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i. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;

iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;
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Termination. Without prejudice to any other rights, Cogent may terminate this EULA if you fail to comply with the terms and conditions of
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11. GOVERNING LAW: This Software License Agreement is governed by the laws of the Province of Ontario, Canada. You irrevocably attorn
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Chapter 1. Introduction

1.1. Why Gamma and Photon?

Gamma was originally written to develop applications in the QNX operating system. As an alternative to
C, Gamma offers fast memory management, an open-event model, and run-time modifiability. Gamma
draws upon the power of the QNX operating system in ways that C is not able to.

With the introduction of Photon in 1995, Gamma was expanded with an optional Photon API to take full
advantage of and even extend Photon’s capabilities. Today Gamma stands out as the only dynamic
language available for Photon, offering a wide range of enhancements such as sub-classing of widgets,
improved event-handling, highly-flexible callbacks, and code re-usability.

1.2. Assumptions about the Reader

To use Gamma in Photon, you should have some familiarity with Gamma, Photon, and the Photon
Application Builder (PhAB). Experience in object-oriented programming will also be useful.

1.3. System Requirements

ONX 6

« OQONX 6.1.0 or later.
» Photon 2.

QNX 4

+ QNX 4.23A or later.
« Photon 1.14 or later.

1.4. Cogent Product Integration

Cogent products work together to support real-time data connectivity in Windows, Linux, and QNX.

They can be dynamically integrated as a group of modules where each module connects to any other
module(s) as needed. New modules can be added and existing modules reconfigured or modified, all
during run-time. Data in any module of the system can be collected and redistributed to any other module
via the Cascade DataHub and Cascade Connect. Communication with field devices is provided by one of
several Cogent Device Drivers. Historical records of unlimited size can be maintained and queried with
the Cascade Historian, and ASCII text files can be logged with the Cascade TextLogger.

Custom programs written in C or C++ can interface with the system, using the Cogent C API or the
DataHub APIs for C++, Java, and .NET. In addition, Cogent’s own dynamically-typed object-oriented
programming language, Gamma, is fully compatible with all modules. User interfaces can be created in
Gamma, which supports Photon in QNX and GTK in Linux.
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1.5. Where can | get help?
If you are having problems with a Cogent product, first check the Troubleshooting Guide. If you can't
find the answer there, you can contact Cogent Real-Time Systems, Inc. for technical support for any
product you have purchased.
. Email: <support@cogent.ca >
« Phone: 1-888-628-2028
« Fax: (905) 702-7850



Chapter 2. Classes

2.1. Explanation of Class Reference Pages

Hereis a sample class reference page.

A Typical Class Reference Page

SampleClass — A one-line description of the class appears here.

Synopsis

Here you will find a class synopsis, including the class name, parent name, and the instance variables.

@ In all of these reference pages, links to Gamma documentation work for the HTML and QNX
Helpviewer editions of this book. Links to QNX Helpviewer documentation work for the QNX

Helpviewer edition only.
class PtSample ParentClass(Link to Gamma documentation.)

{
sample_variable_1; //PtSampleVariableOne (Link to QNX Helpviewer.)

sample_variable_2; //lunsigned long (Link to QNX Helpviewer.)

Base Classes

This shows the base class hierarchy from which this class came. The hierarchy descends from left to
right, and is linked to Gamma documentation:

PtWidget <-- PtBasic <--PtContainer <-- SampleClass

Description

Here you will find a more detailed description of the class, although for many classes a complete
description is beyond the scope of this document. In those cases, a note and a link will refer you to the
Photon documentation.

Instance Variables

There are three kinds of instance variables: (1) those with mutually exclusive constants, (2) those that can
take zero or more constants (inclusive), and (3) those with no constants. Examples of each of the three
are given below. Those that have constants list the constant names with either a brief description or a
one-word title of each constant.

exclusive_constants_variable (Linked to QNX Helpviewer when possible.)

A brief description of the variable may appear here.

This instance variable contains exactly one of the following constants:

Constant Description
CONSTANT_NAME1 Constant title or brief description.
CONSTANT_NAME2 Constant title or brief description.




A Typical Class Reference Page

inclusive_constants_variable (Linked to QNX Helpviewer when possible.)
A brief description of the variable may appear here.

This instance variable may contain zero or more of the following constants:

Constant Description
CONSTANT_NAME1 Constant title or brief description.
CONSTANT_NAME2 Constant title or brief description.

no_constants_variable (Linked to QNX Helpviewer when possible.)

A brief description of the variable may appear here.

Callbacks

If there are any callbacks associated with this class, their names and a short description will appear here.

Associated Classes

If there are any other classes associated with this class, their names will appear here, linked to the
Gamma documentation.

Methods

For the one or two classes that have a method library, their methods will be displayed here, along with
their respective syntax, arguments, return value, description and examples.

Convenience Functions

If the class has any convenience functions associated with it, they will appear here. Since multiple
functions for one widget generally take the same arguments, all the arguments for the functions are listed
first. There there is a brief summary of each function, including return values.

Example

If the class has any example code, it will appear here.
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2.2. Specifying Widget Flags

The syntax for handling widget flags in Gamma is somewhat unique. What follows is a brief description
of how to set, test, and clear flags on widgets in two different ways. The first is through a non-standard
use of the assignment operator, and the second is through method calls. Following these is a short
discussion on using bitmasks for flags that are not independent. For more examples, see th8ettorial
Test, and Clear Widget Flags the Building Applications - a Tutorial chapter.

2.2.1. Setting Flags
Flags can be set for widget instance variables usingtessignment) operator and the name of the flag.

@ The= operator is used in a unique way in Gamma for setting widget flags. ItidOdsassign a
completely new value to the variable. Rather, it adds or removes the valutagfimthe
variable. The= operator in this context of Gamma has the same effect gs-thaperator in C.

For example, to highlight a pane callPanel, you would set thét HIGHLIGHTED flag in the
Panel.flags variable, as follows.

Gamma>Panel.flags = Pt_HIGHLIGHTED;

256
You can set several flags at once as long as you separate them|bghiheise or) operator. For
example, to sePanel and etch its highlight, you would do this:

Gamma>Panel.flags = Pt_SET | Pt_ETCH_HIGHLIGHT;
514

You can also set flags on a widget by assigning the value dfage variable from another widget.

When doing this, it is possible to mask one or more of the flags, so that they aren’t set on the second
widget. This requires conjoining the variable with negated constant(s) using the & (bitwise and) and ~
(bitwise not) operators. For example, to copy the flags from the example above to another pane called
Pane2 without thePt ETCH_HIGHLIGHT flag or thePt_SET flags on, you could do the following:

Gamma>Pane2.flags = Panel.flags & ~Pt_ETCH_HIGHLIGHT & ~Pt_SET,;
256

2.2.2. Testing Flags

If you need to check a variable to see if a constant flag is set on it or not, you can test it. Testing is done
with the & (bitwise and) operator, the same as in C. However, oncéabse variable has been

conjoined with the constant, that value must be checked to see if it is equaltos is because in

Gamma0 does not have the logical value of false. You have to make an explicit logical test.

For example, to ted?anel andPane2 for Pt_ ETCH_HIGHLIGHT, you could do this:

Gamma>(Panel.flags & Pt_ETCH_HIGHLIGHT) != 0;
t
Gamma>(Pane2.flags & Pt_ETCH_HIGHLIGHT) != 0;
nil

Gamma returns if the flag variable is set, aril if it is not set.

2.2.3. Clearing Flags

Flags are cleared using thens function andhil . You make a cons cell with the flag as its first
element andhil as its second element. This has the effect of giving the flag a valdgliz& using the
&=and~ operators together in C. For example, to clearRheETCH_HIGHLIGHT and
Pt HIGHLIGHTED flags fromPanel, you would do this:

Gamma>Panel.flags = cons(Pt_ETCH_HIGHLIGHT, nil);

(512)

Gamma>Panel.flags = cons(Pt_HIGHLIGHTED, nil);
(256)
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Gamma>(Panel.flags & (Pt_ETCH_HIGHLIGHT | Pt_HIGHLIGHT)) != 0;

nil
Incidentally, thecons function can also be used to set flags. Just cons the flagnstead ohil . For
example, to set thet SET flag onPane2, you could do this:

Gamma>Pane2.flags = cons(Pt_SET,t);

@ .1

Gamma>(Pane2.flags & Pt_SET) != 0;
t

2.2.4. Using Widget Method Calls

As an alternative to using the assignment operator, you can set, test, and clear instance variable flags on
widgets using th&etBit , TestBit , andClearBit methods oPtWidget , which is the parent

widget for all of the Widget Classes. (See PtWidget for more information.) These methods are in the
PhotonWidgets.Isp library, so you must make a call to

require_lisp("PhotonWidgets.Isp") before using them.

Continuing with the example d?anel from above, you could set, test, and clear its
Pt_HIGHLIGHTED flag as follows:

Gamma>require_lisp("PhotonWidgets.Isp");

"<pathname>PhotonWidgets.Isp"

Gamma>Panel.SetBit(#flags, Pt_HIGHLIGHTED);

256

Gamma>Panel.TestBit(#flags, Pt_HIGHLIGHTED);

t

Gamma>Panel.ClearBit(#flags, Pt_HIGHLIGHTED);

(256)

Gamma>Panel.TestBit(#flags, Pt_HIGHLIGHTED);

nil
Using these methods and/or the assignment operator as explained here, you should have no problem
setting flags on most widgets.

2.2.5. Using Bitmasks and cons

Some flags are exclusive, meaning there can be only one of a group of them set at any given time. Setting
one of these flags requires that any others in the group be unset first, but without unsetting those flags on
the variable that are not part of the group. The easy way to do this is to use bitmasks eonisthe

function.

A bitmask consists of all the exclusive flags in the group ORed together. To set a flag, you complyt
to the bitmask. For example, tfRdTrend widget has a variable nametirend_flags , with three
flags that must be set exclusiveRt_ GRID_IS_TRANSLUCENT Rt_GRID_ABOVE_TRENDSand
Rt TRENDS_ABOVE_GRIDIo set, for exampleRt_GRID_ABOVE_TRENDSyou would do this:

Gamma> mask = Rt_GRID_IS_TRANSLUCENT
| Rt_GRID_ABOVE_TRENDS
| Rt_TRENDS_ABOVE_GRID;
1792
Gamma>trend.rttrend_flags = cons(Rt_GRID_ABOVE_TRENDS, mask);
(256 . 1792)
Gamma>(trend.rttrend_flags & Rt_GRID_ABOVE_TRENDS) != 0;
t

Doing this:
cons(flags, mask)

is exactly equivalent to doing this:
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(original & ~mask) | flags

whereoriginal is the original value of the variable. To illustrate what happens at bitwise level, let's
look at two flags on an imaginary variable:

Flag 1 0010000
Flag 2 0001000
Bitmask 0011000

Suppose Flags and2 must be set exclusively from each other. In the example below, the variable has a
few flags set already, including Fldg We want set Flag OFF and Fla@ ON. Using the Bitmask, we

AND the original flags of the variable to the inverse of the bitmask, turning both flags OFF. Then we OR
the result to Fla@ to turn Flag2 ON.

original: 10100010 Flag 1 and other flags are ON, Flag 2 is OFF.
AND ~Bitmask 11001111

results: 10000010 Flag 1 is now OFF.

10000010 The other flags are still ON.
OR Flag 2 00010000

final result: 10010010 Flag 2 is now ON as well.

2.2.6. Using cons : a Summary

Thecons can be used in Gamma in different ways for different purposes. The following table gives a
summary of howcons is used for handling widget flags.

Table 2-1. Usingcons with widget flags.

Gamma Syntax Meaning

widget.variable = flags; widget.variable = (original | flags)
widget.variable = cons(flags, t); widget.variable = (original | flags)
widget.variable = cons(flags, nil); widget.variable = (original & ~flags)
widget.variable = cons(flags, mask); widget.variable = (original & ~mask) | flags

2.3. Specifying Colors

Colors in Gamma are represented by 24 bit hexadecimal numbers rangingXe@®000 to
Oxffffff . The first 8 bits correspond to the red value, the next 8 to the green value, and the last 8 to
the blue value. For exampléx00ff00  would be pure green.

Most people find it easier to think in decimal notation, though, and the red, green, and blue colors are
often assigned values frofh- 255, representing a scale of intensity from black to full color. Gamma
allows for such red/green/blue notation for colors with BggRGBfunction. It converts colors expressed

in red/blue/green decimal notation to a single hexadecimal number. For example:

Gamma>lightblue = PgRGB(185,223,240);
0xb9dffo

To assign this color to a PtWindow named win, and then test the variable, we would do this:

Gamma>win.color = PgRGB(185,223,240);
0xb9dffo;
Gamma>win.color;
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0xb9dffo

In this example, the red value &85 is 0xb9 , the green value dt23 is Oxdf , and the blue value of
240 is 0xfO . To demonstrate this, we can call the functi®gRedValue , PgGreenValue , and

PgBlueValue on the win.color variable to return the values for their respective bits:
Gamma>PgRedValue(win.color);
0xb9
Gamma>PgGreenValue(win.color);
oxdf
Gamma>PgBluePValue(win.color);
0xfo
@ Transparent Although we said that colors in Gamma are represented with 24 bits, internally
they actually are stored as 32 bit numbers. The first 8 bits are always ignored, however, except in

one case--the non-color: transparent, which is represeniexféfff (all 32 bits are on).
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Due to Gamma'’s dynamic structure, and the extra demands of interfacing with the Photon environment,
there are a few precautions that a prudent programmer should take when coding. Failure to observe these
precautions could lead to unpredictable behavior and even crash the Gamma engine.

Instance arguments. Gamma functions that take instances as arguments check their type to confirm that
they are instances. However, in the interests of speed and efficiency, they do not check that the instance
belongs to the class that will work with that particular function. You as the programmer are responsible
for making sure an instance of the correct class has been passed. Otherwise you may see unexpected
behavior in your program.

Callbacks. Throwing an error in a callback can cause failures in subsequent Photon calls. You can
protect your code from callback errors usidtProtectCallbacks , but you will receive only the
first of any error m