you have a DataHub array point, represented as
$default:myarray , you can modify an element of the array normally, such as

$default:myarray[0] = 17 ; but that does not automatically write back to the DataHub, so
nothing gets updated. You have to rewrite the point. Logically you would do this:

$default:myarray = S$default:myarray ; to reassign the point. But this is a null operation
since you are just assigning the same value again to the point. tdsoey , forceq , forceqq like

this: force(#$default:myarray, $default:myarray); forces the point change to be sent
back to the DataHub.

Theforce function evaluates both of its argumerftsiceq evaluates only its second argument, and
forceqq evaluates neither of its arguments. A symbol’s value is the value returned as a result of
evaluating that symbol. Symbols constitute the Lisp mechanism for representing variables. These
functions can only affect the value of a symbol in the current scope.

See Also

Assignment Operatoyset, setq, setqq

77

funcall

funcall — provides compatibility with other Lisp dialects.
Syntax

funcall (function , args)

Arguments

function

A function definition.
args

The arguments to the function.

Returns

The result of the function.

Description

This is provided for compatibility with some other dialects of Lisp. Gamma'’s version of Lisp,
SCADALisp, does not need this function as function definitions can be bound directly to any symbol and
called by naming that symbol.

Occasionally this function can use useful in Gamma if a large number of variable arguments are being
passed to a function. The called function is named as the first argument and the list of arguments to pass
to it are passed as a list in the second arg.

Example
Gamma>funcall(atan2, list(5,3));
1.0303768265243125057
Gamma>function plusé (a,b,c,d,e,f) atb+c+d+e+f;
(defun plusé (abcdef) (+ (+ (+ (+ (+ ab)c)d)e)f)
Gamma>funcall(plusé, list(1,2,3,4,5,6));
21
Gamma>

See Also

defun , function

78

function_args

function_args — lists the arguments of a function.

Syntax

function_args (function)

Arguments

function

Any function name.

Returns

A list of the arguments dfunction

Description

This function lists the arguments of any function. Each argument is returned in the form of an association
list, whose first element is the function argument, and whose second element represents the argument
modifier(s), if any. The hex numbers that correspond to function modifiers are as follows:

« 0x20000000 Optional (?).
« 0x40000000 Variable length argument {(...).
« 0x80000001 Not evaluated ().

Example

Gamma>function_args(getprop);
((symbol 0) (property 0))
Gamma>function_args(drain);

((file 0) (t_or_nil 0))
Gamma>function_args(gc);

nil

Gamma>function_args(defvar);

((symbol -2147483648) (value 0) (constant? 536870912))
Gamma>function_args(read);

((file 0))

Gamma>function g (a,b,c) {((a * b)/c);}
(defun g (@ b c) (/ (* a b) c))
Gamma>function_args(g);

(@ 0) (b 0) (c 0))

Gamma>

See Also

function_body , function_name

79

function_body

function_body — gives the body of a user-defined function.

Syntax

function_body (function)

Arguments

function

Any function.

Returns

The function definition in Lisp syntax if the function is user-defined, else.

Description

This function shows the body of a user-defined function in Lisp syntax.

Example

Gamma>function g(a,b,c) {(a * b)/c;}

(defun g (@ b c) (/ (* a b))
Gamma>function_body(g);

#0=((/ (* a b))

Gamma>function h(r,s) {sin(r)/cos(s) * tan(s);}
(defun h (r s) (* (/ (sin r) (cos s)) (tan s)))
Gamma>function_body(h);

#0=((* (/ (sin r) (cos s)) (tan s)))
Gamma>function_body(sort);

nil

Gamma>

See Also

function_args , function_name

80

function_name

function_name — gives the name of a function.

Syntax

function_name (function)

Arguments

function

Any function.

Returns

The name of the function.

Example
Gamma>function grand(a,b,c) {(a * b)/c;}
(defun grand (a b ¢) (/ (* a b) c))
Gamma>function_name(grand);
grand
Gamma>s = grand;
(defun grand (@ b ¢) (/ (* a b) c))
Gamma>function_name(s);
grand

Gamma>function f () { nil; }

(defun f () nil)

Gamma>function g (x) { princ (function_name(x), "\n"); }
(defun g (x) (princ (function_name x) "\n"))

Gamma>g (f);

f

t

Gamma>

See Also

function_args , function_body

81

getprop

getprop — returns a property value for a symbol.

Syntax
getprop (symbol , property)

Arguments

symbol
A symbol.
property
A symbol naming the property to be fetched.

Returns
The value of the property for the given symbolir if the property is not defined.

Description

Return the value of the property for the given symbol. Once a property has been set for a symbol, it will
remain as long as the Gamma program is running.

Example
Gamma>tag001 = 5.5;
55
Gamma>setprop(#tag001, #maxlimit,10);
nil
Gamma>getprop(#tag001, #maxlimit);
10
Gamma>getprop(#tag001, #minlimit);
nil
Gamma>

See Also

properties , setprop , setprops

82

has cvar

has_cvar — queries for the existence of a class variable.

Syntax

has_cvar (instance |class , variable)

Arguments

instance |[class

An instance of a class; or a class.
variable

An class variable name, as a symbol.

Returns

t if any instance, class or any parent (base) class contains the variable, othelwise

Description

This function checks for the existence of class variables for a class or instance of a class. It searches all
parent (base) classes.

Example

@ This example is based on the class and method developedtimod andclass_add_cvar
The variable name is preceded by # to prevent evaluationQBe& Operatorfor more

information.
Gamma>RegPolygon;
#0=(defclass RegPolygon nil [(linethickness . 2) (perimeter . (defun RegPolygon.perimeter (self) (* (@ self sides) (@ self length))))]
Gamma>polyD;
{RegPolygon (length) (sides)}
Gamma>Square;
(defclass Square RegPolygon [(area . (defun Square.area (self) (sqr (@ self length))))][length (sides . 4)])
Gamma>sqB;
{Square (length) (sides . 4)}
Gamma>has_cvar(RegPolygon, #linethickness);
t
Gamma>has_cvar(polyD, #linethickness);
t
Gamma>has_cvar(Square, #linethickness);
t
Gamma>has_cvar(sqB, #linethickness);
t
Gamma>

See Also

class_add_cvar

83

has_ivar

has_ivar — queries for the existence of an instance variable.

Syntax

has_ivar (instance |class , variable)

Arguments

instance [class

An instance of a class; or a class.
variable

An instance variable name, as a symbol.

Returns

t if the instance or class contains the named instance variable, or if any parent (base) of the class
contains the instance variable, otherwisle .

Description

This function queries an instance or class to determine whether a given instance variable exists for that
instance or class. When querying classes, if any parent (base) of that class contains the given instance
variable, this function returris. It is possible for a class to contain an instance variable, and an instance
of that class not to contain it, but onlydfass_add_ivar was called after the instance was created.
Seeclass_add_ivar for details.

Example

e This example is based on the class and method developedtimod . The variable name is
preceded by # to prevent evaluation. $aete Operatorfor more information.

Gamma>Square;

(defclass Square RegPolygon [(area . (defun Square.area (self) (sqr (@ self length))))][length (sides . 4)])

Gamma>sqB;

{Square (length) (sides . 4)}

Gamma>has_ivar(Square, #sides);

t

Gamma>has_ivar(Square, #perimeter);

nil

Gamma>has_ivar(sgB, #area);

nil

Gamma>has_ivar(sgqB, #length);

t

Gamma>

See Also

class_add_ivar

84

instance_vars

instance_vars —finds all the instance variables of a class or instance.

Syntax

instance_vars (instance | class)

Arguments

instance [class

An instance of a class, or a class.

Returns

An array of all instance variables defined for the gitiestance or class . If an instance is queried,
then the values of all instance variables for that instance are also reported.

Description

Queries the instance variables of a class or instance.

Example

e This example is based on the class and method developedthod , class_add_ivar and

class_add_cvar
Gamma>polyD;
{RegPolygon (length) (sides)}
Gamma>sqB;
{Square (length) (sides . 4)}
Gamma>instance_vars(RegPolygon);
[length sides]
Gamma>instance_vars(polyD);
[(length) (sides)]
Gamma>instance_vars(Square);
[length (sides . 4)]
Gamma>instance_vars(sgB);
[(length) (sides . 4)]
Gamma>

See Also

class ,class_add cvar ,class _add_ivar

85

is_class_member

is_class_member — checks if an instance or class is a member of a class.

Syntax

is_class_member (instance |class , class)

Arguments

instance [class

An instance of a class; or a class.
class

A class.

Returns

t iftheinstance orclass isa member of thelass , elsenil

Description

This function checks if a given instance or class is a member (an instance or derived class) of another
class.

Example
e This example is based on the classes developeth#s.

Gamma>sqB = new(Square);

{Square (length) (sides . 4)}
Gamma>is_class_member(sqB, Square);

t

Gamma>is_class_member(Square, RegPolygon);
t

Gamma>is_class_member(sqB, RegPolygon);
t

Gamma>polyF = new(RegPolygon);
{RegPolygon (length) (sides)}
Gamma>is_class_member(polyF, Square);
nil

Gamma>

See Also

new

86

ivar_type

ivar_type — returns the type of a given instance variable.
Syntax

ivar_type (instance , variable)

Arguments

instance

A class instance.
variable

An instance variable name, as a symbol.

Returns

nil if the instance does not contain the variable, or the instance variable type, as assigned by
class_add_ivar

Description

This function returns the instance variable type for a given instance variable. The instance variable type
is not used internally by the Gamma or Lisp engine.

Example

Gamma>ivar_type(Osinfo,#cpu);
1

See Also

class_add_ivar

87

macro

macro — helps generate custom functions.

Syntax

macro name (args) statement

Arguments

name

The name of the macro.
args

An argument list.
statement

The body of the macro.

Returns

A named macro definition in Lisp syntax.

Description

This function lets Gamma generate custom functions. The most common type of macro is one that will
call different functions for different kinds of arguments. Once the macro has been called on a specific
kind of argument, successive calls to the macro for that kind of argument will not be processed by the
macro at all, but will be handed straight over to its corresponding function.

One advantage is speed, as the macro code is only executed once. Thereafter only the corresponding
function code is executed.

Example

1. Define a macro. This macro checks its arguments to see if they are symbols or strings, and performs
correspondingly different operations on them.

macro symbol_number (Ix,'y)
{
if (symbol_p(x) && symbol_p(y))
string(string(x),string(y));
else if (symbol_p(x) && number_p(y))
‘setq(@x,@y);
else if (number_p(x) && symbol_p(y))
‘setq(@y, @x);
else if (number_p(x) && number_p(y))
y +Xx
else
error(string("Error: |1 accept only symbols and numbers."));

2. Calling the macro gives these results:

Gamma>symbol_number(st,art);
"start”
Gamma>symbol_number(myvalue,35);
35

Gamma>myvalue;

88

macro

35
Gamma>symbol_number(40,yourvalue);
40

Gamma>yourvalue;

40

Gamma>symbol_number(35,40);

75

Gamma>

3. Define a function that includes the macro, and then call that function.

Gamma>function f(x,y) {symbol_number(b,3);}
(defun f (x y) (symbol_number b 3))
Gamma>f(#r,7);

3

Gamma>

4. Check the function definition. Note that the macro code is now gone. In its plaetgis the function
it calls for the specified kind of argument.

Gamma>f;
(defun f (x y) (setq b 3))
Gamma>

See Also

function

89

new

new — creates a new instance of a class.

Syntax

new (class)

Arguments

class

The name of an existing class.

Returns

A new instance of thelass

Description

Thenew function creates a new instance of the specified class and initializes any instance variables
which have default values associated with them, or assigns thaih tdf there is no default specified.

An instance is represented by an open brace, followed by the class nhame, followed by a sequence of
dotted pairs (dotted lists of two elements), each containing an instance variable name and a value,

followed by a closing brace. Note th@t . nil)
classPhPoint would be{PhPoint (x . 5) (y .

An instance can be destroyed tigstroy

Example

Gamma>class RegPolygon{sides; length;}
(defclass RegPolygon nil [J[length sides])

Gamma>class Square RegPolygon {sides = 4;}
(defclass Square RegPolygon [][length (sides .

Gamma>polyA = new(RegPolygon);
{RegPolygon (length) (sides)}
Gamma>sqC = new(Square);
{Square (length) (sides . 4)}
Gamma>

See Also

class , destroy

is the same a&) . For example, an object of the

0)}

90

parent_class

parent_class — returns the closest parent (base) of a class or instance.

Syntax

parent_class (instance |class)

Arguments

instance |[class

An instance of a class; or a class.

Returns

The closest parent (base) class ofittetance or class

Description

This function returns the closest (immediate) parent (base) class of the class or instance provided.

Example

Gamma>class RegPolygon{sides; length;}

(defclass RegPolygon nil [J[length sides])
Gamma>class Square RegPolygon {sides = 4;}
(defclass Square RegPolygon [][length (sides . 4)])
Gamma>class BigSquare Square {length = 30;};
(defclass BigSquare Square [J[(length . 30) (sides . 4)])
Gamma>polyA = new(RegPolygon);

{RegPolygon (length) (sides)}

Gamma>sqC = new(Square);

{Square (length) (sides . 4)}

Gamma>bigD = new(BigSquare);

{BigSquare (length . 30) (sides . 4)}
Gamma>parent_class(polyA);

nil

Gamma>parent_class(sqC);

(defclass RegPolygon nil [J[length sides])
Gamma>parent_class(bigD);

(defclass Square RegPolygon [][length (sides . 4)])
Gamma>parent_class(Square);

(defclass RegPolygon nil [J[length sides])
Gamma>parent_class(BigSquare);

(defclass Square RegPolygon [][length (sides . 4)])
Gamma>

See Also

class

91

print_stack

print_stack — prints a Gamma stack.

Syntax

print_stack (file ?, stack)

Arguments
file

The name of a file.
stack

The stack you wish to print.

Returns

t if successful, elsail

Description

This function causes Gamma to print a stack, sucheasor_stack_ , _eval_stack_
_jump_stack_, or_unwind_stack . SeePredefined Symbol®r more details about these.
Example

Gamma>try (2 + nil); catch print_stack(_eval_stack_);
trap_error + print_stack

t

Gamma>

See Also
Predefined Symbols

properties

properties — should never be used.

Syntax

properties (symbol)

Arguments

symbol

Any symbol.

Returns
The property list for the given symbol.

Description

@ This function should never be used. Property lists are designed to be handledyeytiup
andsetprop functions. Property lists may be represented internally by a number of
mechanisms, so the type and structure of the return from this function may change at any time.

See Also
getprop , setprop , setprops

93

guote, backquote

quote, backquote — correspond to Quote Operators.

Syntax
quote (s_exp)
backquote (s_exp)

Arguments
S_exp

Any Gamma or Lisp expression.

Returns

Thes_exp , without evaluation.
Description
These are the functional equivalents of the Quote Operajocde is identical to the# quote operator.

backquote is identical to thé quote operator.

See

Quote Operators

94

require, load

require, load — load files.

Syntax

require (filename)

load (filename)

require_lisp (filename)
load_lisp (filename)
required_file (filename)
_require_path_ (filename)

Arguments

filename

The name of afile, as a string.

Returns

The name of the file, as a string.

Description

Therequire function loads the named file the first time that it is called. Subsequent caflguae
with the same filename will simply be ignored. This provides a means for specifying dependencies for
applications containing multiple files.

Theload function loads the named file every time it is called. It attempts to open the named file, read
expressions and evaluate them one at a time until the end of file is redmh@dattempts to find the file

by prepending each of the entries irequire_path_ to the filename. If the file is not found, then

load appends each of the entries ilbad_extensions_ to the path resulting from concatenating
_require_path_ and filename. If the file is still not founajl is returned. If a different grammar

has been defined for the loader, then that grammar will be used to read the file.

require_lisp andload_lisp operate similarly teequire andload , except they treat any file
as a Lisp file. This is helpful when using Lisp libraries with alternate grammars such as Gamma or
user-defined grammars.

required_file determines which file would be loaded as the result of a cabdoire or
require_lisp , but does not actually load it. This can be useful in debugging to determine where a
particular function or file is coming from.

The pre-defined global variableequire_path_ contains a list of the paths to be searched to find the
specified filename. This variable is initialized to (" "/usr/cogent/lib"), which references the current
directory and the standard location for cogent libraries. The list of paths can be augmented with:

_require_path_ = cons ("my_directory_name", _require_path_);

Example

Gamma>require("x/myfile.dat");
"x/myfile.dat"
Gamma>require("x/myfile.dat");
t

Gamma>load("x/myfile.dat");
"x/myfile.dat"

95

Gamma>required_file("x/myfile.dat");

t
Gamma>require_lisp("myfileli.dat");
nil

Gamma>

See Also

Loading Files

require, load

96

set , setq , setqq

set, setq, setqq — assign a value to a symbol.

Syntax

set (symbol , s_exp)
setqg (! symbol, s exp)
setqq (! symbol , ! s_exp)

Arguments

symbol

A symbol.
S_exp

Any Gamma or Lisp expression.

Returns

Thes_exp argument.

Description

These functions assign a value to a symbol, and are the functional equivalentafab&gnment)
operator. Normally in Gamma theoperator is used for assignment, but these functions give more
control over evaluation of symbols and expressions at the point of assignment.

Theset function evaluates both of its argumergstq evaluates only its second argument aethq
evaluates neither of its arguments. The most commonly used of these funcsens isA symbol’s

value is the value returned as a result of evaluating that symbol. Symbols constitute the Lisp mechanism
for representing variables. These functions can only affect the value of a symbol in the current scope.

Example
Gamma>setq(y, 6);
6
Gamma>setq(x, #y);
y
Gamma>set(x, 5);
5
Gamma>x;

y
Gamma>y;
5
Gamma>

See Also

Assignment Operatorforce

97

setprop

setprop — sets a property value for a symbol.
Syntax

setprop (symbol , property , value)
Arguments

symbol

The symbol whose property will be set.
property

A symbol which identifies the property to be set.
value

The new value of the property.

Returns

The previous value for that property, wit if there was no previous value.

Description

All symbols in Gamma may have properties assigned to them. These properties are not limited by the
scope of the symbol, so that a symbol’s property list is always global. A property consists of a (name .
value) pair. Property lists are automatically maintainedétprop to ensure that each property name

is unique for a symbol. A symbol may have any number of properties. A property for a symbol is queried
usinggetprop

Thesymbol andproperty are normally protected from evaluation when setting properties, using the
operator.

Example

Gamma>setprop(#weight,#hilimit,1000);

nil
Gamma>setprop(#weight,#hiwarning,950);
nil
Gamma>setprop(#weight,#lowlimit,500);
nil
Gamma>setprop(#weight,#lowwarning,550);
nil

Gamma>getprop(#weight,#hilimit);

1000
Gamma>getprop(#weight,#lowwarning);
550

Gamma>

See Also

getprop , properties , setprops

98

setprops

setprops — lists the most recent property value settings.

Syntax

setprops (symbol , properties)

Arguments

symbol

The symbol whose properties will be listed.
properties

Any property.

Returns

A list of properties with their most recent values, as associated pairs.

Description

This function is used to get a list of all the properties and their associated values as (name . value) pairs.
Itis called using any of the symbol’s properties. The list contains current values in order from the most to
least recently entered.

Thesymbol andproperty are normally protected from evaluation when setting properties, using the
operator.

Example

Gamma>setprop(#weight,#hilimit,1000);
nil
Gamma>setprop(#weight,#lowlimit,500);
nil
Gamma>setprop(#weight,#warning,950);
nil
Gamma>setprop(#weight,#warning,975);
950

Gamma>setprops(#weight,#hilimit);
((warning . 975) (lowlimit . 500) (hilimit . 1000))
Gamma>

See Also

setprop

99

trap_error

trap_error —traps errors in the body code.

Syntax

trap_error (! body, ! error_body)

Arguments
body

Any Gamma or Lisp expression.
error_body

Any Gamma or Lisp expression.

Returns

The result of thébody , unless an error occurs during its evaluation, in which case the result of
evaluating theerror_body

Description

This function traps any errors which occur while evaluatingltbdy code. If no error occurs, then

trap_error will finish without ever evaluating therror_body . If an error does occur,

trap_error will evaluate theerror_body code immediately and the error condition will be

cleared. This is usually used to protect a running program from a piece of unpredictable code, such as an
event handler. If the error is not trapped it will be propagated to the top-level error handler where it will
cause the interpreter to go into an interactive debugging session.

Example

The following piece of code will run an event loop and protect against an unpredictable event.

while(t)
{

trap_error(next_event(),print_trapped_error());

}

function print_trapped_error ()

{

princ("Error\n”, _error_stack_, "\n occurred...\n");
princ("Clearing error condition and continuing.\n");

}

See Also

error ,unwind_protect ,try catch

100

unwind_protect

unwind_protect =~ — ensures code will be evaluated, despite errors in the body code.

Syntax

unwind_protect (! body, ! protected_body)

Arguments
body

Any Gamma or Lisp expression.
protected_body

Any Gamma or Lisp expression.

Returns

The result of evaluating therotected_body code. If an error occurs then this function does not
return.

Description

This function ensures that a piece of code will be evaluated, even if an error occurs withodshe

code. This is typically used when an error might occur but cleanup code has to be evaluated even in the
event of an error. The error condition will not be cleared by this function. If an error occurs then control
will be passed to the innermasap_error function or to the outer level error handler immediately

after theprotected_body is evaluated.

Example

The following code will close its file and runwarite_all_output function even if an error occurs.

if (fp=open(“filename","w"))
{

unwind_protect(write_all_output(),close(fp));

}

See Also

error ,trap_error , protect unwind

101

whence

whence — gives input information.

Syntax

whence (s_exp)

Arguments
S_exp

Any Gamma or Lisp expression.

Returns

A list whose car is the input source, and whose cdr is an integer showing the sequential input order of the
expression.

Description

This function checks the input source and sequence of any given Gamma expression. It returns this
information in the form of a list. The sequence number is assigned the first time the expression is used,
and does not change. Thdience call itself is a Gamma expression, and thus generates a sequence
number each time it is called.

e This function requires Gamma to be running in debugging mode. To start debugging mode, you
must include thed option when starting Gamma.

Example

[~/w/develllisp]$ gamma -d

Gamma(TM) Advanced Programming Language
Copyright (C) Cogent Real-Time Systems Inc., 1996. All rights reserved.
Version 2.4 Build 147 at Sep 13 1999 17:15:51
Gamma>c = 12;

12

Gamma>d = 14;

14

Gamma>whence(c);

("stdin" 1)

Gamma>whence(d);

("stdin" 2)

Gamma>f = 16;

16

Gamma>whence(f);

("stdin" 6)

Gamma>

102

V. Lists and Arrays

Table of Contents

=1] 0= o o S 104
2L TSP ST P SRS PP 105
= 1 Y PO PPR 106
=T - Y/ (o 1 107
2 LS PO RPT PP 108
ASSOC , ASSOC_EBUUAI ettt ettt b et bbbt b et b et bbb 109
o1 Y= T o oSS 110
(or= 1 g oto | QU= 10T I o] 1 g =T £ 111
(070 0 ST UR TP TP R RRPPR 112
(607 0O 113
(o1] o)V L (=TSP PP ORTPRPI 114
(o= = OSSR 115
o<1 T o [o =TSSR 116
£ o I T o =T 11 = | S 117
1= OSSOSO PP RRURTRUTON 118
Y=Y 6T=T1 o] o TSSOSO 119
1= T | T 120
1S3 A 1 o T 121
IS (o = 1 = /SO 122
MBKE_AITAY 1eeitieeiteiertet sttt ettt bbbt b £ bbbt b et b et b et b et bt bbb e bttt 123
LF= 1] 01=1 oo [OOSR 124
NITEIMIOVE ...t ettt ettt et b e st e e e st e e bt e sheeeaeeea bt e b e e eae e eas e e b e e eRe e ea Rt e b e e eRe e eae e e a b e e eReeeae e e abeesaeeaaneeabeesnnennnennnis 125
nreplace , Nreplace_EQUAL ..o 126
(oYt T o7= VA o1 o T oo | RSO SRR 127
(1] 00101V RSP O 128
(A= ST TSP ORI 129
0] = Vo= T 1 o] = Lo o S 130
£ 10T (=1 1= U1 = |/ 131
S] ORI PR PSPPI 132
0T 0T o SRS 133

103

append

append — concatenates several lists into a single new list.

Syntax
append (list ...)

Arguments
list

One or more lists.

Returns

A new list whose elements are the all of the elements in the given lists, in the order that they appear in
the argument lists.

Description

This function concatenates all of the argument lists into a single new list, in the order the arguments are
given. Each list is appended to the preceding list by assigning it to the cdr of the last element of that list.
The appending is non-destructive; for a destructive version of appenthpsend .

Example

Gamma>append (list(1,2,3), list(4,5));
12345)

Gamma>append (list(#a,#c,#qg), list(#b,#d,#z));
(@acgbd2

Gamma>

See Also

nappend

104

aref

aref — returns an array expression at a given index.

Syntax

aref (array , index)

Arguments

array

An array.
index

A number giving the index into the array, starting at zero.

Returns

The array element at the given index in the array.

Description

The index starts at zero, and extends to the length of the array minus one. If the index is not valid in the
array,nil is returned, but no error is generated.

e Note: This function is identical to the square bracket syntax for referencing array elements, with
the syntax:

array[index]

Example
Gamma>x = array (1, 5, #d, "farm");
[1 5 d "“farm"]
Gamma>aref (x, 0);
1
Gamma>aref (x, 8);
nil
Gamma>x[3];
"farm"
Gamma>

See Also

array ,aset ,delete ,insert ,sort

105

array

array — constructs an array.

Syntax

array (s_exp ?..)

Arguments
S_exp

Any Gamma or Lisp expression.

Returns

An array containing all of the arguments.

Description

An array is represented as a sequence of objects surrounded by square brackets, asin [1 2 a (4 5)]. The
objects within the brackets are not evaluated. To refer to or access an array, it must be assigned to a
symbol.

This function constructs an array of all of the arguments, in the order given. The arguments are evaluated
when thearray function is called, but once the array has been constructed the array objects are not
evaluated.

Itis possible to create an empty array, and fill it later. It will expand as necessary when array objects are
added.

Example

Gamma>array(#a, 5, nil, 4 + 3, "goodbye");
[a 5 nil 7 "goodbye"]

Gamma>y = array(5 * 2, #symbol, 432, "string", nil);
[10 symbol 432 "string" nil]

Gamma>z = array(#c, Y);

[c [10 symbol 432 "string" nil]]

Gamma>x = array();

0

Gamma>x[5] = 19;

19

Gamma>x;

[nil nil nil nil nil 19]

Gamma>

See Also

aset , aref ,insert ,delete ,sort

106

array_to_list

array_to_list — converts an array to a list.

Syntax

array_to_list (array);

Arguments

array

Any array.

Returns

The array converted to a list.

Description

This convenience function converts the top level of an array to a list. Lower level arrays in the resulting
list will remain unchanged unless converted separately.

Example
Gamma>a = array(1,2,3);
[1 23]
Gamma>b = array(4,5,6);
[4 5 6]
Gamma>c = array(7,8,9);
[7 8 9]
Gamma>d = array(a,b,c);
[[123][456]][789]
Gamma>e = array_to_list(d);
(123 [456]][7819)
Gamma>list_p(e);
t
Gamma>list_p(a);
nil
Gamma>

See Also

list to_array

107

aset

aset — sets an array element to a value at a given index.

Syntax

aset (array , index , value)

Arguments

array

An array.
index

A numeric index into the array.
value

The new value to be placed in the array.

Returns

Thevalue argument.

Description

Sets ararray elementto thevalue at theindex . If the index is past the end of the array, then the
array will be extended withil s to the index and thealue inserted.

@ This function can also be called using square bracket syntax for referencing array elements, with
the syntax:

array[index]

Example
Gamma>x = array (3, 5, #b, nil);
[3 5 b nil]
Gamma>aset(x, 3, 7);
7
Gamma>x;
[35b 7]
Gamma>x[0] = 9;
9
Gamma>x;
[95b 7]
Gamma>

See Also

array ,aref ,insert ,delete ,sort

108

assoc , assoc_equal

assoc, assoc_equal — search an association list for a sublist.
Syntax

assoc (s_exp, list)

assoc_equal (s_exp, list)

Arguments

S_exp

Any Gamma or Lisp expression.
list

An association list.

Returns

A list whose members are the remainder of the association list starting at the element whose car is eq or
equal to thes_exp .

Description

An association list is a list whose elements are also lists, each of which typically contains exactly two
elementsassoc searches an association list for a sublist whose car is eq to thegieep .

assoc_equal uses equal instead of eq for the comparison. If no matching sublist is found, returns
nil

A symbol-indexed association list (or sym-alist) is an association list where the car of each elementis a
symbol. This is a common construct for implementing property lists and lookup tables. Since symbols
are always unique, sym-alists can be searchedagioc instead ofassoc_equal

Example
Gamma>a = 10;
10
Gamma>b = 20;
20
Gamma>c = 30;
30
Gamma>x = list (list(a,15), list(b,25), list(c, 35));
((10 15) (20 25) (30 35))
Gamma>assoc (b,x);
((20 25) (30 35))
Gamma>assoc (20,x);
nil
Gamma>assoc_equal(20,x);
((20 25) (30 35))
Gamma>

See Also

car ,cdr ,eq, equal ,Data Types and Predicates

109

bsearch

bsearch — searches an array or list for a element.

Syntax

bsearch (list_or_array , key, compare_function)

Arguments
list_or_array

A list or array whose elements are sorted.
key

The list or array element to search for.
compare_function

A function used to compare they with the array elements.

Returns

An association list composed of tkey and it's position in the array.

Description

This function performs a binary search on an array based on a comparison function you provide. The
compare_function must return a negative number if the value is ordinally less than the list or array
element, 0O if the two are equal and a positive number if the value is ordinally greater than the list or array
element. Tharray orlist mustbe sorted in an order recognizable bydbmpare_function

for this function to work.

Example

Gamma>function comp (x,y) {x - y;}
(defun comp (X y) (- x y))

Gamma>Ax = array(9,2,11,31,13,8,15,95,17,5,19,6,21);
[9 211 31 13 8 15 95 17 5 19 6 21]
Gamma>Sx = sort(Ax,comp);

[256 89 11 13 15 17 19 21 31 95]
Gamma>bsearch(Sx,19,comp);

19 . 9

Gamma>bsearch(Sx,5,comp);

5.1

Gamma>

See Also

sort

110

car , cdr , and others

car, cdr, and others — return specific elements of a list.
Syntax
car (list)
cdr (list)
caar (list)
cadr (list)
cdar (list)
cddr (list)
caaar (list)
caadr (list)
cadar (list)
caddr (list)
cdaar (list)
cdadr (list)
cddar (list)
cdddr (list)
Arguments
list

Any list.
Returns

An element of thdist or nil

Description

Thecar function returns the first element of a list. Tbdr function returns all of the list except for the
first element. The remaining functions in this group are simply shortcuts for the common combinations
of car andcdr . The shortcut functions are read from left to right as nested andcdr calls. Thus, a

call tocaddr (mylist) would be equivalent toar (cdr (cdr (mylist))). If the argument is not a list,

the result imil . Thecdr function will only return a non-list result in the case of a dotted pair.

Example
Gamma>car(list(1,2));
1
Gamma>cdr(list(1,2));
@
Gamma>cdr(cons(1,2));
2
Gamma>caadr (list (1, list(2, 3, list(4, 5), 6)));
2
Gamma>cdadr (list (1, list(2, 3, list(4, 5), 6)));
(3 (4 5)6)
Gamma>

See Also

cons,list ,nth_car ,nth_cdr

111

cons

cons — constructs a cons cell.

Syntax

cons (car_exp , cdr_exp)

Arguments

car_exp

Any Gamma or Lisp expression.
cdr_exp

Any Gamma or Lisp expression.

Returns

A list whose car isar_exp and whose cdr isdr_exp .

Description

This function constructs a list whose car and cdrae exp andcdr_exp respectively. This
construction is also known ascans cell If the cdr_exp is a list, this has the effect of increasing the
list by one member, that is, adding tbar_exp to the beginning of thedr_exp .

Example
Gamma>a = list(2,3,4);
2 34
Gamma>b = 5;

5
Gamma>cons(b,a);
5234
Gamma>cons(a,b);
(2 3 4).5)
Gamma>cons(5,nil);
(5)

Gamma>

See Also

Data Types and Predicates

112

copy

copy — makes a copy of the top list level of a list.

Syntax
copy (s_exp)

Arguments
S_exp

Any Gamma or Lisp expression.

Returns

A copy of the top list level of the argument.

Description

This function makes a copy of the top list level of the argument if the argument is a list, otherwise it
simply returns the argument. This produces a new list which is equal to the previous list, and whose
elements are eq. That is, the elements are not copied but simply reside in both the original and the copy.

Example
Gamma>a = list(1, list(2,3,list(4),5));
123 @ 5)
Gamma>b = copy(a);
(123 @459)
Gamma>cadr(a);
@3 @5
Gamma>equal(cadr(a),cadr(b));
t
Gamma>eq(cadr(a),cadr(b));
t
Gamma>

See Also

copy_tree ,eq, equal

113

copy_tree

copy_tree — copies the entire tree structure and elements of a list.

Syntax

copy_tree (s_exp)

Arguments
S_exp

Any Gamma or Lisp expression.

Returns

A copy of the entire tree structure and elements of the argument, if it is a list. Otherwise, the argument.

Description

This function makes a recursive copy of the entire tree structure of the argument if the argument is a list,
otherwise it simply returns the argument. This produces a new list which is equal to the previous list, and
whose elements are equal, but not eq. That is, the elements are all copied down to the level of the non-list
leaves. They are equal to the original elements, but they are different elements. Thus they are equal but
not eq.

Example
Gamma>a = list(1,list(2,3,list(4),5));
(123 @4 59)
Gamma>b = copy._tree(a);
(1234 59)
Gamma>cadr(a);
(2345
Gamma>equal(cadr(a),cadr(b));
t
Gamma>eq(cadr(a),cadr(b));
nil
Gamma>

See Also

copy , eq, equal

114

delete

delete — removes an element from an array.

Syntax

delete (array , position)

Arguments

array
An array.
position

An integer giving the zero-indexed position of the array element to delete.

Returns

The deleted array element, oif if none was deleted. The return value will alsorbe if the deleted
element wasil itself.

Description

This function removes an element fromamay and compresses the rest of the array to reduce its
overall length by one. If the position is beyond the bounds of the array, nothing happens. This function is
destructive.

Example
Gamma>a = [1,2,3,4,5];
[1 2345
Gamma>delete(a,3);
4
Gamma>a,;
[1 2305
Gamma>

See Also

insert

115

difference

difference

Syntax

difference (listA , listB)

Arguments
listA

A list.
listB

A list.

Returns

All elements inlistA

Description

that are not ifistB

Constructs a new list that contains all of the elementistA

the functioneq.

Example

Gamma>a = 1;
1

Gamma>b = 2;
2

Gamma>c = 3;
3

Gamma>d = 4;
4

Gamma>e = 5;
5

Gamma>A = list (a, b, c);
@223

Gamma>B = list (b, d, e, c);

(2 45 3)
Gamma>difference (A, B);
(1)

Gamma>difference (B, A);
(4 5)

Gamma>

See Also

eq, equal ,intersection

, union

— constructs a list of the differences between two lists.

not contained iristB

as compared by

116

find , find_equal

find, find_equal — search a list using theq andequal functions.

Syntax

find (s_exp, list)
find_equal (s_exp, list)

Arguments
s_exp

Any Gamma or Lisp expression.
list

A list to be searched.

Returns

The tail of thelist starting at the matching element. If no match is foumd, .

Description

Thefind function searches tHst comparing each element to teeexp with the functioneq. The
find_equal function usequal instead ofeq for the comparison.

Example

Gamma>find(#a,#list(d,x,c,a,f,t,1,j)); @ftlj
Gamma>find("hi", #list("Bob","says", "hi"));

nil

Gamma>find_equal("hi"#list("Bob","says","hi"));

(hi*)

Gamma>

See Also

eq, equal

117

insert

insert — inserts an array value at a given position.

Syntax

insert (array , position | compare_function , value)

Arguments

array
An array.
position
A number giving the zero-based position of the new element within the array, or a function.
compare_function

A function on two arguments used to compare elements in the list or array.
value

Any Gamma or Lisp expression.

Returns

Thevalue inserted.

Description

Theinsert function widens an array at the giveosition and inserts thgalue . Ifa

compare_function is used, it must return a negative number if the value is ordinally less than the
array element, 0 if the two are equal and a positive number if the value is ordinally greater than the array
element. Thevalue will be inserted using a binary insertion sort, based on the return value of the
function.

Example
Gamma>x = array("a", "b", "c");
[*a" "b" "c"]
Gamma>insert(x,3,"d");
g
Gamma>Xx;
[*a" "b" "c" "d"]
Gamma>insert(x,strcmp,"acme");
"acme”
Gamma>x;
["a" "acme" "b" "c" "d"]
Gamma>

See Also

aref ,array ,aset

118

intersection

intersection — constructs a list of all the elements found in both of two lists.

Syntax

intersection (listA , listB)

Arguments
listA

A list.
listB

A list.

Returns
All elements which appear in botistA andlistB

Description

This function generates a new list which contains all of the elements that appear listfoth and
listB . The elements are compared using eq. The order of the elements in the resulting list is not
defined.

Example
Gamma>A = list(#a,#b,#c);
(a b c)
Gamma>B = list(#b,#c,#d);
(b c d)
Gamma>intersection(A,B);
(b c)
Gamma>

See Also

eq, equal difference union

119

length

length — counts the number of elements in a list or array.

Syntax
length (list)

Arguments
list

A list or array.

Returns

The number of elements in thist or array

Example
Gamma>length(list(#a,#b,#c,#d));
4
Gamma>length([11,13,15,17,19,21));
6
Gamma>length(sqr(2 + 3));
0
Gamma>

. If the argument is not a list or array, returns 0.

120

list , listq

list, listq — create lists.

Syntax

list (s_exp?..)
listg (! s_exp ?...)

Arguments
S_exp

Any Gamma or Lisp expression.

Returns

A list containing all of the arguments.

Description

A list is represented as a sequence of objects surrounded by parentheses, as in (1 2 a [4 5]), possibly with
a dot between the second-to-last and last elements in the list. A literal list can be read from a file or from
the command line, but must be quoted (using a quote operator) within code to make it literal.

Thelist function creates a list from its argumernlistq creates a list from its arguments without
evaluation.

Example

Gamma>list(4+5,6,"hi" #xref);
(9 6 "hi" xref)
Gamma>listq(4+5,6,"hi" #xref);
((+ 4 5) 6 "hi* xref)
Gamma>

See Also

Data Types and Predicatessts and Arrays

121

list_ to_array

list_to_array — converts a list to an array.

Syntax

list_to_array (list)

Arguments
list

A list to convert to an array.

Returns

Thelist converted to an array.

Description

This convenience function converts the top level of a list to an array. Sub-lists will remain unchanged
unless converted separately.

Example
Gamma>a = list(1,2,3);
1223
Gamma>b = list(4,5,6);
(4 5 6)
Gamma>c = list(7,8,9);
(7 89
Gamma>d = list(a,b,c);
(1 23)@456)(78Y9)
Gamma>e = list_to_array(d);
[23) (456) (7 89)
Gamma>array_p(e);
t
Gamma>array_p(a);
nil
Gamma>

See Also

array_to_list

122

make_array
make_array — creates an empty array.

Syntax

make_array (n_elements)

Arguments

n_elements

A number of elements.

Returns

An array with the given number of elements, aill .

Description

Creates an empty array for later use. This function has become obsoleteaasmthefunction can now
create empty arrays. Seeray

Example

Gamma>make_array(4);
[nil nil nil nil]
Gamma>make_array(7);
[nil nil nil nil nil nil nil]
Gamma>

See Also

array

123

nappend

nappend — appends one or more lists, destructively modifying them.

Syntax
nappend (list ..)

Arguments
list

One or more lists which will be appended in order.

Returns

The firstlist , modified in place with the remaining lists appended onto it.

Description

This function appends one or more lists, destructively modifying all but the last argument. It is otherwise
identical toappend .

Example
Gamma>a = list (1, 2, 3);
1223
Gamma>b = list (4, 5, 6);
(4 5 6)
Gamma>c = list (7, 8, 9);
(7 89
Gamma>nappend (a, b, c);
123456789
Gamma>a,;
12345678Y9)
Gamma>b;
(456789
Gamma>c;
(7 8 9)
Gamma>

See Also
append

124

nremove

nremove — removes list items, destructively altering the list.

Syntax

nremove (s_exp, list , use_equal ?)

Arguments
S_exp
Any Gamma or Lisp expression.
list
A list.
use_equal

If non-nil , useequal instead ofeq for comparison.

Returns

Thelist with any elements which are eq (or equal if specifiedj_texp destructively removed.

Description

This function removes all occurrences of theexp within the given list and destructively alters the list

to reduce its size by one for each occurrence. The default comparison used is eq. If the first argument is
removed, then the return value will be (cdr list) with all other occurrences @tp destructively

removed.

Example
Gamma>y = list (#a, #b, #c);
(@ b c)
Gamma>nremove (#b, y);
(ac)

Gamma>x = list(1,2,3,4,5,6);
123456)
Gamma>nremove(3, X);
(123456)
Gamma>nremove(3, X, t);
1245 6)

Gamma>y = list(1,2,3,4,1,2,3,4,1,2);
1234123412
Gamma>nremove (1,y,1);

(2342342
Gamma>

See Also

nreplace ,remove

125

nreplace , nreplace_equal

nreplace, nreplace_equal — replace elements in a list.
Syntax

nreplace (new_s_exp, old_s_exp , list)

nreplace_equal (new_s_exp, old_s_exp , list)

Arguments

new_s_exp

The new expression to be inserted into the list.
old_s_exp

The expression in the list to be replaced.
list

A list.

Returns

Thelist , with all occurrences ofld_s_exp destructively replaced byew_s_exp .

Description

nreplace traverses théist |, replacing any element whichéxj toold_s_exp with new_s_exp .
nreplace_equal usesequal as its comparison function.

Example
Gamma>R = list (#f, nil, 5, #ftg);
(f nil 5 ftg)
Gamma>nreplace(#h, #ftg, R);
(f nil 5 h)

Gamma>x = list(1,2,3,1,6,7);
123167
Gamma>nreplace(4,1,x);
123167
Gamma>nreplace_equal(4,1,x);
423467

Gamma>x;

4234617

Gamma>

See Also

remove , nremove

126

nth_car , nth_cdr

nth_car, nth_cdr — iteratively apply thecar andcdr functions to a list.

Syntax

nth_car (list , number)
nth_cdr (list , number)

Arguments
list

Any list.
number

The number of cars (or cdrs) to apply to the list argument. Non-integers are rounded down.
Non-numbers are treated as zero.

Returns

An element of thdist , ornil

Description

Thenth_car andnth_cdr functions iteratively apply thear andcdr functions to a list. If the list
argument is not a list, or if the result of any subsequent applicatiocarfor cdr is not a list, the result
isnil . If the number of applications is less than or equdd tthe result is the original list.

Example
Gamma>c = list (list(list(list(4,5))));
(4 5
Gamma>nth_car(c,2);
((4 5)
Gamma>nth_car(c,4);
4

Gamma>b = list (6,7,8,9,10);
(6 7 8 9 10)
Gamma>nth_cdr (b,2);

(8 9 10)
Gamma>nth_cdr(b,5);

nil

Gamma>nth_cdr(b,4);

(10)

Gamma>

See Also

cons, list ,car ,cdr

127

remove

remove — removes list items without altering the list.

Syntax

remove (s_exp, list , use_equal ?)

Arguments
S_exp

An expression to remove from the list.
list

The list from which to remove the s_exp.
use_equal

An optional argument. If , remove uses theequal function for equality, otherwise it uses the
more stringeneq.

Returns

Thelist , with any matching_exp removed.

Description

This function non-destructively walks a list and removes elements matching the gass@d using
either eq or equal.

Example
Gamma>A = list (#a, #b, #c, #b, #a);
(@bchba
Gamma>remove (#a, A);
(b c b)
Gamma>A,;
(@bchba
Gamma>B = list(1,2,3,2,1);
12321
Gamma>remove(2,B);
@2321)
Gamma>remove(2,B,t);
131
Gamma>

See Also

nremove

128

reverse

reverse — reverses the order of list elements.

Syntax

reverse (list)

Arguments
list
A list.

Returns

A new list which whose top-level structure is the reverse of the itiput . If the argument is not a list,
returns the argument.

Description

None of the elements of the originédt is copied. The resulting list contains elements which are eq to
the corresponding elements in the original. The origlisél is not changed.

Example
Gamma>S = list(1,2,3);
1223
Gamma>R = reverse (S);
321
Gamma>S;
1223
Gamma>car (S);
1
Gamma>caddr(R);
1
Gamma>eq (car (S),caddr(R));
t
Gamma>

129

rplaca , rplacd

rplaca, rplacd — replace the car and cdr of a list.

Syntax

rplaca (cons, s_exp)
rplacd (cons, s_exp)

Arguments
list

A list element.
S_exp

Any Gamma or Lisp expression.

Returns

Thes_exp , ornil on failure.

Description

These functions destructively alter the form of a liplaca modifies the car of a list, effectively
replacing the first elementplacd modifies the cdr of a list, replacing the entire tail of the list. These
functions have no meaning for non-lists. To entirely remove the tail of a list, replace the cdr of the list
with nil

Example
Gamma>x = list(1,2,3,4);
1234
Gamma>rplaca(x,0);
0
Gamma>x;
(0234
Gamma>rplacd(x,list(7,8,9,10,11,12));
(7 8 9 10 11 12)
Gamma>x;
(0 78910 11 12)
Gamma>

See Also

car, cdr

130

shorten_array

shorten_array — reduces or expands the size of an array.
Syntax

shorten_array (array , size)

Arguments

array

The array to shorten or expand.
size

The new length for the array.

Returns

The resized array.

Description

This function reduces or expands the size of an array by cutting off any elements which extend beyond
the given size, or by addingl s to the end of the array until the new size is reached. This function is
analogous to the C functiorgalloc

Example
Gamma>a = array (1,2,3,4,5);
[1 2345
Gamma>shorten_array(a,3);
[1 2 3]
Gamma>shorten_array(a,9);
[2 3 nil nil nil nil nil nil]
Gamma>

See Also

array , make_array

131

sort

sort — sorts a list or array, destructively modifying the order.
Syntax

sort (list_or_array , compare_function)

Arguments

list_or_array

A list or an array.
compare_function

A function on two arguments used to compare elements in the list or array.

Returns

The inputlist orarray , sorted.

Description

This function sorts théist orarray in place, destructively modifying the order of the elements. The
compare_function must be a function on two arguments which returns: an integer value less than
zero if the first argument is ordinally less than the second, zero if the two arguments are ordinally equal,
and greater than zero if the first argument is ordinally greater than the second. This function uses the
quicksort algorithm.

Example

Gamma>x = list("one","two","three","four","five");
("one" "two" "three" “four" "five")
Gamma>sort(x,strcmp);

("five" "four" "one" "three" "two")

Gamma>x;

("five" "four" "one" "three" "two")

Gamma>

132

union
union — constructs a list containing all the elements of two lists.

Syntax
union (listA , listB)

Arguments
listA

A list.
listB

A list.

Returns

A new list containing all elements iistA plus all elements itistB which do not appear ilistA

Description

The resulting list will not contain duplicate elements from either list. This function uses eq for
comparisons.

Example
Gamma>union (list (#),#,#]#k,#l,#) list(#k,#kK,#,#m #n));
G kI mn)
Gamma>union(list(1,2),list(5,1,2,7));
125127
Gamma>

See Also

difference , intersection

133

VI. Strings and Buffers

Table of Contents

DAEIBLIE ..t b b e et a e b bR et b b e e e ne e ae e nan 135
o111 7= o USSP PP RRTRURURON 136
o113 =7 OSSOSO 137
o]0 1= g (o T (11T SRR 138
L0 1 2= LS 139
MEAKE _DUTTEI bbb bbb 141
o] o 1= o JHES1 U4 oo [OOSRV 142
[T TR (] o OO SOTSO TSP 143
L2 ALV 0 0 T=T 1 T 145
£ g1 L 0 =1 (o OSSR 146
(=] 0T (=T o T o0 (=Y TSRS 147
LS (o] | G {1 (X o | ST PRIN 148
(o]0] TS {1 0 1] o USSR 149
5] 110 PP 150
5] 110 TS 151
£ 0] o 1 =T o 1011 =1 152
ES] 0] o S] S 153
£ 0] o T (o TR 01U 1 (= 154
L5103 PRSP 155
5] 121 o SRS 156
SIINCMP | SENICIMID e b e e b et b et b et b bt se b e se b se e b e et e e sbeneas 157
oYL (= TP PSP URTOPPTPRRIIN 158
L1155 1 (PP P PR ORTOPRRPRTRN 159
ST 01 OSSP 160
100 (0111 = TSRS 161
(£ 0] 0] 0[] CH PSPPSR 162

134

bdelete

bdelete — deletes a number of bytes from a buffer.

Syntax

bdelete (buffer , positon , length ?)

Arguments

buffer

A buffer.
position

The position of the first byte to delete. A number betw8eand the length of the buffer minds
length

An optional number of bytes to delete. The default ig\ negative number deletes all bytes to the
end. A value o0 does nothing.

Returns

The number contained at the specifpgbition in thebuffer , ornil if the buffer is undefined
at the giverposition

Description

This function deletes a specified number of bytes from a raw memory buffer. The buffer length does not
change as a result of this function. A zero character is placed at the empty position at the end of the
buffer, then the buffer is collapsed.

Example
Gamma>y = buffer (101, 102, 103, 104);
#{efgh}
Gamma>bdelete(y,1,2);
102
Gamma>y;
#{eh\Oh}
Gamma>

See Also

delete

135

binsert

binsert — inserts a value into a buffer.

Syntax

binsert (buffer , position , value)

Arguments

buffer

A buffer.
position

A number giving the zero-based position of the new element within the buffer, or a function.
value

A number which will be cast to an 8-bit signed integer.

Returns

Thevalue inserted.

Description

The binsert function inserts th@lue by moving all other values aftgrosition one space to the
right, and removing the last value from the buffer.

If position is a function, it is taken to be a comparison function with two arguments. The value will

be inserted using a binary insertion sort with the function as the comparison. A comparison function
must return a negative number if the value is ordinally less than the buffer element, O if the two are equal,
and a positive number if the value is ordinally greater than the buffer element.

Example
Gamma>x = string_to_buffer("Hellothere");
#{Hellothere}
Gamma>binsert(x,5,32);
32
Gamma>x;
#{Hello ther}
Gamma>

See Also
buffer

136

buffer

buffer — constructs a buffer.

Syntax

buffer (contents ?...)

Arguments

contents

Any Gamma or Lisp expression.

Returns

A buffer containing all of theeontents

Description
This function constructs a buffer of all of the arguments, in the order they are given.

@ A buffer is printed as a sequence of characters (some consoles may not support a character for
every entry) surrounded by curly brackets and preceded by a hash sign, such as: #{\n+6ALWbe}.
This representation of a buffer cannot be read back in to Gamma, so a symbol must be assigned

to a buffer in order to refer to or work with it.

Example

Gamma>bu = buffer (101, 102, 103, 104, 2 * 25, 4 |/ 82);
#{efgh2\0}

Gamma>shorten_buffer (bu, 2);

#ef}

Gamma>

See Also

binsert , bdelete

137

buffer_to_string

buffer_to_string — converts a buffer to a string.

Syntax
buffer_to_string (buffer)

Arguments

buffer
A buffer.

Returns

A string representing the contents of the gierifer up to the first zero character, il if the
argument is not a buffer.

Description

This function converts theuffer into a string by treating each element in the buffer as a single
character. The first zero character in the buffer terminates the string.

Example

Gamma>x = buffer(104,101,108,108,111);
#{hello}

Gamma>buffer_to_string(x);

"hello”

Gamma>

See Also
buffer

138

format

format — generates a formatted string.

Syntax

format (format_string , arguments ?...)

Arguments

format_string

A string containing format directives and literal text.
arguments

Expressions which will be matched to format directives on a one-to-one basis.

Returns
A string.

Description

Generates a formatted string using directives similar to those used in therit@”* function. Text in
theformat_string will be output literally to the formatted string. Format directives consist of a
percent sign (%) followed by one or more characters. The following directives are supported:

« aAny Gamma or Lisp expression. Tipeinc_name (the same result as applying the string function
on the expression) of a Lisp expression is written to the result string.

- d Aninteger number. A numeric expression is cast to a long integer and written to the result string. %d
is equivalent to %ld.

- f Afloating point number. A numeric expression is cast to a long floating point number and written to
the result string.

« g A floating point number in "natural” notation. A numeric expression is cast to a long floating point
number and written to the result string using the most easily read notation which will fit into the given
field size, if any. If no field size is specified, use a notation which minimizes the number of characters
in the result.

« sA character string. A string is written to the result string.

The format directive may contain control flags between the % sign and the format type character. These
control flags are:

« - Left justify the field within a specified field size.

« + Numbers with a positive value will begin with a + sign. Normally only negative numbers are signed.

be.

(A space). Signed positive numbers will always start with a space where the sign would normally

« 0 A numeric field will be filled with zeros to make the number consume the entire field width.

Format directives may contain field width specifiers which consist of an optional minimal field width as
an integer, optionally followed by a period and a precision specified as an integer. The precision has
different meanings depending on the type of the field.

139

format

- aThe field width option does not apply to this general case. To specify precision on a s_exp, you can
convert it to a string and use tlseformat directives.

- d The precision specifies the minimum number of digits to appear. Leading zeros will be used to make
the necessary precision.

- f The precision specifies the number of digits to be presented after the decimal point. If the precision is
zero, the decimal point is not shown.

« g The precision specifies the maximum number of significant digits to appear.

« sThe precision specifies the maximum number of characters to appeatr.

Example

Gamma>pi = 3.1415926535;
3.1415926535000000541

Gamma>format("Pl is %6.3f",pi);

"Pl is 3.142"

Gamma>alpha = "abcdefghijkimnopgrstuvwxyz";
"abcdefghijkimnopgrstuvwxyz"
Gamma>format("Alphabet starts: %.10s",alpha);
"Alphabet starts: abcdefghij”

Gamma>x = [1,2,3,4,5,6,7,8,9];
[12345678DY9

Gamma>format("x is: %a",x);

"xis: [123456789"
Gamma>format("x is: %.6s",string(x));

"X is: [1 2 3"

Gamma>

140

make_buffer
make_buffer — creates a new, empty buffer.

Syntax

make_buffer (n_elements)

Arguments

n_elements

The number of elements (bytes) in the buffer.

Returns

A new buffer.

Description

This function creates a new, empty buffer withelements number of bytes, all set to zero.

Example

Gamma>make_buffer(5);
#{\0\0\0\0\0}
Gamma>make_buffer(12);
#{\0\0\0\0\0\0\0\0\0\0\0\0}
Gamma>

See Also

buffer , buffer_to_string

141

open_string

open_string — allows a string to be used as a file.

Syntax

open_string (string)

Arguments

string

A string.

Returns

A pseudo-file that contains ttetring if successful, otherwiseil

Description

This function allows a string to be used as a pseudo-file to facilitate reading and writing to a local buffer.
All read and write functions which operate on a file can operate on the result of this call. An attempt to
write to the string always appends information destructively to the string. Subsequent reads on the string
can retrieve this information. A string is always opened for both read and write.

Example

Gamma>s = open_string("Hello there.");
#<File:"String">

Gamma>read_line(s);

"Hello there."

Gamma>s = open_string("Hello there.");
#<File:"String">

Gamma>read(s);

Hello

Gamma>read(s);

there.

Gamma>read(s);

"Unexpected end of file"

Gamma>

See Also

close ,open,read ,read_char ,read _double ,read_float ,read_line ,read_long ,
read_short ,read_until ,terpri ,write ,writec

142

parse_string

parse_string — parses an input string.

Syntax

parse_string (string , use_gamma?=nil, parse_all ?=nil)
Arguments

string

A character string representing either a Lisp expression or a Gamma statement.
use_gamma

An optional argument that defaultstd . If nil , the Lisp parser will be used, otherwise the
Gamma parser will be used.

parse_all

An optional argument that defaultstd . If nil , only the first statement in the string will be
parsed, otherwise all statements up to the end of the string will be paresed..

Returns

If parse_all isnil ,return the first statement in the string in internal fornpdfse_all is
non-il , return all statements in the string as a list of expressions in internal form. If an error occurs
during parsing, this function will throw an error.

Description

This function parses the input string using either the Lisp parser or the Gamma parser, and returns either
the first complete statement found in the string or all of the statements to the end of the string.

If only the first statement is parsed, the rest of the string is ignored, even if it is invalid. The result is
returned in internal form, effectively an executable Lisp representation. Internal form can be passed
directly to theeval function for evaluation.

If all statements are returned, they are returned in a list, even if there is only one statement in the string.
The resulting list can be passed directhetal_list

Example

Gamma>a = parse_string("hello");
hello

Gamma>b = parse_string("(cos 5)");
(cos 5)

Gamma>c = parse_string("(+ 5 6) (/ 6 3)");
(+ 5 6)

Gamma>eval(b);
0.28366218546322624627
Gamma>eval(c);

11

Gamma>

Using optional arguments:

Gamma>parse_string("cos(5);", t);

(cos 5)

Gamma>parse_string("cos(5); sin(5);", t);
(cos 5)

143

parse_string

Gamma>parse_string("cos(5); sin(5);", t, t);
((cos 5) (sin 5))
Gamma>parse_string ("if (x < 1) y = 1; else y = 0;", 1)
(if (< x 1)
(setq y 1)
(setq y 0)
)

Gamma>

See Also

eval , eval_string , open_string

144

raw_memory

raw_memory — tells the amount of memory in use.

Syntax

raw_memory ()

Arguments

none

Returns

The amount of raw memory in use by the system.

Example

Gamma>raw_memory();
(72462 818)
Gamma>x = 41;

41
Gamma>raw_memory();
(72787 847)
Gamma>x = 55;

55
Gamma>raw_memory();
(73034 871)
Gamma>y = 10;

10
Gamma>raw_memory();
(73359 900)

Gamma>

145

shell _match

shell_match — compares string text to a pattern.

Syntax

shell_match (text , pattern)

Arguments

text

A text string to compare against the given pattern.
pattern

A shell style pattern.

Returns

t ifthetext matches th@attern , otherwisenil

Description

This function compares thext to thepattern using shell-style wildcard rules. The available
patterns are as follows:

« * matches any number of characters, including zero.
- [c] matches a single character which is a member of the set contained within the square brackets.

« [*c] matches any single character which is not a member of the set contained within the square
brackets.

« ?matches a single character.
- {xx,yy } matches either of the simple strings contained within the braces.

- \c (a backslash followed by a character) - matches that character.

Example

To get a directory listing of just *.txt files, use:
shell_match(directory("/etc/readme",0,nil),"*.txt");

Gamma>shell_match("hello","?el[a-m]*");

t
Gamma>shell_match("hello","hel{p,m,ga}");
nil

Gamma>

See Also

apropos

146

shorten_buffer

shorten_buffer — reduces the size of a buffer.
Syntax

shorten_buffer (buffer , n_elements)
Arguments

buffer

The buffer to shorten.
n_elements

The number of elements that the buffer is to be reduced to.

Returns

The shortened buffer.

Description

This function reduces the size of a buffer by cutting off any elements which extend beyond the given
size. This function is analogous to the C functiceglloc

Example

Gamma>b = buffer(119,120,121,122);
#wxyz}

Gamma>shorten_buffer(b,3);

#Hwxy}

Gamma>

See Also

buffer , make_buffer

147

strchr

. strrchr

strchr, strrchr — search a string for an individual character.

Syntax

strchr (string , char_as_string)
strrchr (string , char_as_string)

Arguments

string
Any character string.
char_as_string

A string containing the one character to be found.

Returns

The position of thehar_as_string within thestring , where the first character is in position zero.
If the char_as_string is not found in thestring , returns -1strchr returns the first occurrence
of the character in the stringtrrchr returns the last occurrence of the character in the string.

Description

These functions search a string for an individual character and return the first or last occurrence of that
character within the string. The characters within a string are numbered starting at zero.

Example
Gamma>strchr("apple","a");
0Gamma>str<:hr("ap|c>le","r");
;‘jamma>strchr("app|e",--p");
éamma>strrchr("apple pie","p");
gamma>

See Also

strcmp , stricmp , string_split ,strlen | strrev , strstr , substr

148

strcmp , stricmp

stremp, stricmp — compare strings.

Syntax

strcmp (string , string)
stricmp (string , string)

Arguments

string

Any string.

Returns

A negative number if the firdtring is ordinally less than the secostting according to the ASCII
character set, a positive number if the fgging is greater than the second, and zero if the two strings
are exactly equal.

Description

These functions can be used as comparison functiorsofor andinsert . stricmp performs the
same function astrcmp , but alphabetic characters are compared without regard to case. That is, "A"
and "a" are considered equal syicmp , but different bystrcmp .

Example
Gamma>strcmp(“apple”, "peach");
-15
Gamma>strcmp(“"peach”, "apple");
15
Gamma>strcmp("Apple","Apple");
0
Gamma>strcmp("Apple”,"Apple pie");
-32
Gamma>strcmp("Apple”,"apple");
-32
Gamma>stricmp("Apple","apple");
0
Gamma>

See Also

insert ,sort ,strchr , strrchr

149

string
string — constructs a string.

Syntax

string (s_exp...)

Arguments
s_exp

Any Gamma or Lisp expression.

Returns

A string which is the concatenation of all of the arguments.

Description

This function constructs a string by concatenatinggtiec names of all of the arguments. Any
argument that can be evaluated will be. No separation is provided between arguments in the resulting
string.

Example

Gamma>string("A list: " list(#a,#b,#c), " and a sum: "2 + 3);
"A list: (a b c) and a sum: 5"
Gamma>

See Also

format

150

stringc

stringc — constructs a string in Lisp-readable form,

Syntax

stringc (s_exp...)

Arguments
s_exp

Any number of expressions.

Returns

A string which is the concatenation of all of the arguments.

Description

This function is identical to thetring function, except that the result is produced in a form which is
guaranteed to be in Lisp-readable form. This means that special characters within strings and symbols
will be escaped appropriately for the reader, and that new-line, form-feed, and tab characters are
translated into their \n, \f, and \t equivalents.

Example

Gamma>string(#my, #symbol);

"mysymbol"

Gamma>stringc(#my, #symbol);

"mysymbol"

Gamma>stringc("A list: " list(#a,#b,#c), " and a sum: "2 + 3);
"\"A list: \"(a b ¢)\" and a sum: \"5"

Gamma>

See Also

string

151

string_file_buffer

string_file_buffer — queries a string file for its internal buffer.
Syntax

string_file_buffer (string_file)

Arguments

string_file

A file which points to an in-memory string, created by a calbp@n_string

Returns

The characters remaining to be read within the string file.

Description

This function queries a string file for its internal buffer.

Example
Gamma>a = open_string("my false file");
#<File:"String">
Gamma>read_n_chars(a,3);
#Hmy }
Gamma>string_file_buffer(a);
"false file"
Gamma>

See Also

open_string

152

string_split

string_split — breaks a string into individual words.
Syntax

string_split (string , delimiters , max_words)
Arguments

string

Any character string.
delimiters

A character string containing delimiter characters.
max_words

The maximum number of words to separate.

Returns

A list containing at mostrbax_words + 1) elements, each of which is a string.

Description

This function breaks a string into individual words wherever it finds any one of the characters in the
delimiters string. If max_words is zero or less, there is no limit to the number of words which may
be generated. hax_words is greater than zero, then at masax_words words will be generated. If
there are any characters remaining in the string onae_words words have been generated, then the
remaining characters will be returned as the last element in the result tstitiiters is the empty
string, ", then the input string will be split at any white space.

Example
Gamma>string_split("This is a test",",0);
("This" "is" "a" "test")
Gamma>string_split("This is a test"," ",2);
("This" "is" "a test")
Gamma>string_split("This is a test","ie",0);
("Th" "s " "s a t" "st")
Gamma>string_split("12:05:29",":",-1);
("12" "05" "29")
Gamma>

See Also

strchr , strrchr , strstr

153

string_to_buffer

string_to_buffer — creates a buffer object from a string.

Syntax

string_to_buffer (string)

Arguments

string

The string to be converted to a buffer.

Returns

A buffer whose contents are those of #igng

Description

This function creates a buffer object from a string. The buffer and string are mapped to different memory
areas, so that alterations to one do not affect the other.

Example

Gamma>a = "rhino";

"rhino"

Gamma>b = string_to_buffer(a);
#{rhino}

Gamma>a = "hippo";

"hippo"

Gamma>b;

#{rhino}

Gamma>

See Also

buffer_to_string

154

strcvt

strevt — converts the Windows character set of a string.
Syntax

strevt (- string , from ?, to ?)

Arguments

string

The string that you need to convert.
from

An optional argument specifying the Windows code page identifier for the local character set. If no
value is entered, the default@s for your system’s code page identifier.

to
An optional argument specifying the Windows code page identifier of the new character set for the
string. If no value is entered, the defaul65001 , for UTF8.

Returns

The converted string.

Description

This function lets Windows users convert the local character set for a given string into a different
character set. In many cases, this function is used to convert the local character set into UTF8, and can
thus be run with a singlstring argument, using the defaults for them andto arguments. A list of

valid Windows code page identifiers for various character sets can be found online in the Microsoft
documentation, or by searching on the texnde page identifiers "

@ In QNX or Linux this function simply returns th&tring argument.

155

strlen

strlen — counts the number of characters in a string.

Syntax

strlen (string)

Arguments

string

A string.

Returns

The number of characters in te&ing

Example

Gamma>strlen("Hello");
5

Gamma>strlen("How about a cup of coffee?");

26
Gamma>

See Also
length

156

strncmp , strnicmp

strncmp, strnicmp — compare two strings and return a numeric result.

Syntax

strncmp (stringl |, string2 , length)
strnicmp (stringl , string2 , length)

Arguments
stringl

The first string.
string2

The second string.
length

The maximum length of the comparison.

Returns

An integer < 0 ifstringl s lexically less tharstring2 to the given length; O if the two strings are
equal up to the given length; and an integer > étiflngl is lexically greater thastring2 up to the
given length.

Description

Thestrncmp function compares two strings and returns a numeric result indicating whether the first
string is lexically less than, greater than, or equal to the second string. The comparison will carry on for
not more tharlength characters of the shorter string. Tétenicmp function is the case-insensitive
version ofstrncmp .

Example

Gamma>strncmp("hello","helicopter”,4);
3

Gamma>strncmp("hello","help",3);

0

Gamma>strncmp("Hello","help”, 3);
-32

Gamma>strnicmp("Hello","help”, 3);

0

Gamma>

See Also

strcmp |, stricmp

157

strrev

strrev. — reverses the order of characters in a string.

Syntax

strrev (string)

Arguments

string

A string.

Returns

A new string which is the reverse of the given string.

Description

Automatic, full featured, palindrome creator.

Example

Gamma>strrev("l Palindrone 1);

"l enordnilaP "

Gamma>strrev("Madam, I'm adam");
"mada m’l ,madaM"
Gamma>strrev('123456789");
"987654321"

Gamma>strrev("poor dan is in a droop");
"poord a ni si nad roop"

Gamma>

See Also

strchr , strrchr

158

strstr

strstr — finds the location of a given substring.

Syntax

strstr (stringA , stringB)

Arguments
stringA

A string.
stringB

A string.

Returns

The position ofstringB within stringA , or -1 if stringA does not contaistringB

Description

This function finds the first complete occurrencestofingB within stringA and returns the position
of the starting character of the match wittstningA . The first character istringA is numbered
zero. If no match is found, -1 is returned.

Example

Gamma>strstr("Acme widgets","get");
8

Gamma>strstr("Acme widgets","wide");
-1

Gamma>

See Also

strchr , strrchr

159

substr

substr — returns a substring for a given location.

Syntax

substr (string , start_char , length)

Arguments

string

A string.
start_char

The position number of the first character of the substring.
length

The length of the substring.

Returns

A new string which is a substring of the inpstting

Description

This function returns a substring of the input string starting asthe_char position and running

for length characters. The first character in the string is numbered zestartf char is greater

than the length of the string, the function returns an empty strirggatt_char is negative, it is

indexed from the end of the string. If it is negative and greater than the length of the string, it is treated as
zero—the beginning of the string.

If there are fewer characters thiemgth in the string, or iflength is -1, then the substring contains
all characters fronstart_char to the end of the string.

Example

Gamma>substr("Acme widgets",7,3);

"dge"

Gamma>substr("Acme widgets",9,-1);
"ets"

Gamma>substr("Acme widgets",-7,4);
"widg"

Gamma>substr("Acme widgets",-30,4);
"Acme"

Gamma>

See Also

strchr , strrchr , string , strstr

160

tolower

tolower — converts upper case letters to lower case.

Syntax

tolower (string | number)

Arguments

string
Any string.
number

Any number.

Returns

Strings with all letters converted to lower case. Numbers in integer form. Floating point numbers are
truncated.

Description

This function converts any upper case letters in a string to lower case. It will also convert numbers to
their base 10 integer representation.

Example

Gamma>tolower("Jack works for IBM.");

"jack works for ibm."
Gamma>tolower("UNICEF received $150.25.");
"unicef received $150.25."
Gamma>tolower(5.3);

5

Gamma>tolower(0b0110);

6

Gamma>

See Also

toupper

161

toupper

toupper — converts lower case letters to upper case.

Syntax

toupper (string | number)

Arguments

string
Any string.
number

Any number.

Returns

Strings with all letters converted to upper case. Numbers in integer form. Floating point numbers are
truncated.

Description

This function converts any lower case letters in a string to upper case. It will also convert numbers to
their base 10 integer representation.

Example
Gamma>toupper("Jack works for IBM.");
"JACK WORKS FOR IBM."
Gamma>toupper("UNICEF received $150.25.");
"UNICEF RECEIVED $150.25."
Gamma>toupper(5.3);
5
Gamma>toupper(0b0110);
6
Gamma>

See Also

tolower

162

VIl. Data Type Conversion

Table of Contents

163

bin
bin — converts numbers into binary form.

Syntax

bin (number)

Arguments

number

Any number.

Returns

An integer number in binary format.

Description

This function casts any number to an integer, and returns it in a binary representation. Floating point
numbers are truncated.

Example
Gamma>bin(12);
0b1100
Gamma>bin(12.9342);
0b1100
Gamma>bin(0x3b);
0b00111011
Gamma>bin(00436);
0b000100011110
Gamma>

See Also

dec, hex, oct

164

char

char — generates an ASCII character from a number.

Syntax

char (number)

Arguments

number

Any number. This is cast to an integer between 0 and 255. Negative numbers are treated as unsigned
2’s complement integers.

Returns

A character string with one character which is the character representation of the ASCII value given as
the argument.

Description

This function generates the string representation of an ASCII character value.

Example

Gamma>char (65);
npn

Gamma>char (188);
o

Gamma>char (350.25);
A

Gamma>char (-12);

0
Gamma>

See Also

char_val

165

char_val

char_val — generates a character’s numeric value.

Syntax

char_val (char_as_string)

Arguments

char_as_string

A string.

Returns

The ASCII (numeric) value of the first character in the argument string.

Description

Generates the ASCII (numeric) representation of the first character in a string.

Example
Gamma>char_val ("A");
65
Gamma>char_val ("q");
113
Gamma>char_val ("hope for all");
104
Gamma>char_val ("3");
51
Gamma>char_val ("8");
-12
Gamma>

See Also

char

166

dec

dec — converts numbers into base-10 form.

Syntax

dec (number)

Arguments

number

Any number.

Returns

An integer number in decimal format.

Description

This function casts any number to an integer, and returns it in decimal (base-10) representation.

Example
Gamma>dec(0b1100);
12
Gamma>dec(0x3b);
59
Gamma>dec(45.95);
45
Gamma>dec(A’);
65
Gamma>

See Also

bin , hex, oct

167

hex

hex — converts numbers into hexadecimal form.

Syntax

hex (number)

Arguments

number

Any number.

Returns

An integer number in hexadecimal format.

Description

This function casts any number to an integer, and returns it in a hexadecimal representation. Floating
point numbers are truncated.

Example

Gamma>hex (12);

0xc

Gamma>hex (12.9341);
Oxc

Gamma>hex (0b111011);
0x3b

Gamma>hex (r);

0x72

Gamma>

See Also

bin , dec, oct

168

INt
int — converts to integer form.

Syntax

int (s_exp)

Arguments
s_exp

Any Gamma or Lisp expression.

Returns

An integer representation of the argument.

Description

This function converts the argument to an integer. Floating point numbers are truncated. Binaries,
hexadecimals and characters convert to decimal integers. In strings, if the first character(s) are numerical,
they will be converted to an integer. Otherwise, a string will return zero. All other expression types
generate zero.

Example
Gamma>int(5.5);
5
Gamma>int(0xc);
12
Gamma>int(0b111011);
59
Gamma>int('h’);
104
Gamma>int("63 hello");
63
Gamma>int("hello 63");
0
Gamma>int(random());
0
Gamma>

See Also

Literals

169

number

number — attempts to convert an expression to a number.

Syntax

number (s_exp)

Arguments
S_exp

Any Gamma or Lisp expression.

Returns

A numeric representation of ttee exp if possible, otherwise zero.

Description

The function attempts to convert its argument to a number. Integer and floating point values remain
untouched. String arguments are converted to numbers by attempting to read a number from the string
starting at the first character in the string. The longest legal number at the beginning of the string is used.
All other data types return zero. If possible, the result will be an integer. If the result cannot be
represented as an integer, a real (floating point) number is returned.

Example
Gamma>number(5);
5
Gamma>number("5.4m");
5.4000000000000003553
Gamma>number("'m5.4");
0
Gamma>number(#a);
0
Gamma>

170

oct

oct — converts numbers into octal form.

Syntax

oct (number)

Arguments

number

Any number.

Returns

An integer number in octal format.

Description

This function casts any number to an integer, and returns it in an octal representation. Floating point
numbers are truncated.

Example

Gamma>oct(12);

Ool4
Gamma>oct(12.86223);
Ool4

Gamma>oct(0x3b);

0073
Gamma>oct(0b0101101);
0055

Gamma>

See Also

bin , dec, hex

171

symbol

symbol — constructs a symbol from a string.

Syntax

symbol (string)

Arguments

string

A string.

Returns
A symbol.

Description

This function constructs a symbol whose name is the same a¢rihg , and places that symbol into
the symbol table. Subsequent calls to this function with the sarmgy ~ will result in the same symbol,
preserving the uniqueness of the symbol. Special characters may be included in the symbol name.

Example

Gamma>symbol("Strange symbol");
Strange\ symbol

Gamma>Strange\ symbol;

5
Gamma>symbol(string(“item",2+3));
item5

Gamma>

172

VIIl. Math

Table of Contents

ACOS , ASIN , ALAN , ALANZ ...c.ecicece et a et et e st e e e s e e s e s rese e te e e e e e erenrenrenes 174
= L 1o [L0 AR o | 175
(=1 [0 RN o [0] RN o To TG o) "o X 176
(o3| OO OO OSSR SRRSO RSRRPRPO 177
(o3 =1 [0 [N o1 {0 178
(o7 o1 A=Y= A oo] o | SO PR RSP 179
(oT0 TSI 1 TR 7= o TSRS 180
DIV et ettt e e e bt b e ebesbe et et eaeeheeheebebanteateaeeReeteebestesenteheeheebeetebeteneeteatentees 181
(23 o PRSP RUPTURORTPRPI 182
10T SRS 183
Fo o TR o To i K0 IR o T | o S 184
=0 TSR PPR 185
010 TP RPPPR 186
7= 10 o (o] o o TR 187
(0 11 o S 188
L1 A = 1 o [o TSSO PSPPI 189
L0 | PP 190
50 | PP 191

173

acos , asin , atan , atan2

acos, asin, atan, atan2 — perform trigonometric arc functions.

Syntax

acos (number)
asin (number)
atan (number)
atan2 (number, number)

Arguments

number

Any integer or real number. Non-numbers are treated as zero.

Returns

The result of the arc trigonometric function in radians.

Description

These functions perform the arc trigonometric functions arc cosine, arc sine, arc tangent, and arc tangent
with 2 arguments. Thatan2 function is equivalent to:

atan(y / x);

except thattan2 is able to correctly handle x and y values of zero.

Example

Gamma>acos (0.5);
1.0471975511965978534
Gamma>asin (0.5);
0.52359877559829892668
Gamma>atan (2);
1.107148717794090409
Gamma>atan2 (1, 2);
0.46364760900080609352
Gamma>atan2 (1, 0);
1.570796326794896558
Gamma>atan2 (0, 2);

0

Gamma>

See Also

sin , cos, tan

174

and, not , or

and, not, or — are the same as the corresponding Logical Operators.

Syntax

and (! condition [! condition 1]...)
not (condition)

or (! condition [! condition 1]...)

Arguments

condition

Any Gamma or Lisp expression.

Returns

Non-il or nil

Examples

Gamma>not(6);
nil
Gamma>not(nil);
t

Gamma>and(5<6,string("hi ","there"));
"hi there"

Gamma>and(5>6,string("hi ","there"));
nil

Gamma>x = 5;

5

Gamma>y = 6;

6

Gamma>or(x == 3, y == 0);
nil

Gamma>or(x == 3, y == 6);
t

Gamma>

See Also

Logical Operators

175

band, bnot , bor , bxor

band, bnot, bor, bxor — perform bitwise operations.

Syntax

band (number, number)
bnot (number)

bor (number, number)
bxor (number, number)

Arguments

number

Any number. Non-numbers are treated as zero.

Returns

An integer which is the result of the particular operation.

Description

The binary operations cast their arguments to integers, and then perform bitwise operations to produce an
integer result.

+ band bitwise AND

« bnot bitwise NOT (inversion of all bits in a 32-bit word)
+ bor bitwise OR

« bxor bitwise exclusive OR (XOR)

Example
Gamma>band(7,5);
5
Gamma>bnot(7);
-8
Gamma>bor(7,5);
7
Gamma>bxor(7,5);
2
Gamma>

See Also

Bitwise Operators

176

ceil
ceil —rounds a real number up to the next integer.

Syntax

ceil (number)

Arguments

number

Any number. Non-numbers are treated as zero.

Returns

The smallest integer that is greater than or equal tothmeber .

Description

This function has the effect of rounding real numbers up to the next integer. Integers are unaffected.

Example

Gamma>ceil(1.1);
2
Gamma>ceil(-1.1);
-1

Gamma>ceil(4);

4

Gamma>

See Also

floor ,round

177

cfand , cfor

cfand, cfor — performand andor functions with confidence factors.

Syntax
cfand (! s_exp[! s_exp]..)
cfor ' s_exp[,! s_expl..)

Arguments

condition

Any Gamma or Lisp expression.

Returns

A confidence factor, an integer between 0 and 100.

Description

These functions determine the confidence factor of one or more expregsamts. returns the lowest
confidence factor among all of the passeaditions , while cfor returns the highest confidence
factor among theonditions

Example

Gamma>a = 3;

3

Gamma>b = 4;

4
Gamma>set_conf(a,50);
50
Gamma>set_conf(b,10);
10

Gamma>cfand(a,b);

10

Gamma>cfor(a,b);

50

Gamma>

See Also

conf

178

conf , set_conf

conf, set_conf — query and set confidence factors.

Syntax

conf (s_exp)
set_conf (s_exp, number|s_exp)

Arguments
S_exp

Any Gamma or Lisp expression.
number |s_exp

Any number, or any expression that evaluates to a number. Non-numbers are treated as zero.

Returns

The confidence factor of theumber ors_exp .

Description

All Gamma and Lisp expressions in Gamma have an associated confidence factor between 0 and 100
which may be queried using tleenf function. This is typically 100, or fully confident. Exceptions

arise only when the user explicitly sets the confidence to another value, or when the DataHub provides a
confidence value to the interpreter. T$&t_conf function will set the confidence of an expression to

any numerical value, though legal values are between 0 and 100. Numbers less than 0 indicate
indeterminate confidence. Numbers greater than 100 will produce strange results.

Example
Gamma>x = 3;
3
Gamma>set_conf(x, 40);
40
Gamma>conf(x);
40
Gamma>

179

COS, Sin , tan

cos, sin, tan — perform trigonometric functions.

Syntax

cos (number)
sin (number)
tan (number)

Arguments

number

Any number in radians. Non-numbers are treated as zero.

Returns

The result of the trigonometric functions cosine, sine and tangent.

Example
Gamma>cos(8);
-0.14550003380861353808
Gamma>sin(.8);
0.71735609089952279138
Gamma>tan(.5);
0.54630248984379048416
Gamma>

See Also

asin , acos , atan , atan2

180

div
div — divides, giving an integer result.

Syntax

div (number, number)

Arguments

number

Any number.

Returns

The integer result of the division of the first argument by the second.

Description

This function is equivalent tdlpor (number/number)) .

Example

Gamma>div(12,5);

2
Gamma>div(23423,899);
26

Gamma>

See Also

Arithmetic Operators

181

exp

exp — calculates an exponent of the logarithmic base (e).

Syntax

exp (number)

Arguments

number

Any number.

Returns

The natural logarithmic base, e, raised to the power oftiraber .

Example

Gamma>exp(0);

1

Gamma>exp(3);
20.085536923187667924
Gamma>

182

floor

floor — rounds a real number down to its integer value.

Syntax

floor (number)

Arguments

number

Any number. Non-numbers are treated as zero.

Returns

The largest integer which is less than or equal torthenber .

Example
Gamma>floor(1.2);
1
Gamma>floor(1.9);
1
Gamma>floor(-1.2);
-2
Gamma>floor(-1.9);
-2
Gamma>

See Also

ceil ,round

183

log , log10 , logn

log, logl10, logn — calculate logarithms.

Syntax

log (number)
log10 (number)
logn (base, number)

Arguments

number

Any numeric value.
base

The logarithmic base.

Returns

Forlog , the natural logarithm of the argument. Fog10 , the base 10 logarithm of the argument. For
logn , the logarithm of the number in the given base.

Description

Non-numeric arguments are treated as zero. lllegal values for the arguments will cause an error.

Example
Gamma>log(2);
0.69314718055994528623
Gamma>log10(2);
0.30102999566398119802
Gamma>logn(8,2);
2.9999999999999995559
Gamma>

184

neg

neg — negates.

Syntax

neg (number)

Arguments

number

Any number.

Returns

The negative of theaumber .

Example
Gamma>neg(5);
-5
Gamma>neg(-5);
5
Gamma>

185

pow

pow — raises a base to the power of an exponent.

Syntax

pow (base, exponent)

Arguments

base

Any number.
exponent

Any number.

Returns

The result of raising thbase to the givenexponent .

Description

Calculates a base to the power of an exponent. Non-numbers are treated as zero.

Example
Gamma>pow(2,3);
8
Gamma>pow(12,2);
144
Gamma>pow(5.2,4.75);
2517.7690015606849556
Gamma>

186

random

random — generates random numbers from 0 to 1.

Syntax

random ()

Arguments

none

Returns

A floating point random number which is greater than or equal to 0 and is less than 1.

Description

This function uses a pseudo-random number generator to generate a non-repeating sequence of numbers
randomly distributed across the range of 0 <= x < 1.

The random number generator should be seeded prior to being called by uséeq ttandom
function. If the same seed is givendet_random , the same random sequence will result every time.

Example

#!/usr/local/bin/gamma -d

//ISeed random number generator to clock setting:
set_random(clock());

//[Randomly generate an integer from one to six:
function one_to_six ()
{
floor(6 * random()) + 1;
}
/IPrinc the results:
X = one_to_six();
princ(x, "\n");

See Also

set_random

187

round

round — rounds a real number up or down to the nearest integer.

Syntax

round (number)

Arguments

number

A number.

Returns

The nearest integer to tmeimber .

Description

This function rounds its argument to the nearest integer. Values of .5 are rounded up to the next highest
integer.

Example

Gamma>round(8.73);
9
Gamma>round(2.21);
2
Gamma>round(5.5);
6
Gamma>round(5.49);
5

Gamma>

See Also

ceil |, floor

188

set_random

set_random — startsrandom at a different initial number.

Syntax

set_random (integer_seed)

Arguments

integer_seed

Any integer number.

Returns
t

Description

This function seeds the random number generator to start the pseudo-random sequence at a different
number. The samiateger_seed will always produce the same pseudo-random sequence.
set_random is commonly called with an unpredictablgeger_seed , such as the result of

clock

Example

Gamma>set_random(95);
t

Gamma>random();
0.26711518364027142525
Gamma>random();
0.8748339582234621048
Gamma>random();
0.30958001874387264252
Gamma>set_random(clock());
t

Gamma>random();
0.41952831624075770378
Gamma>random();
0.99278739839792251587
Gamma>random();
0.42997436970472335815
Gamma>

See Also

random

189

sqr
sqr — finds the square of a number.

Syntax

sqr (number)

Arguments

number

Any number.

Returns

The square of thaumber .

Example

Gamma>sqr(11);

121

Gamma>sqr(32.73);
1071.2528999999997268
Gamma>

See Also
sqrt

190

sqrt

sqrt — finds the square root of a number.

Syntax

sqrt (number)

Arguments

number

Any number.

Returns

The square root of theumber .

Example

Gamma>sqrt(9);

3

Gamma>sqrt(144);

12

Gamma>sqrt(95);
9.7467943448089631175
Gamma>

See Also

sgr

191

Index

Symbols

1,32
1=, 29
#,33
$,34
%, 21
%=, 23
&, 25
&&, 32
&=, 23
', 33
(,30
(0,20

), 30

* 21
*=, 23
+,21
++,31
+++,31
+=,23
» 30,33
-, 21

-, 31
-, 31
-=,23
.27
27
/,21
/=, 23
=, 22
=, 22
<, 29
<<, 25
<<=,23
<=,29
=22
==,29
>, 29
>=,29
>> 25
>>=,23
?:,35
@,33
\,34

N 25
n=, 23
_all_tasks_11
_atexit_functions_11

_auto_load_alist 11
_case_sensitive 11
_commasplice_11
comma]l1
_current_input_11
_debug_11

_eof ,11

_eol ,11
_error_stack_11
_eval_silently_11
_eval_stack 11
_event_11
_fixed_point_]11
qui,11
_Qui_version_]11
_ipc_file_,11
_jump_stack_11
_last_error_11
_load_extensions 11, 95
_os ,11
_0s_release 11
_0s_version_11
_require_path_11, 95
_timers_11
_undefined_11
_unwind_stack_11
‘, 33,94

|,25

I,32

~,25

acos174
alist_p,5
and,175
append;104
aref,105
array,106
array_p5
array_to_list107
aset, 108
asin,174
assoc109
assoc_equall,09
atan,174
atan2,174
autotrace_p5

192

backquote33, 94
band,176
bdelete 135
bin, 164
binsert,136
bnot, 176
bor,176
breakpoint_p5
bsearch110
buffer, 137
buffer_p,5

buffer_to_string;138

builtin_p,5
bxor, 176

caaar111
caadr111
caar,111
cadar111
caddr,111
cadr,111

call, 60
car,111
cdaar111
cdadr,111
cdar,111
cddar,111
cdddr,111
cddr,111
cdr,111

ceil, 177
cfand,178
cfor, 178
char,165
char_val 166
class,14, 37
class_add_cvaBl
class_add_ivag2
class_name53
class_of64
class_p5
collect, 14
condition,39
conf,179
cons,112
constant_p5
cons_p5
copy,113
copy_treell4

cos,180

dec,167
defclassb5
defmacro66
defmacroe66
defmethod68
defun,67
defune 67
defvar,69
delete, 115
destroy,70
destroyed_p5
difference, 116
div, 181
do,14

else,14

eq,71
equal,71
error,73

eval, 74
eval_list,75
eval_string,76
exp,182

file_p,5

find, 117
find_equal 117
fixed_point_p5
floor, 183

for, 14, 40

force, 77
forceq,77
forceqq,77
format, 139
funcall, 78
function, 14, 41
function_argsy9
function_body80
function_name81
function_p,5

gamma,l7
getprop,82

has_cvar83
has_ivarg84
hex,168

if, 14, 43

insert,118
instance 90
instance_p5
instance_vars35
int, 169
intersection119
int_p,5
is_class_membe86
ivar_type,87

length,120
list, 121
listq, 121
list_p,5
list_to_array122
load,95
load_lisp,95
local, 14, 45
log, 184
log10,184
logn, 184
long_p,5

macro,38
macro_p5
make_array123
make_bufferl41
method,14, 47
method_p5

nappendl24
neg,185
new, 90

nil, 16

nil_p, 5
noeval , 1,11
not,175
nremovel125
nreplace 126
nreplace_equal,26
nth_car127
nth_cdr,127
number170
number_p5

oct,171
open_string142
optional , ?,11
or,175

parent_clas91
parse_string143
phgammal?7
pow, 186
predicateb
print_stack92
progl,49
progn,49
properties93
protect unwind50

quote,94

random,187
raw_memory145
real_p,5
registered_p5
remove

Gamma]128
require,95
required_file 95
require_lisp95
rest, ..., 11

194

reverse129
round,188
rplaca,130
rplacd,130

set,97
setprop98
setprops99
setq,97
setqq97
set_confl79
set_random]89
shell_match146
shorten_arrayl31
shorten_buffer147
SIGABRT, 11
SIGBUS,11
SIGCHLD, 11
SIGCONT,11
SIGDEV, 11
SIGEMT, 11
SIGFPE11
SIGHUPR,11
SIGILL, 11
SIGINT, 11
SIGIO, 11
SIGKILL, 11
SIGNAL_HANDLERS,11
SIGPIPE 11
SIGPOLL,11
SIGPWR,11
SIGQUIT, 11
SIGSEGV,11
SIGSTOP11
SIGSTST,11
SIGSYS,11
SIGTERM,11
SIGTTIN, 11
SIGTTOU, 11
SIGURG,11
SIGUSR1,11
SIGUSR2,11
SIGWINCH, 11
sin, 180
sort,132
sqr,190
sqrt,191
strchr,148
strcmp,149
strcvt, 155

stricmp,149
string,150
stringc,151
string_file_buffer152
string_p,5
string_split, 153
string_to_buffer154
strlen,156
strncmp,157
strnicmp,157
strrchr,148
strrev,158
strstr,159
substr,160
switch,51
symbol,172
symbol_p5
sym_alist_pb5

t, 15

tan,180
tolower,161
toupper,162
trap_error,100
true_p,5

try catch,53
type,5

undefined_p5, 8
undefined_symbol_&, 8
union, 133
unwind_protect101

whence 102
while, 14, 55
with, 14, 56

Colophon

This book was produced by Cogent Real-Time Systems, Inc. from a single-source group of SGML files.
Gnu Emacs was used to edit the SGML files. The DocBook DTD and related DSSSL stylesheets were
used to transform the SGML source into HTML, PDF, and QNX Helpviewer output formats. This
processing was accomplished with the help of OpenJade, JadeTeX, Tex, and various scripts and

makefiles. Details of the process are described in our book: Preparing Cogent Documentation, which is
published on-line at

http://developers.cogentrts.com/cogent/prepdoc/bookl.html .
Text written by Andrew Thomas, Mark Oliver, Bob Mcllvride, and Elena Devdariani.

196

	
	Gamma Reference Volume 1
	Table of Contents
	List of Tables
	Chapter 1. What is Gamma?
	Chapter 2. System Requirements
	I. Reference
	Table of Contents
	I. Symbols and Literals
	Table of Contents
	Data Types and Predicates
	
	Predicates
	Syntax
	Arguments
	Returns
	Example

	undefinedp, undefinedsymbolp
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	Literals
	Integers
	Real numbers
	Strings
	Symbols
	Other Data Types

	Predefined Symbols
	

	Reserved Words
	

	t
	Syntax
	Returns
	Description
	Example
	See Also

	nil
	Syntax
	Returns
	Description
	Example
	See Also

	gamma, phgamma
	Syntax
	Options
	Returns
	Description
	Example

	II. Operators
	Table of Contents
	Operator Precedence and Associativity
	
	See Also

	Arithmetic Operators
	Syntax
	Arguments
	Returns
	Description
	Example

	Assignment Operators
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	Binary Operator Shorthands
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	Bitwise Operators
	Syntax
	Arguments
	Returns
	Description
	Examples
	See Also

	Class Operators
	Syntax
	Arguments
	Returns
	Description
	Examples

	Comparison Operators
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	Evaluation Order Operators
	Syntax
	Arguments
	Determine
	Description
	Examples

	Increment and Decrement Operators
	Syntax
	Arguments
	Returns
	Description
	Examples

	Logical Operators
	Syntax
	Arguments
	Returns
	Description
	Examples
	See Also

	Quote Operators
	Syntax
	Arguments
	Returns
	Description
	Examples

	Symbol Character Operators
	Syntax
	Arguments
	Returns
	Description
	Example

	Ternary Operator
	Syntax
	Arguments
	Returns
	Examples

	III. Statements
	Table of Contents
	class
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	condition
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	for
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	function
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	if
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	local
	Syntax
	Arguments
	Returns
	Description
	Example

	method
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	progn, prog1
	Syntax
	Arguments
	Returns
	Description
	Example

	protect unwind
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	switch
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	try catch
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	while
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	with
	Syntax
	Arguments
	Returns
	Description
	Examples
	See Also

	IV. Core Functions
	Table of Contents
	call
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	classaddcvar
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	classaddivar
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	classname
	Syntax
	Arguments
	Returns
	Example
	See Also

	classof
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	defclass
	See

	defmacro, defmacroe
	Syntax
	

	defun, defune,
	See

	defmethod
	See

	defvar
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	destroy
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	eq, equal
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	error
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	eval
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	evallist
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	evalstring
	Syntax
	Arguments
	Returns
	Description
	Example

	force, forceq, forceqq
	Syntax
	Arguments
	Returns
	Description
	See Also

	funcall
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	functionargs
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	functionbody
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	functionname
	Syntax
	Arguments
	Returns
	Example
	See Also

	getprop
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	hascvar
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	hasivar
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	instancevars
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	isclassmember
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	ivartype
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	macro
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	new
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	parentclass
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	printstack
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	properties
	Syntax
	Arguments
	Returns
	Description
	See Also

	quote, backquote
	Syntax
	Arguments
	Returns
	Description
	See

	require, load
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	set, setq, setqq
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	setprop
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	setprops
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	traperror
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	unwindprotect
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	whence
	Syntax
	Arguments
	Returns
	Description
	Example

	V. Lists and Arrays
	Table of Contents
	append
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	aref
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	array
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	arraytolist
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	aset
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	assoc, assocequal
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	bsearch
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	car, cdr, and others
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	cons
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	copy
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	copytree
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	delete
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	difference
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	find, findequal
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	insert
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	intersection
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	length
	Syntax
	Arguments
	Returns
	Example

	list, listq
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	listtoarray
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	makearray
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	nappend
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	nremove
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	nreplace, nreplaceequal
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	nthcar, nthcdr
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	remove
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	reverse
	Syntax
	Arguments
	Returns
	Description
	Example

	rplaca, rplacd
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	shortenarray
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	sort
	Syntax
	Arguments
	Returns
	Description
	Example

	union
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	VI. Strings and Buffers
	Table of Contents
	bdelete
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	binsert
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	buffer
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	buffertostring
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	format
	Syntax
	Arguments
	Returns
	Description
	Example

	makebuffer
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	openstring
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	parsestring
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	rawmemory
	Syntax
	Arguments
	Returns
	Example

	shellmatch
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	shortenbuffer
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	strchr, strrchr
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	strcmp, stricmp
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	string
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	stringc
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	stringfilebuffer
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	stringsplit
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	stringtobuffer
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	strcvt
	Syntax
	Arguments
	Returns
	Description

	strlen
	Syntax
	Arguments
	Returns
	Example
	See Also

	strncmp, strnicmp
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	strrev
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	strstr
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	substr
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	tolower
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	toupper
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	VII. Data Type Conversion
	Table of Contents
	bin
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	char
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	charval
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	dec
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	hex
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	int
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	number
	Syntax
	Arguments
	Returns
	Description
	Example

	oct
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	symbol
	Syntax
	Arguments
	Returns
	Description
	Example

	VIII. Math
	Table of Contents
	acos, asin, atan, atan2
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	and, not, or
	Syntax
	Arguments
	Returns
	Examples
	See Also

	band, bnot, bor, bxor
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	ceil
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	cfand, cfor
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	conf, setconf
	Syntax
	Arguments
	Returns
	Description
	Example

	cos, sin, tan
	Syntax
	Arguments
	Returns
	Example
	See Also

	div
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	exp
	Syntax
	Arguments
	Returns
	Example

	floor
	Syntax
	Arguments
	Returns
	Example
	See Also

	log, log10, logn
	Syntax
	Arguments
	Returns
	Description
	Example

	neg
	Syntax
	Arguments
	Returns
	Example

	pow
	Syntax
	Arguments
	Returns
	Description
	Example

	random
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	round
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	setrandom
	Syntax
	Arguments
	Returns
	Description
	Example
	See Also

	sqr
	Syntax
	Arguments
	Returns
	Example
	See Also

	sqrt
	Syntax
	Arguments
	Returns
	Example
	See Also

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W

	Colophon

