6_; Logent

Real-Time Systems Inc.

Documentation Library

Gamma/Photon

Using Gamma™ with the Photon microGUI®,
Version 1.1

Cogent Real-Time Systems, Inc.

August 11, 2010

Gamma/Photon: Using Gamma™ with the Photon microGUI®, Version 1.1

Gamma is the only dynamic language currently available for developing GUIs in the Photon environment. Gamma
enhances Photon and PhAB with easy-to-use callbacks, expanded functionality for reusing widgets, and an
object-oriented syntax.

Published August 11, 2010
Cogent Real-Time Systems, Inc.

162 Guelph Street, Suite 253
Georgetown, Ontario
Canada, L7G 5X7

Toll Free: 1 (888) 628-2028
Tel: 1 (905) 702-7851
Fax: 1 (905) 702-7850

Information Email: info@cogent.ca
Tech Support Email: support@cogent.ca
Web Site: www.cogent.ca

Copyright © 1995-2011 by Cogent Real-Time Systems, Inc.

Revision History

Revision 3.4-1 August 2004

Compatible with Cascade DataHub and Cascade Connect Version 5.0.
Revision 3.3-1 September 2001

Source code compatible across QNX 4 and QNX 6.
Revision 3.2-1 September 2000

Renamed "Gamma/Photon", changed function syntax.

Revision 1.1 March 2000
Edited Widget Classes, expanded Programmer’'s Manual.

Revision beta 1.0 February 2000
Expanded existing function references, added class references and Programmer’'s Manual.

Copyright, trademark, and software license information.

Copyright Notice

© 1995-2011 Cogent Real-Time Systems, Inc. All rights reserved.

Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written consent of Cogent Real-Time Systems, Inc.

Cogent Real-Time Systems, Inc. assumes no responsibility for any errors or omissions, nor do we assume liability for damages resulting from the
use of the information contained in this document.

Trademark Notice

Cascade DataHub, Cascade Connect, Cascade DataSim, Connect Server, Cascade Historian, Cascade TextLogger, Cascade NameServer, Cascade
QueueServer, RightSeat, SCADALisp and Gamma are trademarks of Cogent Real-Time Systems, Inc.
All other company and product names are trademarks or registered trademarks of their respective holders.

END-USER LICENSE AGREEMENT FOR COGENT SOFTWARE

IMPORTANT - READ CAREFULLY: This End-User License Agreement ("EULA") is a legal agreement between you (either an individual or a
single entity) and Cogent Real-Time Systems Inc. ("Cogent") of 162 Guelph Street, Suite 253, Georgetown, Ontario, L7G 5X7, Canada (Tel:
905-702-7851, Fax: 905-702-7850), from whom you acquired the Cogent software product(s) ("SOFTWARE PRODUCT" or "SOFTWARE"),
either directly from Cogent or through one of Cogent’s authorized resellers.

The SOFTWARE PRODUCT includes computer software, any associated media, any printed materials, and any "online" or electronic
documentation. By installing, copying or otherwise using the SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA. If you
do not agree with the terms of this EULA, Cogent is unwilling to license the SOFTWARE PRODUCT to you. In such event, you may not use or
copy the SOFTWARE PRODUCT, and you should promptly contact Cogent for instructions on return of the unused product(s) for a refund.

SOFTWARE PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by copyright laws and copyright treaties, as well as other intellectual property laws and treaties. The
SOFTWARE PRODUCT is licensed, not sold.

1. EVALUATION USE: This software is distributed as "Free for Evaluation”, and with a per-use royalty for Commercial Use, where "Free for
Evaluation" means to evaluate Cogent’s software and to do exploratory development and "proof of concept" prototyping of software
applications, and where "Free for Evaluation" specifically excludes without limitation:

i. use of the SOFTWARE PRODUCT in a business setting or in support of a business activity,

ii. development of a system to be used for commercial gain, whether to be sold or to be used within a company, partnership, organization
or entity that transacts commercial business,

iii. the use of the SOFTWARE PRODUCT in a commercial business for any reason other than exploratory development and "proof of
concept" prototyping, even if the SOFTWARE PRODUCT is not incorporated into an application or product to be sold,

iv. the use of the SOFTWARE PRODUCT to enable the use of another application that was developed with the SOFTWARE PRODUCT,

v. inclusion of the SOFTWARE PRODUCT in a collection of software, whether that collection is sold, given away, or made part of a
larger collection.

vi. inclusion of the SOFTWARE PRODUCT in another product, whether or not that other product is sold, given away, or made part of a
larger product.

2.COMMERCIAL USE: COMMERCIAL USE is any use that is not specifically defined in this license as EVALUATION USE.

3. GRANT OF LICENSE: This EULA covers both COMMERCIAL and EVALUATION USE of the SOFTWARE PRODUCT. Either clause
(A) or (B) of this section will apply to you, depending on your actual use of the SOFTWARE PRODUCT. If you have not purchased a
license of the SOFTWARE PRODUCT from Cogent or one of Cogent’s authorized resellers, then you may not use the product for
COMMERCIAL USE.

A. GRANT OF LICENSE (EVALUATION USE): This EULA grants you the following non-exclusive rights when used for
EVALUATION purposes:

Software: You may use the SOFTWARE PRODUCT on any number of computers, either stand-alone, or on a network, so long as
every use of the SOFTWARE PRODUCT is for EVALUATION USE. You may reproduce the SOFTWARE PRODUCT, but only as
reasonably required to install and use it in accordance with this LICENSE or to follow your normal back-up practices.

Subject to the license expressly granted above, you obtain no right, title or interest in or to the SOFTWARE PRODUCT or related
documentation, including but not limited to any copyright, patent, trade secret or other proprietary rights therein. All whole or partial
copies of the SOFTWARE PRODUCT remain property of Cogent and will be considered part of the SOFTWARE PRODUCT for the
purpose of this EULA.

Unless expressly permitted under this EULA or otherwise by Cogent, you will not:

i. use, reproduce, modify, adapt, translate or otherwise transmit the SOFTWARE PRODUCT or related components, in whole or in
part;

i. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;
iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;

v. use a multi-processor version of the SOFTWARE PRODUCT in a network larger than that for which you have paid the
corresponding multi-processor fees;

vi. decompile, disassemble or otherwise attempt or assist others to reverse engineer the SOFTWARE PRODUCT,;

Vii.

circumvent, disable or otherwise render ineffective any demonstration time-outs, locks on functionality or any other restrictions
on use in the SOFTWARE PRODUCT;

viii. circumvent, disable or otherwise render ineffective any license verification mechanisms used by the SOFTWARE PRODUCT;

ix. use the SOFTWARE PRODUCT in any application that is intended to create or could, in the event of malfunction or failure,
cause personal injury or property damage; or

x. make use of the SOFTWARE PRODUCT for commercial gain, whether directly, indirectly or incidentally.

B. GRANT OF LICENSE (COMMERCIAL USE): This EULA grants you the following non-exclusive rights when used for
COMMERCIAL purposes:

Software: You may use the SOFTWARE PRODUCT on one computer, or if the SOFTWARE PRODUCT is a multi-processor version -
on one node of a network, either: (i) as a development systems for the purpose of creating value-added software applications in
accordance with related Cogent documentation; or (ii) as a single run-time copy for use as an integral part of such an application. This
includes reproduction and configuration of the SOFTWARE PRODUCT, but only as reasonably required to install and use it in
association with your licensed processor or to follow your normal back-up practices.

Storage/Network Use: You may also store or install a copy of the SOFTWARE PRODUCT on one computer to allow your other
computers to use the SOFTWARE PRODUCT over an internal network, and distribute the SOFTWARE PRODUCT to your other
computers over an internal network. However, you must acquire and dedicate a license for the SOFTWARE PRODUCT for each
computer on which the SOFTWARE PRODUCT is used or to which it is distributed. A license for the SOFTWARE PRODUCT may
not be shared or used concurrently on different computers.

Subject to the license expressly granted above, you obtain no right, title or interest in or to the SOFTWARE PRODUCT or related
documentation, including but not limited to any copyright, patent, trade secret or other proprietary rights therein. All whole or partial
copies of the SOFTWARE PRODUCT remain property of Cogent and will be considered part of the SOFTWARE PRODUCT for the
purpose of this EULA.

Unless expressly permitted under this EULA or otherwise by Cogent, you will not:

i. use, reproduce, modify, adapt, translate or otherwise transmit the SOFTWARE PRODUCT or related components, in whole or in
part;

i. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;

iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;

<

. use a multi-processor version of the SOFTWARE PRODUCT in a network larger than that for which you have paid the
corresponding multi-processor fees;

vi. decompile, disassemble or otherwise attempt or assist others to reverse engineer the SOFTWARE PRODUCT,;

Vil.

circumvent, disable or otherwise render ineffective any demonstration time-outs, locks on functionality or any other restrictions
on use in the SOFTWARE PRODUCT;

viii. circumvent, disable or otherwise render ineffective any license verification mechanisms used by the SOFTWARE PRODUCT, or

ix. use the SOFTWARE PRODUCT in any application that is intended to create or could, in the event of malfunction or failure,
cause personal injury or property damage.

4. WARRANTY: Cogent cannot warrant that the SOFTWARE PRODUCT will function in accordance with related documentation in every
combination of hardware platform, software environment and SOFTWARE PRODUCT configuration. You acknowledge that software bugs
are likely to be identified when the SOFTWARE PRODUCT is used in your particular application. You therefore accept the responsibility of
satisfying yourself that the SOFTWARE PRODUCT is suitable for your intended use. This includes conducting exhaustive testing of your
application prior to its initial release and prior to the release of any related hardware or software modifications or enhancements.

Subject to documentation errors, Cogent warrants to you for a period of ninety (90) days from acceptance of this EULA (as provided above)
that the SOFTWARE PRODUCT as delivered by Cogent is capable of performing the functions described in related Cogent user
documentation when used on appropriate hardware. Cogent also warrants that any enclosed disk(s) will be free from defects in material and
workmanship under normal use for a period of ninety (90) days from acceptance of this EULA. Cogent is not responsible for disk defects
that result from accident or abuse. Your sole remedy for any breach of warranty will be either: i) terminate this EULA and receive a refund

of any amount paid to Cogent for the SOFTWARE PRODUCT, or ii) to receive a replacement disk.

5.LIMITATIONS: Except as expressly warranted above, the SOFTWARE PRODUCT, any related documentation and disks are provided "as
is" without other warranties or conditions of any kind, including but not limited to implied warranties of merchantability, fitness for a
particular purpose and non-infringement. You assume the entire risk as to the results and performance of the SOFTWARE PRODUCT.
Nothing stated in this EULA will imply that the operation of the SOFTWARE PRODUCT will be uninterrupted or error free or that any
errors will be corrected. Other written or oral statements by Cogent, its representatives or others do not constitute warranties or conditions of
Cogent.

In no event will Cogent (or its officers, employees, suppliers, distributors, or licensors: collectively “Its Representatives") be liable to you for
any indirect, incidental, special or consequential damages whatsoever, including but not limited to loss of revenue, lost or damaged data or
other commercial or economic loss, arising out of any breach of this EULA, any use or inability to use the SOFTWARE PRODUCT or any
claim made by a third party, even if Cogent (or Its Representatives) have been advised of the possibility of such damage or claim. In no event
will the aggregate liability of Cogent (or that of Its Representatives) for any damages or claim, whether in contract, tort or otherwise, exceed
the amount paid by you for the SOFTWARE PRODUCT.

These limitations shall apply whether or not the alleged breach or default is a breach of a fundamental condition or term, or a fundamental
breach. Some jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, or certain limitations
of implied warranties. Therefore the above limitation may not apply to you.

6. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS:

Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be separated for use
on more than one computer.

Termination. Without prejudice to any other rights, Cogent may terminate this EULA if you fail to comply with the terms and conditions of
this EULA. In such an event, you must destroy all copies of the SOFTWARE PRODUCT and all of its component parts.

7.UPGRADES: If the SOFTWARE PRODUCT is an upgrade from another product, whether from Cogent or another supplier, you may use or
transfer the SOFTWARE PRODUCT only in conjunction with that upgrade product, unless you destroy the upgraded product. If the
SOFTWARE PRODUCT is an upgrade of a Cogent product, you now may use that upgraded product only in accordance with this EULA. If
the SOFTWARE PRODUCT is an upgrade of a component of a package of software programs which you licensed as a single product, the
SOFTWARE PRODUCT may be used and transferred only as part of that single product package and may not be separated for use on more
than one computer.

8. COPYRIGHT: All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images, photographs,
animations, video, audio, music, text and 'applets”, incorporated into the SOFTWARE PRODUCT), any accompanying printed material, and
any copies of the SOFTWARE PRODUCT, are owned by Cogent or its suppliers. You may not copy the printed materials accompanying the
SOFTWARE PRODUCT. All rights not specifically granted under this EULA are reserved by Cogent.

9. PRODUCT SUPPORT: Cogent has no obligation under this EULA to provide maintenance, support or training.

10.RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as provided in DFARS
227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (OCT 1988), FAR 12.212(a)(1995), FAR 52.227-19, or FAR
52.227-14 (ALT Ill), as appropriate. Manufacturer is Cogent Real-Time Systems Inc. 162 Guelph Street, Suite 253, Georgetown, Ontario,
L7G 5X7, Canada.

11. GOVERNING LAW: This Software License Agreement is governed by the laws of the Province of Ontario, Canada. You irrevocably attorn
to the jurisdiction of the courts of the Province of Ontario and agree to commence any litigation that may arise hereunder in the courts
located in the Judicial District of Peel, Province of Ontario.

Table of Contents

I o o 11 ox 1] o U rU PSSR UPTUPTP PPN 1
1.1. Why Gamma and PROTON2........ccooiiieiree et sttt s st 1

1.2. ASSumptions about the REAMEL.........ccoveirrereceere e e 1

1.3. SYSLEM REQUITEMENLSciiteirieieriee ettt sttt st st sttt et s s be ettt 1

1.4. Cogent Product INTEGIratiQ...........cci ettt 1

1.5. Where can | gt NEIRZ. ... e e et 1

B O - 1= S 3
2.1. Explanation of Class ReferenCe PAgesS........cccv ittt 3

A Typical Class ReferenCe Page. ..ot e 3

2.2. SPeCifying WIdget FIAgS. ..ottt sttt 5
2.2.0. SELNG FIAOS ...t iveeereetereetereetere ettt b e et s b e b et eb e ??

2.2.2. TESHNG FIAGS .. ettt b e e b e b e b ??

2.2.3. CleariNg FIAgS.....coieereierieieiesterie ettt s s b e ??

2.2.4. Using Widget Method CallS.........ccveiiiiriireerrereneeeereee st ??

2.2.5. Using Bitmasks @nTDNSccoviiiriiirieirieerieene et 6

2.2.6. USINQGCONS & @ SUMMAIY.c..itiiitiirieiereeiestesesseseseeseseesesesseessesessesessesessesessesessesessesessssenes 7

PR T o 1= Ted14 Y/ 0 To T @] (o] =TSSR 7

R Tl o (=Tor= 1U o] £ 1S TP 9
4. Building Applications - @ TULOTIAIc..oiiiiiiieeieiierese et sb e s e 10
4.1, Creatl 8 WINGOW. . ..e ettt sttt sttt b e s a et et ae b e b e se e e et e aesaesbesbebe e e ene 10

4.2, Add AN EXIT BUITON.......ciiitiiiiiiieee ettt b e e et s 11

4.3. Add Functionality with CallDacKS............ccecueieiieiise e 11

4.4. Load a Window Created inN PRAB..........o e 12

4.5. Read a Widget File and Create itS WIAQELS......cccucveceerereereseeeese e se e 12

4.6. Read a Widget File and Assign its Widgets t0 @ ClasS.......ccccevvvivvvvevenieieniesnsesesee e 13

4.7. Set, Test, and Clear WIdget FIags.........cuivvereieeierierie et st 14

4.8. Read and Print @ WIAQEt File.......cuoiiicere ettt 15

4.9. EXtract Certain WIAQEIS......cuiireieeeeee ettt e sttt na e 17
4.10. Select and Recreate ANY WIAQEL........cocivierereeerere e e nee s 18
4.11. Print @ Widget Tre€ SUMMALY....cuecueererieriereereesessessessessesseseesessessessessesssssssessesssssessessesseneens 20

5. Integrating With COgeNt SOTIWAIE.ccciuiiriire e 22
5.1. Callbacks and Cascade DataHUub PQintS...........cocooiiiiieiiniiennenneereee e 22

6. Sample Code and CoOl STUTE..........cciii e 25
6.1. CuStOMIZADIE KEYPAM.......cuiiieiiiieierieie ettt bbb 25
6.1.1. Create and Display TWO KeYPAUS........ccourrerrreririeierieerieereeie et ??

6.1.2. Sample Keypad Definition Files.........ccociiiiriinieiseeereeeseesee e 25

6.1.3. The KEYPAA CIASS....iiiiterieieeieiiriere ettt sttt s e sresbe e seeeeneas 26

6.2. Handling Keyboard EVENLS..........coc et sbe s s 35

6.3. A CWGraph ROtating CUDE. ..ot et 37

6.4. A CWMALriX SPrEeadSNEEL.ot b e e e 42

A. GNU General PUDIIC LICENSE........cciiiiiiiici 53
B. GNU Lesser General PUDIIC LICENSE.c..ooiiiierie ettt s 59
[©0] (o] 0] [o 1S 67

vii

List of Tables

2-1. Usingcons With WidQet flagS.......eeiieece e ?7?

viii

Chapter 1. Introduction

1.1. Why Gamma and Photon?

Gamma was originally written to develop applications in the QNX operating system. As an alternative to
C, Gamma offers fast memory management, an open-event model, and run-time modifiability. Gamma
draws upon the power of the QNX operating system in ways that C is not able to.

With the introduction of Photon in 1995, Gamma was expanded with an optional Photon API to take full
advantage of and even extend Photon’s capabilities. Today Gamma stands out as the only dynamic
language available for Photon, offering a wide range of enhancements such as sub-classing of widgets,
improved event-handling, highly-flexible callbacks, and code re-usability.

1.2. Assumptions about the Reader

To use Gamma in Photon, you should have some familiarity with Gamma, Photon, and the Photon
Application Builder (PhAB). Experience in object-oriented programming will also be useful.

1.3. System Requirements

ONX 6

« OQONX 6.1.0 or later.
» Photon 2.

QNX 4

+ QNX 4.23A or later.
« Photon 1.14 or later.

1.4. Cogent Product Integration

Cogent products work together to support real-time data connectivity in Windows, Linux, and QNX.

They can be dynamically integrated as a group of modules where each module connects to any other
module(s) as needed. New modules can be added and existing modules reconfigured or modified, all
during run-time. Data in any module of the system can be collected and redistributed to any other module
via the Cascade DataHub and Cascade Connect. Communication with field devices is provided by one of
several Cogent Device Drivers. Historical records of unlimited size can be maintained and queried with
the Cascade Historian, and ASCII text files can be logged with the Cascade TextLogger.

Custom programs written in C or C++ can interface with the system, using the Cogent C API or the
DataHub APIs for C++, Java, and .NET. In addition, Cogent’s own dynamically-typed object-oriented
programming language, Gamma, is fully compatible with all modules. User interfaces can be created in
Gamma, which supports Photon in QNX and GTK in Linux.

Chapter 1. Introduction

1.5. Where can | get help?
If you are having problems with a Cogent product, first check the Troubleshooting Guide. If you can't
find the answer there, you can contact Cogent Real-Time Systems, Inc. for technical support for any
product you have purchased.
. Email: <support@cogent.ca >
« Phone: 1-888-628-2028
« Fax: (905) 702-7850

Chapter 2. Classes

2.1. Explanation of Class Reference Pages

Hereis a sample class reference page.

A Typical Class Reference Page

SampleClass — A one-line description of the class appears here.

Synopsis

Here you will find a class synopsis, including the class name, parent name, and the instance variables.

@ In all of these reference pages, links to Gamma documentation work for the HTML and QNX
Helpviewer editions of this book. Links to QNX Helpviewer documentation work for the QNX

Helpviewer edition only.
class PtSample ParentClass(Link to Gamma documentation.)

{
sample_variable_1; //PtSampleVariableOne (Link to QNX Helpviewer.)

sample_variable_2; //lunsigned long (Link to QNX Helpviewer.)

Base Classes

This shows the base class hierarchy from which this class came. The hierarchy descends from left to
right, and is linked to Gamma documentation:

PtWidget <-- PtBasic <--PtContainer <-- SampleClass

Description

Here you will find a more detailed description of the class, although for many classes a complete
description is beyond the scope of this document. In those cases, a note and a link will refer you to the
Photon documentation.

Instance Variables

There are three kinds of instance variables: (1) those with mutually exclusive constants, (2) those that can
take zero or more constants (inclusive), and (3) those with no constants. Examples of each of the three
are given below. Those that have constants list the constant names with either a brief description or a
one-word title of each constant.

exclusive_constants_variable (Linked to QNX Helpviewer when possible.)

A brief description of the variable may appear here.

This instance variable contains exactly one of the following constants:

Constant Description
CONSTANT_NAME1 Constant title or brief description.
CONSTANT_NAME2 Constant title or brief description.

A Typical Class Reference Page

inclusive_constants_variable (Linked to QNX Helpviewer when possible.)
A brief description of the variable may appear here.

This instance variable may contain zero or more of the following constants:

Constant Description
CONSTANT_NAME1 Constant title or brief description.
CONSTANT_NAME2 Constant title or brief description.

no_constants_variable (Linked to QNX Helpviewer when possible.)

A brief description of the variable may appear here.

Callbacks

If there are any callbacks associated with this class, their names and a short description will appear here.

Associated Classes

If there are any other classes associated with this class, their names will appear here, linked to the
Gamma documentation.

Methods

For the one or two classes that have a method library, their methods will be displayed here, along with
their respective syntax, arguments, return value, description and examples.

Convenience Functions

If the class has any convenience functions associated with it, they will appear here. Since multiple
functions for one widget generally take the same arguments, all the arguments for the functions are listed
first. There there is a brief summary of each function, including return values.

Example

If the class has any example code, it will appear here.

Chapter 2. Classes

2.2. Specifying Widget Flags

The syntax for handling widget flags in Gamma is somewhat unique. What follows is a brief description
of how to set, test, and clear flags on widgets in two different ways. The first is through a non-standard
use of the assignment operator, and the second is through method calls. Following these is a short
discussion on using bitmasks for flags that are not independent. For more examples, see th8ettorial
Test, and Clear Widget Flags the Building Applications - a Tutorial chapter.

2.2.1. Setting Flags
Flags can be set for widget instance variables usingtessignment) operator and the name of the flag.

@ The= operator is used in a unique way in Gamma for setting widget flags. ItidOdsassign a
completely new value to the variable. Rather, it adds or removes the valutagfimthe
variable. The= operator in this context of Gamma has the same effect gs-thaperator in C.

For example, to highlight a pane callPanel, you would set thét HIGHLIGHTED flag in the
Panel.flags variable, as follows.

Gamma>Panel.flags = Pt_HIGHLIGHTED;

256
You can set several flags at once as long as you separate them|bghiheise or) operator. For
example, to sePanel and etch its highlight, you would do this:

Gamma>Panel.flags = Pt_SET | Pt_ETCH_HIGHLIGHT;
514

You can also set flags on a widget by assigning the value dfage variable from another widget.

When doing this, it is possible to mask one or more of the flags, so that they aren’t set on the second
widget. This requires conjoining the variable with negated constant(s) using the & (bitwise and) and ~
(bitwise not) operators. For example, to copy the flags from the example above to another pane called
Pane2 without thePt ETCH_HIGHLIGHT flag or thePt_SET flags on, you could do the following:

Gamma>Pane2.flags = Panel.flags & ~Pt_ETCH_HIGHLIGHT & ~Pt_SET,;
256

2.2.2. Testing Flags

If you need to check a variable to see if a constant flag is set on it or not, you can test it. Testing is done
with the & (bitwise and) operator, the same as in C. However, oncéabse variable has been

conjoined with the constant, that value must be checked to see if it is equaltos is because in

Gamma0 does not have the logical value of false. You have to make an explicit logical test.

For example, to ted?anel andPane2 for Pt_ ETCH_HIGHLIGHT, you could do this:

Gamma>(Panel.flags & Pt_ETCH_HIGHLIGHT) != 0;
t
Gamma>(Pane2.flags & Pt_ETCH_HIGHLIGHT) != 0;
nil

Gamma returns if the flag variable is set, aril if it is not set.

2.2.3. Clearing Flags

Flags are cleared using thens function andhil . You make a cons cell with the flag as its first
element andhil as its second element. This has the effect of giving the flag a valdgliz& using the
&=and~ operators together in C. For example, to clearRheETCH_HIGHLIGHT and
Pt HIGHLIGHTED flags fromPanel, you would do this:

Gamma>Panel.flags = cons(Pt_ETCH_HIGHLIGHT, nil);

(512)

Gamma>Panel.flags = cons(Pt_HIGHLIGHTED, nil);
(256)

Chapter 2. Classes

Gamma>(Panel.flags & (Pt_ETCH_HIGHLIGHT | Pt_HIGHLIGHT)) != 0;

nil
Incidentally, thecons function can also be used to set flags. Just cons the flagnstead ohil . For
example, to set thet SET flag onPane2, you could do this:

Gamma>Pane2.flags = cons(Pt_SET,t);

@ .1

Gamma>(Pane2.flags & Pt_SET) != 0;
t

2.2.4. Using Widget Method Calls

As an alternative to using the assignment operator, you can set, test, and clear instance variable flags on
widgets using th&etBit , TestBit , andClearBit methods oPtWidget , which is the parent

widget for all of the Widget Classes. (See PtWidget for more information.) These methods are in the
PhotonWidgets.Isp library, so you must make a call to

require_lisp("PhotonWidgets.Isp") before using them.

Continuing with the example d?anel from above, you could set, test, and clear its
Pt_HIGHLIGHTED flag as follows:

Gamma>require_lisp("PhotonWidgets.Isp");

"<pathname>PhotonWidgets.Isp"

Gamma>Panel.SetBit(#flags, Pt_HIGHLIGHTED);

256

Gamma>Panel.TestBit(#flags, Pt_HIGHLIGHTED);

t

Gamma>Panel.ClearBit(#flags, Pt_HIGHLIGHTED);

(256)

Gamma>Panel.TestBit(#flags, Pt_HIGHLIGHTED);

nil
Using these methods and/or the assignment operator as explained here, you should have no problem
setting flags on most widgets.

2.2.5. Using Bitmasks and cons

Some flags are exclusive, meaning there can be only one of a group of them set at any given time. Setting
one of these flags requires that any others in the group be unset first, but without unsetting those flags on
the variable that are not part of the group. The easy way to do this is to use bitmasks eonisthe

function.

A bitmask consists of all the exclusive flags in the group ORed together. To set a flag, you complyt
to the bitmask. For example, tfRdTrend widget has a variable nametirend_flags , with three
flags that must be set exclusiveRt_ GRID_IS_TRANSLUCENT Rt_GRID_ABOVE_TRENDSand
Rt TRENDS_ABOVE_GRIDIo set, for exampleRt_GRID_ABOVE_TRENDSyou would do this:

Gamma> mask = Rt_GRID_IS_TRANSLUCENT
| Rt_GRID_ABOVE_TRENDS
| Rt_TRENDS_ABOVE_GRID;
1792
Gamma>trend.rttrend_flags = cons(Rt_GRID_ABOVE_TRENDS, mask);
(256 . 1792)
Gamma>(trend.rttrend_flags & Rt_GRID_ABOVE_TRENDS) != 0;
t

Doing this:
cons(flags, mask)

is exactly equivalent to doing this:

Chapter 2. Classes

(original & ~mask) | flags

whereoriginal is the original value of the variable. To illustrate what happens at bitwise level, let's
look at two flags on an imaginary variable:

Flag 1 0010000
Flag 2 0001000
Bitmask 0011000

Suppose Flags and2 must be set exclusively from each other. In the example below, the variable has a
few flags set already, including Fldg We want set Flag OFF and Fla@ ON. Using the Bitmask, we

AND the original flags of the variable to the inverse of the bitmask, turning both flags OFF. Then we OR
the result to Fla@ to turn Flag2 ON.

original: 10100010 Flag 1 and other flags are ON, Flag 2 is OFF.
AND ~Bitmask 11001111

results: 10000010 Flag 1 is now OFF.

10000010 The other flags are still ON.
OR Flag 2 00010000

final result: 10010010 Flag 2 is now ON as well.

2.2.6. Using cons : a Summary

Thecons can be used in Gamma in different ways for different purposes. The following table gives a
summary of howcons is used for handling widget flags.

Table 2-1. Usingcons with widget flags.

Gamma Syntax Meaning

widget.variable = flags; widget.variable = (original | flags)
widget.variable = cons(flags, t); widget.variable = (original | flags)
widget.variable = cons(flags, nil); widget.variable = (original & ~flags)
widget.variable = cons(flags, mask); widget.variable = (original & ~mask) | flags

2.3. Specifying Colors

Colors in Gamma are represented by 24 bit hexadecimal numbers rangingXe@®000 to
Oxffffff . The first 8 bits correspond to the red value, the next 8 to the green value, and the last 8 to
the blue value. For exampléx00ff00 would be pure green.

Most people find it easier to think in decimal notation, though, and the red, green, and blue colors are
often assigned values frofh- 255, representing a scale of intensity from black to full color. Gamma
allows for such red/green/blue notation for colors with BggRGBfunction. It converts colors expressed

in red/blue/green decimal notation to a single hexadecimal number. For example:

Gamma>lightblue = PgRGB(185,223,240);
0xb9dffo

To assign this color to a PtWindow named win, and then test the variable, we would do this:

Gamma>win.color = PgRGB(185,223,240);
0xb9dffo;
Gamma>win.color;

Chapter 2. Classes

0xb9dffo

In this example, the red value &85 is 0xb9 , the green value dt23 is Oxdf , and the blue value of
240 is 0xfO . To demonstrate this, we can call the functi®gRedValue , PgGreenValue , and

PgBlueValue on the win.color variable to return the values for their respective bits:
Gamma>PgRedValue(win.color);
0xb9
Gamma>PgGreenValue(win.color);
oxdf
Gamma>PgBluePValue(win.color);
0xfo
@ Transparent Although we said that colors in Gamma are represented with 24 bits, internally
they actually are stored as 32 bit numbers. The first 8 bits are always ignored, however, except in

one case--the non-color: transparent, which is represeniexféfff (all 32 bits are on).

Chapter 3. A Few Precautions

Due to Gamma'’s dynamic structure, and the extra demands of interfacing with the Photon environment,
there are a few precautions that a prudent programmer should take when coding. Failure to observe these
precautions could lead to unpredictable behavior and even crash the Gamma engine.

Instance arguments. Gamma functions that take instances as arguments check their type to confirm that
they are instances. However, in the interests of speed and efficiency, they do not check that the instance
belongs to the class that will work with that particular function. You as the programmer are responsible
for making sure an instance of the correct class has been passed. Otherwise you may see unexpected
behavior in your program.

Callbacks. Throwing an error in a callback can cause failures in subsequent Photon calls. You can
protect your code from callback errors usidtProtectCallbacks , but you will receive only the
first of any error m