
DataHub ® ODBC Scripting

Version 7.3

Cogent Real-Time Systems, Inc.

August 15, 2012

DataHub ® ODBC Scripting: Version 7.3

A user’s guide to ODBC (Open DataBase Connectivity) scripting for the Cogent DataHub.

Published August 15, 2012
Cogent Real-Time Systems, Inc.

162 Guelph Street, Suite 253
Georgetown, Ontario
Canada, L7G 5X7

Toll Free: 1 (888) 628-2028
Tel: 1 (905) 702-7851
Fax: 1 (905) 702-7850

Information Email: info@cogent.ca
Tech Support Email: support@cogent.ca
Web Site: www.cogent.ca

Copyright © 1995-2013 by Cogent Real-Time Systems, Inc.

Revision History

Revision 7.3-1 September 2007
Improved tutorials and added explanation of tutorial code.

Revision 6.2-1 October 2005
Initial release of documentation.

Copyright, trademark, and software license information.

Copyright Notice

© 1995-2013 Cogent Real-Time Systems, Inc. All rights reserved.

Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form or by

any means, electronic or mechanical, for any purpose, without the express written consent of Cogent Real-Time Systems, Inc.

Cogent Real-Time Systems, Inc. assumes no responsibility for any errors or omissions, nor do we assume liability for damages resulting from the

use of the information contained in this document.

Trademark Notice

Cascade DataHub, DataHub WebView, Cascade Connect, Cascade DataSim, Connect Server, Cascade Historian, Cascade TextLogger, Cascade

NameServer, Cascade QueueServer, RightSeat, SCADALisp and Gamma are trademarks of Cogent Real-Time Systems, Inc.

All other company and product names are trademarks or registered trademarks of their respective holders.

END-USER LICENSE AGREEMENT FOR COGENT SOFTWARE

IMPORTANT - READ CAREFULLY: This End-User License Agreement ("EULA") is a legal agreement between you (either an individual or a

single entity) and Cogent Real-Time Systems Inc. ("Cogent") of 162 Guelph Street, Suite 253, Georgetown, Ontario, L7G 5X7, Canada (Tel:

905-702-7851, Fax: 905-702-7850), from whom you acquired the Cogent software product(s) ("SOFTWARE PRODUCT" or "SOFTWARE"),

either directly from Cogent or through one of Cogent’s authorized resellers.

The SOFTWARE PRODUCT includes computer software, any associated media, any printed materials, and any "online" or electronic

documentation. By installing, copying or otherwise using the SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA. If you

do not agree with the terms of this EULA, Cogent is unwilling to license the SOFTWARE PRODUCT to you. In such event, you may not use or

copy the SOFTWARE PRODUCT, and you should promptly contact Cogent for instructions on return of the unused product(s) for a refund.

SOFTWARE PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by copyright laws and copyright treaties, as well as other intellectual property laws and treaties. The

SOFTWARE PRODUCT is licensed, not sold.

1. EVALUATION USE: This software is distributed as "Free for Evaluation", and with a per-use royalty for Commercial Use, where "Free for

Evaluation" means to evaluate Cogent’s software and to do exploratory development and "proof of concept" prototyping of software

applications, and where "Free for Evaluation" specifically excludes without limitation:

i. use of the SOFTWARE PRODUCT in a business setting or in support of a business activity,

ii. development of a system to be used for commercial gain, whether to be sold or to be used within a company, partnership, organization

or entity that transacts commercial business,

iii. the use of the SOFTWARE PRODUCT in a commercial business for any reason other than exploratory development and "proof of

concept" prototyping, even if the SOFTWARE PRODUCT is not incorporated into an application or product to be sold,

iv. the use of the SOFTWARE PRODUCT to enable the use of another application that was developed with the SOFTWARE PRODUCT,

v. inclusion of the SOFTWARE PRODUCT in a collection of software, whether that collection is sold, given away, or made part of a

larger collection.

vi. inclusion of the SOFTWARE PRODUCT in another product, whether or not that other product is sold, given away, or made part of a

larger product.

2. COMMERCIAL USE: COMMERCIAL USE is any use that is not specifically defined in this license as EVALUATION USE.

3. GRANT OF LICENSE: This EULA covers both COMMERCIAL and EVALUATION USE of the SOFTWARE PRODUCT. Either clause

(A) or (B) of this section will apply to you, depending on your actual use of the SOFTWARE PRODUCT. If you have not purchased a

license of the SOFTWARE PRODUCT from Cogent or one of Cogent’s authorized resellers, then you may not use the product for

COMMERCIAL USE.

A. GRANT OF LICENSE (EVALUATION USE): This EULA grants you the following non-exclusive rights when used for

EVALUATION purposes:

Software: You may use the SOFTWARE PRODUCT on any number of computers, either stand-alone, or on a network, so long as

every use of the SOFTWARE PRODUCT is for EVALUATION USE. You may reproduce the SOFTWARE PRODUCT, but only as

reasonably required to install and use it in accordance with this LICENSE or to follow your normal back-up practices.

Subject to the license expressly granted above, you obtain no right, title or interest in or to the SOFTWARE PRODUCT or related

documentation, including but not limited to any copyright, patent, trade secret or other proprietary rights therein. All whole or partial

copies of the SOFTWARE PRODUCT remain property of Cogent and will be considered part of the SOFTWARE PRODUCT for the

purpose of this EULA.

Unless expressly permitted under this EULA or otherwise by Cogent, you will not:

i. use, reproduce, modify, adapt, translate or otherwise transmit the SOFTWARE PRODUCT or related components, in whole or in

part;

ii. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

iii. alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;

iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;

v. use a multi-processor version of the SOFTWARE PRODUCT in a network larger than that for which you have paid the

corresponding multi-processor fees;

vi. decompile, disassemble or otherwise attempt or assist others to reverse engineer the SOFTWARE PRODUCT;

vii. circumvent, disable or otherwise render ineffective any demonstration time-outs, locks on functionality or any other restrictions

on use in the SOFTWARE PRODUCT;

viii. circumvent, disable or otherwise render ineffective any license verification mechanisms used by the SOFTWARE PRODUCT;

ix. use the SOFTWARE PRODUCT in any application that is intended to create or could, in the event of malfunction or failure,

cause personal injury or property damage; or

x. make use of the SOFTWARE PRODUCT for commercial gain, whether directly, indirectly or incidentally.

B. GRANT OF LICENSE (COMMERCIAL USE): This EULA grants you the following non-exclusive rights when used for

COMMERCIAL purposes:

Software: You may use the SOFTWARE PRODUCT on one computer, or if the SOFTWARE PRODUCT is a multi-processor version -

on one node of a network, either: (i) as a development systems for the purpose of creating value-added software applications in

accordance with related Cogent documentation; or (ii) as a single run-time copy for use as an integral part of such an application. This

includes reproduction and configuration of the SOFTWARE PRODUCT, but only as reasonably required to install and use it in

association with your licensed processor or to follow your normal back-up practices.

Storage/Network Use: You may also store or install a copy of the SOFTWARE PRODUCT on one computer to allow your other

computers to use the SOFTWARE PRODUCT over an internal network, and distribute the SOFTWARE PRODUCT to your other

computers over an internal network. However, you must acquire and dedicate a license for the SOFTWARE PRODUCT for each

computer on which the SOFTWARE PRODUCT is used or to which it is distributed. A license for the SOFTWARE PRODUCT may

not be shared or used concurrently on different computers.

Subject to the license expressly granted above, you obtain no right, title or interest in or to the SOFTWARE PRODUCT or related

documentation, including but not limited to any copyright, patent, trade secret or other proprietary rights therein. All whole or partial

copies of the SOFTWARE PRODUCT remain property of Cogent and will be considered part of the SOFTWARE PRODUCT for the

purpose of this EULA.

Unless expressly permitted under this EULA or otherwise by Cogent, you will not:

i. use, reproduce, modify, adapt, translate or otherwise transmit the SOFTWARE PRODUCT or related components, in whole or in

part;

ii. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

iii. alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;

iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;

v. use a multi-processor version of the SOFTWARE PRODUCT in a network larger than that for which you have paid the

corresponding multi-processor fees;

vi. decompile, disassemble or otherwise attempt or assist others to reverse engineer the SOFTWARE PRODUCT;

vii. circumvent, disable or otherwise render ineffective any demonstration time-outs, locks on functionality or any other restrictions

on use in the SOFTWARE PRODUCT;

viii. circumvent, disable or otherwise render ineffective any license verification mechanisms used by the SOFTWARE PRODUCT, or

ix. use the SOFTWARE PRODUCT in any application that is intended to create or could, in the event of malfunction or failure,

cause personal injury or property damage.

4. WARRANTY: Cogent cannot warrant that the SOFTWARE PRODUCT will function in accordance with related documentation in every

combination of hardware platform, software environment and SOFTWARE PRODUCT configuration. You acknowledge that software bugs

are likely to be identified when the SOFTWARE PRODUCT is used in your particular application. You therefore accept the responsibility of

satisfying yourself that the SOFTWARE PRODUCT is suitable for your intended use. This includes conducting exhaustive testing of your

application prior to its initial release and prior to the release of any related hardware or software modifications or enhancements.

Subject to documentation errors, Cogent warrants to you for a period of ninety (90) days from acceptance of this EULA (as provided above)

that the SOFTWARE PRODUCT as delivered by Cogent is capable of performing the functions described in related Cogent user

documentation when used on appropriate hardware. Cogent also warrants that any enclosed disk(s) will be free from defects in material and

workmanship under normal use for a period of ninety (90) days from acceptance of this EULA. Cogent is not responsible for disk defects

that result from accident or abuse. Your sole remedy for any breach of warranty will be either: i) terminate this EULA and receive a refund

of any amount paid to Cogent for the SOFTWARE PRODUCT, or ii) to receive a replacement disk.

5. LIMITATIONS: Except as expressly warranted above, the SOFTWARE PRODUCT, any related documentation and disks are provided "as

is" without other warranties or conditions of any kind, including but not limited to implied warranties of merchantability, fitness for a

particular purpose and non-infringement. You assume the entire risk as to the results and performance of the SOFTWARE PRODUCT.

Nothing stated in this EULA will imply that the operation of the SOFTWARE PRODUCT will be uninterrupted or error free or that any

errors will be corrected. Other written or oral statements by Cogent, its representatives or others do not constitute warranties or conditions of

Cogent.

In no event will Cogent (or its officers, employees, suppliers, distributors, or licensors: collectively "Its Representatives") be liable to you for

any indirect, incidental, special or consequential damages whatsoever, including but not limited to loss of revenue, lost or damaged data or

other commercial or economic loss, arising out of any breach of this EULA, any use or inability to use the SOFTWARE PRODUCT or any

claim made by a third party, even if Cogent (or Its Representatives) have been advised of the possibility of such damage or claim. In no event

will the aggregate liability of Cogent (or that of Its Representatives) for any damages or claim, whether in contract, tort or otherwise, exceed

the amount paid by you for the SOFTWARE PRODUCT.

These limitations shall apply whether or not the alleged breach or default is a breach of a fundamental condition or term, or a fundamental

breach. Some jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, or certain limitations

of implied warranties. Therefore the above limitation may not apply to you.

6. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS:

Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be separated for use

on more than one computer.

Termination. Without prejudice to any other rights, Cogent may terminate this EULA if you fail to comply with the terms and conditions of

this EULA. In such an event, you must destroy all copies of the SOFTWARE PRODUCT and all of its component parts.

7. UPGRADES: If the SOFTWARE PRODUCT is an upgrade from another product, whether from Cogent or another supplier, you may use or

transfer the SOFTWARE PRODUCT only in conjunction with that upgrade product, unless you destroy the upgraded product. If the

SOFTWARE PRODUCT is an upgrade of a Cogent product, you now may use that upgraded product only in accordance with this EULA. If

the SOFTWARE PRODUCT is an upgrade of a component of a package of software programs which you licensed as a single product, the

SOFTWARE PRODUCT may be used and transferred only as part of that single product package and may not be separated for use on more

than one computer.

8. COPYRIGHT: All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images, photographs,

animations, video, audio, music, text and ’applets", incorporated into the SOFTWARE PRODUCT), any accompanying printed material, and

any copies of the SOFTWARE PRODUCT, are owned by Cogent or its suppliers. You may not copy the printed materials accompanying the

SOFTWARE PRODUCT. All rights not specifically granted under this EULA are reserved by Cogent.

9. PRODUCT SUPPORT:Cogent has no obligation under this EULA to provide maintenance, support or training.

10.RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as provided in DFARS

227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (OCT 1988), FAR 12.212(a)(1995), FAR 52.227-19, or FAR

52.227-14 (ALT III), as appropriate. Manufacturer is Cogent Real-Time Systems Inc. 162 Guelph Street, Suite 253, Georgetown, Ontario,

L7G 5X7, Canada.

11.GOVERNING LAW: This Software License Agreement is governed by the laws of the Province of Ontario, Canada. You irrevocably attorn

to the jurisdiction of the courts of the Province of Ontario and agree to commence any litigation that may arise hereunder in the courts

located in the Judicial District of Peel, Province of Ontario.

Table of Contents
1. Introduction ..1

1.1. Overview...1
1.2. Setting up a DSN (Data Source Name)...1
1.3. Working with MS Access..2

2. Tutorials ..3

2.1. Tutorial 1: Writing new rows to a table, based on a trigger - Multi-Threaded Version..............3
2.2. Tutorial 2: Writing new rows to a table, based on a trigger - Single-Threaded Version.............7
2.3. Tutorial 3: Updating existing rows, or writing new ones..11
2.4. Tutorial 4: Writing data from a database to the DataHub...15
2.5. Viewing data from a web browser...18

3. An Explanation of the Tutorial Code...19

3.1. Define the Application Object...19
3.2. Interactions with the Database..19

3.2.1. Connecting to the Database..??
3.2.2. Creating a Gamma Class from a Database Table...??
3.2.3. Querying Rows from the Database...??
3.2.4. Inserting Rows into a Database..??
3.2.5. Updating Existing Rows in a Database..??
3.2.6. Creating a Database Table..21

3.3. Set up Event Handlers...22
3.4. Shut Down...23

4. Multi-Threaded ODBC Interface ...24

4.1. How-To..24
4.1.1. Create an ODBCThread Instance...??
4.1.2. Attach Event Callbacks..??
4.1.3. Configure Startup Actions..25
4.1.4. Start the Database Thread...??

4.2. Store and Forward...27
4.2.1. Time Delayed Writes..??

4.3. Example..27

5. Classes...31

DATE_STRUCT...31
ODBCColumn..32
ODBCConnection ..33
ODBCDescriptor ..35
ODBCEnvironment ..36
ODBCHandle..37
ODBCResult ..38
ODBCStatement ...39
ODBCThread..41
ODBCThreadResult ...47
SQLGUID...48
SQL_DAY_SECOND_STRUCT...49
SQL_INTERVAL_STRUCT..50
SQL_INTERVAL_STRUCT_intval ...51
SQL_NUMERIC_STRUCT...52
SQL_YEAR_MONTH_STRUCT...53
TIMESTAMP_STRUCT...54

vii

TIME_STRUCT...55

6. Global Functions..56

ODBC_AllocEnvironment ...56
ODBC_ValueString ...57

7. Constants..58

Index..??

Colophon...64

viii

Chapter 1. Introduction

1.1. Overview
The Cogent DataHub has built-in scripting capabilities (see DataHub Scripting), which among other
things let you connect the DataHub to any ODBC-compliant database. This guide assumes a basic
understanding of DataHub scripting, and provides the specific information you will need to script
connections between the DataHub and an ODBC database.

DataHub ODBC scripting uses wrapped MSDN functions. Therefore, this documentation often
links to and refers to the MSDN documentation.

The tutorials in this manual use SQL commands to query the database. The syntax for these
commands may vary slightly from one ODBC database to another. If a given tutorial doesn’t
work right away, check the syntax of the SQL commands in the tutorial against the syntax that
your database uses.

1.2. Setting up a DSN (Data Source Name)
To connect an ODBC-compliant database to the DataHub, you will need to ensure that you have
specified aDSN(Data Souce Name) for the database. Here’s how:

1. From the WindowsStart menu, chooseControl Panel, thenAdministrative Tools, and thenData
Sources (ODBC) to open the ODBC Data Source Administrator window. This is what it looks like
in Windows XP:

2. Select theUser DSN or System DSN tab, depending on how you plan to access your database.

A user DSN is only available to the current user account, while a system DSN is available to any
user account on the computer.

3. Now you can add a new database or configure an existing one.

Add a new database

1. Click theAdd button. The Create New Data Source window will open, displaying a list of data
source drivers.

1

Chapter 1. Introduction

2. Select the data source driver that corresponds to your ODBC database. A data source setup
window will open. Each data source setup window is different, but you should be able to find
the appropriate entry fields easily enough.

3. Enter the data source name and select the database.

4. Enter any other required or optional information such as login name, password, etc. What
entries need to be made and where they are entered depends on the particular data source setup
window you are using.

5. Click OK to return to the ODBC Data Source Administrator window. You should be able to see
the new database and driver listed. If you need to make any changes, you can configure an
exiting database, as explained below.

Configure an existing database

1. Select a data source name and click theConfigure... button. This takes you to the data source
setup window (explained above) where you can make changes to the configuration.

2. Make your changes and clickOK to return to the ODBC Data Source Administrator window.
Any time you need to make a change, you can go to this window.

4. When you are satisfied everything is correct, click theOK button to exit the ODBC Data Source
Administrator.

1.3. Working with MS Access
The Microsoft Access database program is a handy tool for MS Office users, but it is not completely
ODBC compliant, nor is it a database server. Its design prevents simultaneous updates from outside data
sources while the Access program is running, but it can still be used with the DataHub to collect and
store data from real-time systems.

File-based Data Access
MS Access is not a database server like MS SQL Server, MySQL, Oracle, and others. Instead, it accesses
a data file (.mdb file), reading from and writing data to that file. Other programs like the DataHub can
also access the file, butnot simultaneouslywith Access. You can use the DataHub to modify the data file,
but any time you open the file in Access, all programs including the DataHub are blocked from using it
until you close the file in Access.

What this means is that if you are using the DataHub to interface to a real-time control or financial system
and you want mission critical data stored in an ODBC-compliant database, you probably don’t want to
be using MS Access. However, it could be useful for storing and viewing logged data. And for some it
might be a convenient way to start investigating the possibilities of ODBC scripting with the DataHub.

Queries on Primary Keys
MS Access does not support the ODBC functionSQLPrimaryKeys , which means you cannot
programatically discover the primary keys of an Access database. Thus you will need to identify the
primary keys of the tables in the code itself. You will notice in our tutorials that we do just that. Since
data table design doesn’t change frequently, this should not prove to be a problem in most cases.

2

Chapter 2. Tutorials

2.1. Tutorial 1: Writing new rows to a table, based on a
trigger - Multi-Threaded Version

This script creates and inserts a new row into a database whenever a trigger point changes value. The
data that gets inserted into the row is an ID for the entry (the primary key), the name of a specified point,
its value, and a timestamp of the change. The script uses themulti-threadedfeatureStore and Forwardto
store data in memory and/or on disk if the database is disconnected or too busy, and then log that data in
time-sequential order when the database is available again.

The tutorials in this manual use SQL commands to query the database. The syntax for these
commands may vary slightly from one ODBC database to another. If a given tutorial doesn’t
work right away, check the syntax of the SQL commands used here against the syntax that your
database uses.

Getting Started

To run this code or the other tutorials in this manual, you will need to do the following:

1. Set up a DSN (Data Source Name)called "DataHubThreadedTest " and point it to an empty
database on your database server.

2. Create a table in the database named "datatable " that contains at least four columns with names,
data types, and other attributes exactly as specified here:

Column name Data type Other attributes

ptid integer identity, non-null, counter

ptname text string null

ptvalue real non-null

pttime datetime null

Any other columns in this table must be allowed to take on a null value.

3. Start DataSim.

4. Find the tutorial scriptODBCTutorial1.g on your system, and run it.

3

Chapter 2. Tutorials

You can access DataHub scripts and scripting capabilities by pressing theScripting button
in theProperties window, to display theScripting and Customization screen. The upper
half of the screen shows the Gamma files currently configured in the DataHub:

TheOpen button opens a file selector for you to add an existing script to the list. Scripts are
normally kept in the DataHub’sscripts subdirectory,C:\Program
Files\Cogent\DataHub\scripts\ myscript .g .
TheEdit button opens the selected script in the Script Editor for editing.
You can view error message and printed output from a script in the Script Log. To open the
Script Log, right click on the DataHub icon in the system tray, and selectView Script Log.
For complete information about DataHub scripting, please refer to the DataHub Scripting
Manual

5. Check the database table to see the results. Once you have it working, you canmodify the codeas
explained below.

The Code: ODBCTutorial1.g
/*

* This script demonstrates the use of the threaded ODBC interface to insert
* data from the DataSim program into a database based on a timer or an event.
*/

require ("Application");
require ("ODBCThreadSupport");
require ("Time");
require ("Quality");

class ODBCTutorial1 Application
{

DSN = "MySQLLocal"; // The DSN name to use for the database connection
username = "test"; // The user name for connecting to the database
password = "test"; // The password for connecting to the database
tablename = "test"; // The name of the database table
cachefile = "c:/tmp/testcache.txt"; // Base name for the disk cache file
tableclass;
thread;

}

/* This method will be called every time the connection is established to the database.
* If there is something we only want to perform on the first connection, we can test
* is_first_connect to perform the code only once.
*/

method ODBCTutorial1.onConnect()
{

princ ("Connection succeeded\n");
if (.thread.is_first_connect)
{

// Start the sequence defined by the AddInitStage calls in the constructor

4

Chapter 2. Tutorials

.thread.BeginAsyncInit();
}

}

/* If we get a connection attempt failure, or the connection fails after having been
* connected, this method is called.
*/

method ODBCTutorial1.onConnectFail()
{

princ ("Connection closed: ", SQLResult.Description, "\n");
}

/* Map the table in the set of table definitions that matches the name in .tablename
* into a Gamma class. This lets us easily convert between class instances and rows
* in the table.
*/

method ODBCTutorial1.mapTable(name, tabledefinitions)
{

.tableclass = .thread.ClassFromTable(name, tabledefinitions);
}

/* Set up the timer or event handler functions to write to the table. */
method ODBCTutorial1.startLogging()
{

/* You can modify and/or add similar timers or event handlers for
* each data point that you want to log. Please refer to the "Methods
* and Functions from Application.g" section of the documentaton
* for more details about the timer and event handler funtions.
* http://www.cogentdatahub.com/Docs/dhs-reference-applicationg.html
*/

// Log a new row of data every 3 seconds.
.TimerEvery(3, ‘(@self).writeData(#$DataSim:Sine));

// Log a new row of data at 20 seconds past each minute of each hour, etc.
.TimerAt(nil, nil, nil, nil, nil, 20, ‘(@self).writeData(#$DataSim:Triangle));

// Log a new row of data for the point DataSim:Square when it changes.
.OnChange(#$DataSim:Square, ‘(@self).writeData(this));

// Log a new row of data for the point DataSim:Sine when DataSim:Square changes.
.OnChange(#$DataSim:Square, ‘(@self).writeData(#$DataSim:Sine));

}

method ODBCTutorial1.writeData(pointsymbol)
{

local row = new (.tableclass);
local pttime, ptltime;
local timestring;

// Generate a timestamp in database-independent format to the millisecond.
// Many databases strip the milliseconds from a timestamp, but it is harmless
// to provide them in case the database can store them.
pttime = WindowsTimeToUnixTime(PointMetadata(pointsymbol).timestamp);
ptltime = localtime(pttime);
timestring = format("{ts ’%04d-%02d-%02d %02d:%02d:%02d.%03d’}",

ptltime.year+1900, ptltime.mon+1, ptltime.mday, ptltime.hour, ptltime.min, ptltime.sec,
(pttime % 1) * 1000);

// Fill the row. Since we mapped the table into a Gamma class, we can access
// the columns in the row as member variables of the mapped class.
row.ptname = string(pointsymbol);
row.ptvalue = eval(pointsymbol);
row.pttime = timestring;
// Perform the insertion. In this case we are providing no callback on completion.
.thread.Insert(row, nil);

}

/* Write the ’main line’ of the program here. */

5

Chapter 2. Tutorials

method ODBCTutorial1.constructor ()
{

// Create and configure the database connection object
.thread = new ODBCThread();
.thread.Configure(.DSN, .username, .password, STORE_AND_FORWARD, .cachefile, 0);

// Use this to delete the table on the first connection after the script starts.
// BE CAREFUL - re-running the script will start over and delete the table again.
// .thread.AddInitStage(format("drop table %s", .tablename), nil, t);

// Use this to create the table if it does not exist. Note: this might not work for all databases.
// When in doubt, create the table manually. The ’t’ in the onFail argument says to ignore errors
// and continue with the next stage.
// .thread.AddInitStage(format("create table %s (ptid int auto_increment primary key, ptname varchar(64),
// ptvalue double, pttime datetime)", .tablename), nil, t);

// Query the table and map it to a class for each insertion. We want to run an asynchronous event
// within the asynchronous initialization stage, so to do that we specify the special method
// cbInitStage as the callback function of our asynchronous event (GetTableInfo). We deal with
// the return from the GetTableInfo in the onSuccess argument of the init stage.
.thread.AddInitStage(‘(@.thread).GetTableInfo("", "", (@.tablename), "TABLE,VIEW",

‘(@.thread).cbInitStage()),
‘(@self).mapTable(@.tablename, SQLTables), nil);

// Do not start writing data to the table until we have successfully created and mapped
// the table to a class. If we wanted to start writing data immediately, then we would
// create the table class beforehand instead of querying the database for the table
// definition. Then, even if the database were unavailable we could still cache to the
// local disk until the database was ready.
.thread.AddInitStage(nil, ‘(@self).startLogging(), nil);

// Set up the callback functions for various events from the database thread
.thread.OnConnectionSucceeded = ‘(@self).onConnect();
.thread.OnConnectionFailed = ‘(@self).onConnectFail();
.thread.OnFileSystemError = ‘princ("File System Error: ", SQLResult, "\n");
.thread.OnODBCError = ‘princ("ODBC Error: ", SQLResult, "\n");
.thread.OnExecuteStored = nil;

// Now that everything is configured, start the thread and begin connecting. All of the
// logic now will be driven through the onConnect callback and then through the init
// stages.
.thread.Start();

// Create a menu item in the system tray that allows us to open a window to monitor
// the performance of the ODBC thread. The menu strings can be edited as desired.
.AddCustomSubMenu("ODBC Thread Demo");
.AddCustomMenuItem("Monitor Performance",

‘(@.thread).CreateMonitorWindow((@self), "ODBC Demo Monitor"));

// If we want to open the performance monitor window when the script starts, do it here.
.thread.CreateMonitorWindow(self, "ODBC Demo Monitor");

}

/* Any code to be run when the program gets shut down. */
method ODBCTutorial1.destructor ()
{

if (instance_p(.thread))
destroy(.thread);

}

/* Start the program by instantiating the class. */
ApplicationSingleton (ODBCTutorial1);

6

Chapter 2. Tutorials

Modifying the Code

You can modify thestartLogging method to add your own points by replacing data domains
(domain), point names (point) and/or times (day , month , year , hour , minute , second , etc.)
like this:

// Log a new row of data every # seconds.
.TimerEvery(seconds , ‘(@self).writeData(#$ domain : point));

// Log a new row of data at # seconds past each minute of each hour, etc.
.TimerAt(day , month , year , hour , minute , second , ‘(@self).writeData(#$ domain : point));

// Log a new row of data for a point when it changes.
.OnChange(#$ domain : point , ‘(@self).writeData(this));

// Log a new row of data for a point when a trigger point changes.
.OnChange(#$ domain : point , ‘(@self).writeData(#$ domain : point));

Please refer to the documentation for these methods of theApplication class for more information:
TimerEvery , TimerAt , andOnChange.

2.2. Tutorial 2: Writing new rows to a table, based on a
trigger - Single-Threaded Version

This script creates and inserts a new row into a database whenever a trigger point changes value. The
data that gets inserted into the row is an ID for the entry (the primary key), the value of a specified point,
the timestamp of the change, and the name and quality of the point. The script also checks the connection
to the database, and will attempt to reconnect every 5 seconds if the connection is lost.

The tutorials in this manual use SQL commands to query the database. The syntax for these
commands may vary slightly from one ODBC database to another. If a given tutorial doesn’t
work right away, check the syntax of the SQL commands used here against the syntax that your
database uses.

Getting Started

To run this code or the other tutorials in this manual, you will need to do the following:

1. Set up a DSN (Data Source Name)called "DataHubTest " and point it to an empty database on
your database server.

2. Create a table in the database named "datatable " that contains at least five columns with names,
data types, and other attributes exactly as specified here:

Column name Data type Other attributes

ID integer identity, non-null, counter

PTVALUE real non-null

PTTIME datetime null

PTNAME text string null

PTQUALITY text string null

Any other columns in this table must be allowed to take on a null value.

3. Start DataSim.

4. Find the tutorial scriptODBCTutorial2.g on your system, and run it.

7

Chapter 2. Tutorials

You can access DataHub scripts and scripting capabilities by pressing theScripting button
in theProperties window, to display theScripting and Customization screen. The upper
half of the screen shows the Gamma files currently configured in the DataHub:

TheOpen button opens a file selector for you to add an existing script to the list. Scripts are
normally kept in the DataHub’sscripts subdirectory,C:\Program
Files\Cogent\DataHub\scripts\ myscript .g .
TheEdit button opens the selected script in the Script Editor for editing.
You can view error message and printed output from a script in the Script Log. To open the
Script Log, right click on the DataHub icon in the system tray, and selectView Script Log.
For complete information about DataHub scripting, please refer to the DataHub Scripting
Manual

5. Check the database table to see the results. Once you have it working, you canmodify the codeas
explained below.

The Code: ODBCTutorial2.g
/* All user scripts should derive from the base "Application" class */

require ("Application");

/* Get the Gamma library functions and methods for ODBC and/or
* Windows programming. Uncomment either or both. */

//require ("WindowsSupport");
require ("ODBCSupport");
require ("Time");
require ("Quality");

/* Applications share the execution thread and the global name
* space, so we create a class that contains all of the functions
* and variables for the application. This does two things:
* 1) creates a private name space for the application, and
* 2) allows you to re-load the application to create either
* a new unique instance or multiple instances without
* damaging an existing running instance.
*/

/*
* This application assumes that the table specified by the "tablename"
* member variable exists in the DSN specified by the "DSN" member
* variable below.
* The table consists of at least the following columns:
* ID - integer, identity, non-null, counter
* PTVALUE - real, non-null
* PTTIME - datetime, null
* PTNAME - text string, null
* PTQUALITY - text string, null

8

Chapter 2. Tutorials

* Any other columns in this table must be allowed to take on a
* NULL value.
*/

class ODBCTutorial2 Application
{

/* User-defined values, may be changed as needed. */
DSN = "DataHubTest";
user = "test";
password = "test";
tablename = "datatable";

/* These values get defined by the program.*/
conn;
env;
tableclass;
is_connected;
is_connecting;

}

/* Connect to the DSN and create a class that maps the table. */
method ODBCTutorial2.Connect ()
{

princ ("Connecting to database\n");
.is_connecting = t;

protect
{

/* Create the ODBC environment and connection */
if (!.env)

.env = ODBC_AllocEnvironment();
if (!.conn)

.conn = .env.AllocConnection();

/* Attempt the connection. */
ret = .conn.Connect (.DSN, .user, .password);
if (ret != SQL_SUCCESS && ret != SQL_SUCCESS_WITH_INFO)

error (.conn.GetDiagRec());

/* Create a class from the table */
.tableclass = .conn.ClassFromTable (#DataEntry, nil, .tablename);

/* Set the primary key. This is redundant for MS-SQL and MYSQL since
they can figure it out themselves, but Access requires it. */

mykey = .conn.SetPrimaryKey (.tableclass, "ID");

.is_connected = t;
}
unwind
{

.is_connecting = nil;
if (.is_connected)

princ (" Connection successful\n");
else

princ (" Connection failed\n");
}

}

/* Disconnect from the database server */
method ODBCTutorial2.Disconnect ()
{

if (.conn)
{

try
{

princ ("Disconnecting database\n");
.conn.Disconnect();
destroy(.conn);

9

Chapter 2. Tutorials

}
catch
{

princ ("Disconnection failed: ", _last_error_, "\n");
}
.conn = nil;

}
.is_connected = nil;

}

method ODBCTutorial2.Reconnect()
{

if (!.is_connected && !.is_connecting)
{

.Connect();
}

}

/* Fill a database record with new information from a point change. */
method ODBCTutorial2.FillRecord (record, sym, newvalue)
{

local timestamp;

timestamp = localtime (PointGetUnixTime(sym));
timestamp = format ("%d-%02d-%02d %02d:%02d:%02d",

timestamp.year + 1900, timestamp.mon + 1,
timestamp.mday, timestamp.hour, timestamp.min,
timestamp.sec);

record.PTNAME = string (sym);
record.PTVALUE = number (newvalue);
record.PTTIME = timestamp;
record.PTQUALITY = GetQualityName(PointMetadata(sym).quality);
record;

}

/* Write a new record into the database based on a point change. */
method ODBCTutorial2.AddRecord (sym, newvalue)
{

local record = new (.tableclass);
.FillRecord (record, sym, newvalue);
try
{

.conn.Insert (record);
}
catch
{

princ ("Write failed. Disconnecting. Record was not written.\n");
.Disconnect();

}
record;

}

/* The mainline. Connect to the database and begin storing data from
the DataHub into the database. */

method ODBCTutorial2.constructor ()
{

local ret;

/* Start a timer that will reconnect to the database every 5 seconds
if the connection has been lost. */

.TimerEvery(5, ‘(@self).Reconnect());

/* Try connecting now. If this fails, the timer will try again later. */
.Reconnect();

/* Add a record when a point changes. */
.OnChange (#$DataSim:Square, ‘(@self).AddRecord (#$DataSim:Sine, $DataSim:Sine));

10

Chapter 2. Tutorials

/* Add more points like this:
* .OnChange (#$DataSim:Square, ‘(@self).AddRecord (#$MyDomain:MyPt, $MyDomian:MyPt));
* Have the trigger point’s value get written like this:
* .OnChange (#$DataSim:Square, ‘(@self).AddRecord (#$DataSim:Square, $DataSim:Square));
*/

}

/* Any code to be run when the program gets shut down. */
method ODBCTutorial2.destructor ()
{

.Disconnect();
if (.env)

destroy(.env);
}

/* Start the program by instantiating the class. If your
* constructor code does not create a persistent reference to
* the instance (self), then it will be destroyed by the
* garbage collector soon after creation. If you do not want
* this to happen, assign the instance to a global variable, or
* create a static data member in your class to which you assign
* ’self’ during the construction process. ApplicationSingleton()
* does this for you automatically. */

ApplicationSingleton (ODBCTutorial2);

Modifying the Code

There are several ways you can modify the code. These modifications are made in the
ODBCTutorial1.constructor method, towards the end of the script.

• Add more DataSim points using this format:

.OnChange (#$DataSim:Square, ‘(@self).AddRecord (#$DataSim: pointname , $DataSim: pointname));

Wherepointname is the name of a point in DataSim.

• Change the trigger point like this:

.OnChange (#$DataSim: pointname , ‘(@self).AddRecord (#$DataSim:Sine, $DataSim:Sine));

Wherepointname is the name of a point in DataSim.

• Add your own points You can add your own points using this syntax:

.OnChange (#$ domain : pointname , ‘(@self).AddRecord (#$ domain : pointname , $ domain : pointname));

wheredomain is the domain that the point is in, andpointname is the name of the point.

2.3. Tutorial 3: Updating existing rows, or writing new
ones

This tutorial demonstrates how to find a particular row and update it, as well as write new rows,
depending on the point.

This tutorial uses the same DSN, database, and table as Tutorial 2. If you haven’t done Tutorial 2
yet, please reviewGetting Startedin that section to see how to set up your system for this
tutorial.

11

Chapter 2. Tutorials

The complete code for this tutorial is shown below, and is included in your DataHub distribution, in the
scripts subdirectory, such asC:\Program
Files\Cogent\DataHub\scripts\ myscript.g . Please refer to Accessing Scripts in the
DataHub Scripting manual for details on how to load and run a script.

The Code: ODBCTutorial3.g
/* All user scripts should derive from the base "Application" class */

require ("Application");

/* Get the Gamma library functions and methods for ODBC and/or
* Windows programming. Uncomment either or both. */

//require ("WindowsSupport");
require ("ODBCSupport");
require ("Time");
require ("Quality");

/* Applications share the execution thread and the global name
* space, so we create a class that contains all of the functions
* and variables for the application. This does two things:
* 1) creates a private name space for the application, and
* 2) allows you to re-load the application to create either
* a new unique instance or multiple instances without
* damaging an existing running instance.
*/

/*
* This application assumes that the table specified by the "tablename"
* member variable exists in the DSN specified by the "DSN" member
* variable below.
* The table consists of at least the following columns:
* ID - integer, identity, non-null, counter
* PTVALUE - real, non-null
* PTTIME - datetime, null
* PTNAME - text string, null
* PTQUALITY - text string, null
* Any other columns in this table must be allowed to take on a
* NULL value.
*/

class ODBCTutorial3 Application
{

/* User-defined values, may be changed as needed. */
DSN = "DataHubTest";
user = "test";
password = "test";
tablename = "datatable";

/* These values get defined by the program.*/
conn;
env;
tableclass;

}

/* Connect to the DSN and create a class that maps the table. */
method ODBCTutorial3.Connect ()
{

/* Create the ODBC environment and connection */
.env = ODBC_AllocEnvironment();
.conn = .env.AllocConnection();

/* Attempt the connection. */
ret = .conn.Connect (.DSN, .user, .password);
if (ret != SQL_SUCCESS && ret != SQL_SUCCESS_WITH_INFO)

error (.conn.GetDiagRec());

12

Chapter 2. Tutorials

/* Create a class from the table */
.tableclass = .conn.ClassFromTable (#DataEntry, nil, .tablename);

/* Set the primary key. This is redundant for MS-SQL and MYSQL since
they can figure it out themselves, but Access requires it. */

mykey = .conn.SetPrimaryKey (.tableclass, "ID");
}

/* Fill a database record with new information from a point change */
method ODBCTutorial3.FillRecord (record, sym, newvalue)
{

local timestamp;

timestamp = localtime (PointGetUnixTime(sym));
timestamp = format ("%d-%02d-%02d %02d:%02d:%02d",

timestamp.year + 1900, timestamp.mon + 1,
timestamp.mday, timestamp.hour, timestamp.min,
timestamp.sec);

record.PTNAME = string (sym);
record.PTVALUE = number (newvalue);
record.PTTIME = timestamp;
record.PTQUALITY = GetQualityName(PointMetadata(sym).quality);
record;

}

/* Write a new record into the database based on a point change. */
method ODBCTutorial3.AddRecord (sym, newvalue)
{

local record = new DataEntry();
.FillRecord (record, sym, newvalue);
.conn.Insert (record);
record;

}

/* Write a data point into a field of a record. This is called
from a DataHub point change event. This method will replace
an existing record that is cached with the point at startup. If
there was no existing row in the database, this will create one
and then update it in subsequent calls. */

method ODBCTutorial3.UpdateRecord (sym, newvalue)
{

local record = getprop (sym, #dbrecord);
if (!record)
{

record = .AddRecord (sym, newvalue);
setprop (sym, #dbrecord, record);

}
else
{

.FillRecord (record, sym, newvalue);

.conn.Update (record);
}

}

/* Find an existing record in the database for this point. If it
exists, associate the record with the point. */

method ODBCTutorial3.GetExistingRecord (sym, klass)
{

local result = .conn.QueryToClass (klass, string
("SELECT * FROM ",

klass.__table,
" WHERE PTNAME = ’", sym, "’"));

if (array_p(result))
setprop (sym, #dbrecord, result[0]);

}

/* Start updating the database whenever a point changes. If the
overwrite argument is non-nil or absent, then this method will

13

Chapter 2. Tutorials

cause an existing record in the database to be overwritten each
time. If overwrite is nil, every point change will create a
new row in the database. */

method ODBCTutorial3.WatchPoint (sym, tableclass, overwrite?=t)
{

/* Grab an existing record for this point if it exists */
.GetExistingRecord (sym, tableclass);
if (overwrite)

.OnChange (sym, ‘(@self).UpdateRecord (this, value));
else

.OnChange (sym, ‘(@self).AddRecord (this, value));
}

/* The mainline. Connect to the database and begin storing data from
the DataHub into the database. */

method ODBCTutorial3.constructor ()
{

local ret;

/* Connect to the DSN. */
.Connect();

/* Register points that we want to save. The WatchPoint method takes
an optional third arguement. If it is nil, every point change will
add a row to the table. If it is absent or non-nil, then every point
change overwrites the existing row in the table for that point. */

.WatchPoint (#$DataSim:Square, .tableclass, nil);

.WatchPoint (#$DataSim:Sine, .tableclass);
}

/* Any code to be run when the program gets shut down. */
method ODBCTutorial3.destructor ()
{
}

/* Start the program by instantiating the class. If your
* constructor code does not create a persistent reference to
* the instance (self), then it will be destroyed by the
* garbage collector soon after creation. If you do not want
* this to happen, assign the instance to a global variable, or
* create a static data member in your class to which you assign
* ’self’ during the construction process. ApplicationSingleton()
* does this for you automatically. */

ApplicationSingleton (ODBCTutorial3);

Modifying the Code

There are several ways you can modify the code. These modifications are made in the
ODBCTutorial2.constructor method, towards the end of the script.

• Overwrite or add rows. There are two ways the ODBC database can receive the data: by overwriting
old values with new values in a single row, or by adding a new row for each new value. These are
determined by the last argument in the.WatchPoint function.:

.WatchPoint (#$DataSim:Square, tableclass, nil);

.WatchPoint (#$DataSim:Sine, tableclass);

The default is to overwrite values. This is what happens for values pertaining toDataSim:Sine . To
have the DataHub write a new line for each change, you can add a final argument,nil , such as in
DataSim:Square above.

• Add more DataSim points.To add other points from DataSim, use this format for new rows:

.WatchPoint (#$DataSim: pointname , tableclass, nil);

14

Chapter 2. Tutorials

or this format for overwriting rows:

.WatchPoint (#$DataSim: pointname , tableclass);

Wherepointname is the name of a point in DataSim.

• Add your own points You can add your own points using this syntax:

.WatchPoint (#$ domain : pointname , tableclass, nil);

.WatchPoint (#$ domain : pointname , tableclass);

wheredomain is the domain that the point is in, andpointname is the name of the point.

2.4. Tutorial 4: Writing data from a database to the
DataHub

This tutorial demonstrates how to keep the DataHub updated every second with the latest values in a
database.

This tutorial uses the same DSN and database as Tutorial 2, but creates a different table called
"control " (see below). If you haven’t done Tutorial 2 yet, please reviewGetting Startedin that
section to see how to set up your system for this tutorial.

As with Tutorial 2, you will need to create a table in the database. This new table should be named
"control ", and should contain at least three columns with names, data types, and other attributes
exactly as specified here:

Column name Data type Other attributes

ID integer identity, non-null, counter

CTRLNAME text string null

CTRLVALUE real non-null

Any other columns in this table must be allowed to take on a null value.

Once this script is running, you can enter the name of any existing DataHub point in a row of the
database in theCTRLNAMEcolumn. Make sure you enter the full point name, including the domain
name, with the syntaxdomainname : pointname . Enter a corresponding value for the point in
CTRLVALUE. The entered value will appear for that point in the DataHub. Any time the value changes in
the database, the results get passed to the DataHub within a second. The point in the DataHub will
continue to be updated once every second from the database as long as the two are both running.

The complete code for this tutorial is shown below, and is included in your DataHub distribution, in the
scripts subdirectory, such asC:\Program
Files\Cogent\DataHub\scripts\ myscript.g . Please refer to Accessing Scripts in the
DataHub Scripting manual for details on how to load and run a script.

The Code: ODBCTutorial4.g
/* All user scripts should derive from the base "Application" class */

require ("Application");

/* Get the Gamma library functions and methods for ODBC and/or
* Windows programming. Uncomment either or both. */

require ("ODBCSupport");

15

Chapter 2. Tutorials

/* Applications share the execution thread and the global name
* space, so we create a class that contains all of the functions
* and variables for the application. This does two things:
* 1) creates a private name space for the application, and
* 2) allows you to re-load the application to create either
* a new unique instance or multiple instances without
* damaging an existing running instance.
*/

/*
* This application assumes that the table specified by the "tablename"
* member variable exists in the DSN specified by the "DSN" member
* variable below.
* The table consists of at least the following columns:
* ID - integer, identity, non-null, counter
* CTRLNAME - text string, null
* CTRLVALUE - real, non-null
* Any other columns in this table must be allowed to take on a
* NULL value.
*/

class ODBCTutorial4 Application
{

/* User-defined values, may be changed as needed. */
DSN = "DataHubTest";
user = "test";
password = "test";
tablename = "Table1";

/* These values get defined by the program.*/
conn;
env;
tableclass;
is_connected;
is_connecting;

}

/* Connect to the DSN and create a class that maps the table. */
method ODBCTutorial4.Connect ()
{

local ret;
.is_connecting = t;

protect
{

/* Create the ODBC environment and connection */
if (!.env)

.env = ODBC_AllocEnvironment();
if (!.conn)

.conn = .env.AllocConnection();

/* Attempt the connection. */
ret = .conn.Connect (.DSN, .user, .password);
if (ret != SQL_SUCCESS && ret != SQL_SUCCESS_WITH_INFO)

error (.conn.GetDiagRec());

/* Create a class from the table */
.tableclass = .conn.ClassFromTable (#DataEntry, nil, .tablename);

/* Set the primary key. This is redundant for MS-SQL and MYSQL since
they can figure it out themselves, but Access requires it. */

.conn.SetPrimaryKey (.tableclass, "ID");

.is_connected = t;
}
unwind
{

16

Chapter 2. Tutorials

.is_connecting = nil;
if (.is_connected)

princ (" Connection successful\n");
else

princ (" Connection failed\n");
}

}

/* Disconnect from the database server */
method ODBCTutorial4.Disconnect ()
{

if (.conn)
{

try
{

princ ("Disconnecting database\n");
.conn.Disconnect();
destroy(.conn);

}
catch
{

princ ("Disconnection failed: ", _last_error_, "\n");
}
.conn = nil;

}
.is_connected = nil;

}

/* Try to reconnect to the database if it’s not currently connected. */
method ODBCTutorial4.Reconnect()
{

if (!.is_connected && !.is_connecting)
{

.Connect();
}

}

/* Reload information from a database record into the DataHub. This
is being called on a timer. We re-query the database for the
given record, then update the DataHub points simply by assigning
them. */

method ODBCTutorial4.Update ()
{

local result;

if (.is_connected)
{

try
{

result = .conn.QueryToClass (.tableclass, string ("select * from ", .tablename));
with x in result do
{

datahub_write (x.CTRLNAME, x.CTRLVALUE);
}

}
catch
{

/* If the query fails then disconnect and do not try again until a
successful connection has been made based on the reconnect timer. */

princ("Query failed. Disconnecting - ", _last_error_, "\n");
.Disconnect();

}
}

}

/* The mainline. Connect to the database and begin storing data from
the DataHub into the database. */

method ODBCTutorial4.constructor ()

17

Chapter 2. Tutorials

{
/* Every second, read the ’control’ database, and update the values.

This keeps the value in the DataHub always in sync with the database.
The timer value can be fractional, such as 0.5 for twice per second. */

.TimerEvery (1, ‘(@self).Update ());

/* Start a timer that will reconnect to the database every 5 seconds
if the connection has been lost. */

.TimerEvery(5, ‘(@self).Reconnect());

/* Try connecting now. If this fails, the timer will try again later. */
.Reconnect();

}

/* Any code to be run when the program gets shut down. */
method ODBCTutorial4.destructor ()
{

.Disconnect();
if (.env)

destroy(.env);
}

/* Start the program by instantiating the class. If your
* constructor code does not create a persistent reference to
* the instance (self), then it will be destroyed by the
* garbage collector soon after creation. If you do not want
* this to happen, assign the instance to a global variable, or
* create a static data member in your class to which you assign
* ’self’ during the construction process. ApplicationSingleton()
* does this for you automatically. */

ApplicationSingleton (ODBCTutorial4);

2.5. Viewing data from a web browser
Using the DataHub Web Server, it is possible to send an SQL query from a web page to a database, and
view the results in the web page.

Please refer to the Web Server documentation in the Cogent DataHub manual for more information.

18

Chapter 3. An Explanation of the Tutorial Code
The DataHub interacts with relational databases through ODBC (Open Data Base Connectivity). Every
database acts a little differently, and each person’s requirements are specific to the their own application.
Consequently, the DataHub offers its ODBC support through scripts, written in the Gamma language.

A DataHub script consists of four parts:

• Define the application object

• Interactions with the database

• Set up event handlers

• Shut down

3.1. Define the Application Object
A DataHub script defines an object called anApplication object. This object is a class derived from
the classApplication . All of the functions that you define should be methods of this class. Variables
should be members of this class wherever possible.

class MyODBCScript Application
{

env; // store the ODBC environment here
conn; // store the ODBC connection here

}

This defines the application object.

The application object requires a constructor. The constructor acts as the main line of your program. To
start your program, you just create an instance of the application class, causing the constructor to run.

method MyODBCScript.constructor ()
{

// This is the program main line
}

The job of the constructor is to define event handlers. An event handler is program code attached to a
particular event. An event can be one of:

• A change in a DataHub point value

• A timer

• A Microsoft Windows event

The constructor runs to completion. Once the constructor completes, the script engine begins processing
events, and executes the program code attached to those events.

The script engine will continue to process events until the application object is destroyed. You may
optionally provide a destructor for the object to clean up any specific data or open any files or timers that
your application has created.

method MyODBCScript.destructor ()
{

// This is where you clean up open files and connections
}

You can add other methods to the application object as you need them. Only the constructor is necessary.

19

Chapter 3. An Explanation of the Tutorial Code

3.2. Interactions with the Database

3.2.1. Connecting to the Database
Connecting to an ODBC database is a three-step process:

1. Create anODBCEnvironment object.

2. Create anODBCConnection object.

3. Connect to a DSN (Data Source Name).

.env = ODBC_AllocEnvironment();

.conn = .env.AllocConnection();

/* Attempt to connect. */
ret = .conn.Connect (" DSN name", " user name ", " password ");
if (ret != SQL_SUCCESS && ret != SQL_SUCCESS_WITH_INFO)

error (.conn.GetDiagRec());

If the connection fails, the return value will be something other thanSQL_SUCCESSor
SQL_SUCCESS_WITH_INFO. You can query the database for details of the failure by calling the
GetDiagRec method of theODBCConnection .

3.2.2. Creating a Gamma Class from a Database Table

The tutorial code connects to an existing database table. If you would like the script create a table
for you, please refer toSection 3.2.6,Creating a Database Tablebelow.

ODBC tables are mapped as classes into Gamma. This means that most interactions with the database
will be through convenient method calls rather than SQL queries. Gamma is able to automatically
determine the structure of a table in your database and to create a class from it:

tableclass = .conn.ClassFromTable (#ClassName, nil, "table_name");

This statement will look up the table namedtable_name in your database, and create a class whose
name isClassName from it. It will also return the class definition into the variabletableclass .

Gamma attempts to determine the primary key field from your table. Some databases, such as Microsoft
Access, do not provide a facility to do this. In that case, you need to assign the primary key for the table:

.conn.SetPrimaryKey (tableclass, "id");

The resulting class will have a number of special data members, like__table , the name of the table, as
well as a data member for each column of the database table.

3.2.3. Querying Rows from the Database
Once you have mapped your database table to a Gamma class, you can query the database by
constructing aselect SQL call:

allrows = .conn.QueryToClass (tableclass, string ("select * from ", tableclass.__table));

This statement will query all of the rows in the table attached totableclass , and return them as an
array inallrows . Each element of the array will be a class instance.

3.2.4. Inserting Rows into a Database
To insert a row, first create a member of the class associated with the table, and then use
ODBCConnection .Insert to insert it:

20

Chapter 3. An Explanation of the Tutorial Code

local timestamp;
local record;

record = new (tableclass);
timestamp = localtime (clock());
timestamp = format ("%d-%02d-%02d %02d:%02d:%02d",

timestamp.year + 1900, timestamp.mon + 1,
timestamp.mday, timestamp.hour, timestamp.min,
timestamp.sec);

record.ptname = "point name";
record.ptvalue = point_value;
record.pttimestamp = timestamp;
record.ptquality = point_quality;
.conn.Insert (record);

This code creates a record to be inserted, assigns a value to each column in the record, and then inserts it
into the database. Gamma will attempt to convert the values in each column to the type required by the
database. If an error occurs, theInsert method will throw an error that can be handled by a
try/catch block.

You can also insert rows by constructing your own SQL statement and submitting it using the
ODBCConnection .QueryAndStore method.

3.2.5. Updating Existing Rows in a Database
To update an existing row in a database, you must know the primary key for the row you wish to update.
Normally you find this key by performing a query on the database:

local result = .conn.QueryToClass (tableclass, string
("select * from ",

tableclass.__table,
" where name = ’",
"the_point_name", "’"));

local record = result[0];

The primary key column of the record will identify the row in the database. You can now modify the
record:

record.ptvalue = new_point_value;

and update the record in the database:

.conn.Update (record);

If an error occurs, theUpdate method will throw an error that can be handled by atry/catch block.

3.2.6. Creating a Database Table
In most cases, you will create the database table using your database management software. This gives
you a more convenient interface to the creation process. Different databases use different syntax to create
a table. However, if you need to create a table within your script, there are two options:

1. Call theODBCConnection .CreateTable method.

2. Call theODBCConnection .QueryAndStore method.

TheCreateTable method helps to construct the query, but it still requires you to understand the SQL
syntax of table creation for your database.

.conn.CreateTable ("table name",
"id int PRIMARY KEY IDENTITY",
"ptname VARCHAR(20) NOT NULL",
"ptvalue DOUBLE NOT NULL",
"pttimestamp DATETIME NOT NULL",

21

Chapter 3. An Explanation of the Tutorial Code

"ptquality VARCHAR(20) NOT NULL"
);

TheCreateTable arguments consist of the table name followed by any number of definitions for the
columns in the table. The column definitions depend on the database being used. In particular, the
primary key field (in this example,id) is very different from one database to another. The primary key
must be integer, unique and auto-incrementing. In the case of Microsoft Access, you must issue an
additional query to create a primary key:

.conn.CreateTable ("table_name",
"id COUNTER",
"ptname VARCHAR(20) NOT NULL",
"ptvalue DOUBLE NOT NULL",
"pttimestamp DATETIME NOT NULL",
"ptquality VARCHAR(20) NOT NULL"
);

.conn.QueryAndStore ("create unique index p_id on table_name (id)
with primary disallow null");

The alternative to usingODBCConnection.CreateTable is to construct your own complete SQL
statement and submit it to the database usingODBCConnection .QueryAndStore :

.conn.QueryAndStore ("create table table_name
(id COUNTER, ptname VARCHAR(20) NOT NULL,

ptvalue DOUBLE NOT NULL,
pttimestamp DATETIME NOT NULL,
ptquality VARCHAR(20) NOT NULL)");

.conn.QueryAndStore ("create unique index p_id on table_name (id)
with primary disallow null");

If any call toCreateTable or QueryAndStore generates an error, then the error will be thrown.
You can catch the error using atry/catch block within your script.

3.3. Set up Event Handlers
The Gamma application will normally define functions to be called when an event occurs. In ODBC
applications, this is most commonly to write live data into the relational database. Another word for an
event is a "trigger". It is up to you to decide the best trigger for writing data into the database.

An event handler will look something like this:

.OnChange (#$DataSim:Sine, ‘(@self).AddRecord (this, value));

This statement says that when the DataHub pointDataSim:Sine changes, we want to call our
application’sAddRecord method with two arguments. The special variablesthis andvalue are
always defined to be the point name and the point value respectively when running anOnChange
handler. We might define ourAddRecord method like this:

method MyODBCScript.AddRecord (pointname, newvalue)
{

local record = new (tableclass);
local timestamp;

timestamp = localtime (PointGetUnixTime(pointname));
timestamp = format ("%d-%02d-%02d %02d:%02d:%02d",

timestamp.year + 1900, timestamp.mon + 1,
timestamp.mday, timestamp.hour, timestamp.min,
timestamp.sec);

record.ptname = string (pointname);
record.ptvalue = number (newvalue);
record.pttimestamp = timestamp;
record.ptquality = GetQualityName(PointMetadata(pointname).ptquality);
.conn.Insert (record);
record;

}

22

Chapter 3. An Explanation of the Tutorial Code

If you would like to add a record at a specific interval rather than on a value change, you could create a
timer:

timerid = every (0.5, ‘(@self).AddRecord (#$DataSim:Sine, $DataSim:Sine));

This statement will add a new record to the database every ½ second. In this case, we need to specify the
name of the point,$DataSim:Sine , as part of theAddRecord call because the special variables
this andvalue are not defined during a timer call. The first reference to$DataSim:Sine is
protected from evaluation during the call using the# modifier, so its name is passed to the first argument
when the expression is evaluated (when the timer occurs). The second reference is not protected from
evaluation, so its value is passed to the second argument.

You need to keep track of outstanding timers so that you can clean them up during the destructor:

method MyODBCScript.destructor ()
{

cancel (timerid);
}

3.4. Shut Down
Normally anApplication is not started and stopped repeatedly. The application is normally started
when the DataHub starts, and continues until the DataHub is stopped.

To shut down your application, you need to destroy the application instance. This will cause the
destructor to be called. Your clean-up code should be located in the destructor. TheApplication
class automatically cleans up event handlers created usingOnChange. You can detach from the ODBC
database in your destructor:

method MyODBCScript.destructor ()
{

.conn.Disconnect();
cancel (timerid);

}

If you do not disconnect from the database in the destructor, Gamma will disconnect from the database
when its garbage collector destroys theODBCConnection object.

You can destroy the application instance by calling thedestroy function. This can be triggered by a
data point change or some other method. For example:

.OnChange (#$default:kill_application, ‘destroy(@self));

This statement would wait for a change to the DataHub point nameddefault:kill_application
and then destroy the application. The application could then be restarted from the Scripting option in the
DataHub Properties window.

23

Chapter 4. Multi-Threaded ODBC Interface
The DataHub includes a scripting interface to multi-threaded database access. This comes in addition to
the existing single-threaded ODBC implementation. A multi-threaded interface is substantially different
from a single-threaded interface, and offers a number of advantages:

1. Non-blocking: A single-threaded interface can block when attempting to communicate with a
database that is no longer available. While blocked, all other Gamma scripts are halted until the
database responds or the connection times out. This has a particularly substantial impact when
attempting to communicate with more than one database at a time, since blocking on one database
will also halt communication to the other database.

With a multi-threaded interface, a separate thread is spawned to communicate with each database. If
a communication problem occurs, only the database thread blocks. All other Gamma scripts
continue to run normally.

2. Store-and-forward: A single-threaded interface must be willing to drop data when the database
becomes temporarily too busy to handle incoming data, or when the database is disconnected for
some reason, such as a network failure.

A multi-threaded interface can store data to disk when the database is unresponsive or unavailable.
When the database recovers, the stored data can be transmitted to the database. Some multi-threaded
implementations do not preserve operation order. Gamma’s implementation guarantees that every
operation will be performed in the same order that it was originally attempted.

3. Time-delayed write: The multi-threaded implementation can store data to disk, to be written to the
database at a later time or in batches as defined intervals. This is particularly useful if bandwidth is
limited at certain times of day, or where the database connection is expensive to maintain at all
times. For example, a database connection using satellite Internet could be charged based on
connection time. It is much more efficient to store data temporarily and then connect at a predefined
interval to update the database.

4.1. How-To
To ensure that the primary script thread does not block when there is a communication problem with the
the database, all communication to the database must be asynchronous. This means that a database
command will normally not produce an immediate result. The result will be delivered at some time in
future by triggering a "callback" function in the script. This is a different way of thinking about a script,
and takes a little getting used to. Gamma provides a number of functions to make this as simple as
possible.

4.1.1. Create an ODBCThread Instance
All communication with the database is performed through an instance of the classODBCThread. For
example:

mysql = new ODBCThread();
flags = STORE_AND_FORWARD;
cachefile = "C:/temp/mysql.cache";
mysql.Configure ("myDSN", "username", "password", flags, cachefile);

24

Chapter 4. Multi-Threaded ODBC Interface

This code is sufficient to create the database connection. At this point, the database is not connected, and
the thread that handles the database has not yet been started.

4.1.2. Attach Event Callbacks
The next step is to attach the callback functions that will alert the script to various events from the
database thread. Whenever a callback function is executed, a special variable calledSQLResult will be
defined for the duration of the callback. This contains information about the result of the SQL command,
a description of the command and error codes. This information is stored in an instance of the class
ODBCThreadResult .

A callback is attached by simply assigning the code to run to the callback member of theODBCThread
object. For example, to print information when the connection fails, you could do this:

method MyApp.onConnectionFail()
{

princ ("Connection closed: ", SQLResult.Description, "\n");
}

and then in the application constructor, do this:

thread.OnConnectionFailed = ‘(@self).onConnectFail();

The following callbacks are defined:

OnConnectionSucceeded

Called when the connection to the database transitions from not connected to connected.

OnConnectionFailed

Called when the connection to the database transitions from connected to not connected, or when a
connection attempt fails. TheDescription member of theSQLResult contains information
about the reason for the event.

OnExecuteStored

Called when a stored transaction is successfully forwarded to the database. TheSQLResult
contains information about the transaction.

OnFileSystemError

Called when a file system error occurs when reading or writing to the disk. TheDescription
member for theSQLResult has details about the error.

OnODBCError

Called when an ODBC error occurs that cannot be reported as part of the result set from a successful
transaction. Typically this would be a failure generated by an attempt to execute a stored transaction.

4.1.3. Configure Startup Actions
One of the most difficult concepts of using an asynchronous interface is the idea that a sequence of steps
must be performed in order during startup, even though the script code cannot be executed sequentially.
At each step, there could be an asynchronous request/event pair that breaks up the sequence into disjoint
code fragments.

TheODBCThread class defines a startup state machine that helps to sequence these steps. As a script
developer, you define the steps that will be performed by creating a series of initialization steps, or
"stages" that will be performed after a successful database connection. These stages will not
automatically be executed. It is up to you to initiate them. This allows you to choose whether to execute

25

Chapter 4. Multi-Threaded ODBC Interface

these stages on each connection, or only on the first connection, or to start executing the stages at a stage
other than the first.

To create initialization stages, make repeated calls to the method "addInitStage":

AddInitStage(sqlCommand , onSuccess , onFailure);

ThesqlCommand argument contains either a string containing valid SQL, or inline code to be
executed. If thesqlCommand is a string, it is passed to the database thread for execution. If it is inline
code, it will be executed immediately.

TheonSuccess andonFailure arguments are inline code that will be executed when the
sqlCommand has returned a result. Only one of these two will be executed for each execution of
sqlCommand . The return value fromonSuccess is ignored. If the return value fromonFailure is
nil , then the initialization sequence is aborted. It is sufficient to supplynil to onFailure to abort
the sequence on any error, and to supplyt to onFailure to continue the sequence if there is an error.

For example, the following sequence could be used:

// Drop the existing table. If we get an error, continue
thread.AddInitStage("drop table mytable", nil, t);

// Create a new table. Once the table is created, set up an
// auto-incrementig primary key. If either the table creation or
// the key definition fails, abort.
thread.AddInitStage("create table mytable (myid counter, myvalue number, tstamp number)", nil, nil);
thread.AddInitStage("create unique index p_myid on mytable (myid) with primary disallow null", nil, nil);

// Make a call to getTableInfo to look up all tables in the
// database. Since getTableInfo is asynchronous, we must use its
// callback to resume the initialization sequence by calling the
// special method "cbInitStage()" in the callback, and then
// letting the initialization sequencer call the real callback
// mapTable is an example of user-created code.
thread.AddInitStage(‘(@thread).getTableInfo("", "", "", "TABLE", ‘(@thread).cbInitStage()),

‘(@self).mapTable(@thread, "mytable", SQLTables), nil);

// We happen to know that the database we use does not provide
// primary key information so we have to set the primary key
// manually after the table has been mapped to class.
thread.AddInitStage(nil, ‘(@self).SetClassKey((@self).tableclass, #myid), nil);

// Finally, we have passed through all the initialization steps,
// so we begin storing data. beginDataStream in this example is
// user-generated code, which might set up timers or data event
// handlers that cause the script to write data to the database.
thread.AddInitStage(nil, ‘(@self).beginDataStream(@thread), nil);

Notice that the final two stages do not define thesqlCommand at all. This will cause their success code
to run immediately and then to move on to the next initialization stage. If an initialization stage has no
sqlCommand , it cannot fail.

At this point, the initialization stages are defined but have not run. They will not be run until the script
calls:

thread.beginAsyncInit();

Commonly, you only want to run the initialization once, so you might handle it in the
OnConnectionSuccess handler like this:

method MyApp.onConnect(thread)
{

princ ("Connection succeeded\n");
if (thread.is_first_connect)
{

thread.beginAsyncInit();
}

}

26

Chapter 4. Multi-Threaded ODBC Interface

4.1.4. Start the Database Thread
Once you have defined the parameters for the database connection, defined the callback handlers and
defined the initialization code, the connection is completely defined, but still is not running. To start the
thread and begin connecting, call theStart method:

thread.Start();

At this point the thread is started and begins trying to connect to the database. As the thread runs it may
call your callback functions in any order to indicate successes, failures, and errors.

4.2. Store and Forward
Store and Forwardis a term used to describe a database connection where the data is stored locally to
disk and then later forwarded to the database. TheODBCThread object performs an advanced form of
store and forward that does more than simply store data for later delivery.

For any SQL statement given to theODBCThread.ExecDirect method, you can optionally specify
that this particular statement should be stored for later forwarding. Normally these will beINSERT or
UPDATEstatements, but they could be an SQL statement that must be executed at the database, such as
stored procedures orALTERstatements. TheODBCThread guarantees that all storable SQL commands
will be executed in the order in which they are specified, even if they are first stored to file.

TheODBCThread object uses a sophisticated store and forward technique that only writes to disk if the
database is not connected, or has been paused. If the database is available, the commands will be
transmitted directly to the database. This means that there is no penalty to using store and forward during
normal operation.

ODBCThread also maintains an in-memory queue of pending operations. This queue helps to avoid
writing to disk during busy periods or during short database or network outages. You can modify the
depth of this queue to reduce the chance of involving the disk during busy periods. The queue depth
defaults to 100 messages, but it can be modified by setting theMaxTransactions member of the
ODBCThread. For example:

thread.MaxTransactions = 200;

For the thread to perform store and forward, the flagSTORE_AND_FORWARDmust be specified when
initially configuring the thread, and the flagSTORE_AND_FORWARDmust also be specified for any call
to ExecDirect that should be a candidate for store and forward treatment.

4.2.1. Time Delayed Writes
Time delayed writing is used to avoid maintaining a continuous connection to the database, or to make
use of times of day where the network utilization is low. You can call thePause andDisconnect
methods at any time to cause the thread to pause output to the database, then disconnect. All further
transactions will be written to the local disk cache until the database is reconnected. To resume writing to
the database, the script just needs to call theResumemethod. The database thread will automatically
reconnect to the database when it can.

You can periodically test to see whether the disk cache has been transmitted by running a repeating timer
that callsCacheIsEmpty . WhenCacheIsEmpty returns non-nil, the disk cache has been consumed.
At this point the script can once againPause andDisconnect the thread.

Using this method, the script can transmit the cached data based on the time of day, a process event, or
even input from an operator.

27

Chapter 4. Multi-Threaded ODBC Interface

4.3. Example
/*

* This script demonstrates the use of the threaded ODBC interface to insert
* data into a database based on a timer.
*/

require ("Application");
require ("ODBCThreadSupport");
require ("Time");
require ("Quality");

class ODBCThreadDemo Application
{

DSN = "MySQLLocal"; // The DSN name to use for the database connection
username = "root"; // The user name for connecting to the database
password = "GY&*ik"; // The password for connecting to the database
tablename = "andrew5"; // The name of the database table
cachefile = "c:/tmp/testcache.txt"; // Base name for the disk cache file

tableclass;
thread;

}

/* This method will be called every time the connection is established to the database.
* If there is something we only want to perform on the first connection, we can test
* is_first_connect to perform the code only once.
*/

method ODBCThreadDemo.onConnect()
{

princ ("Connection succeeded\n");
if (.thread.is_first_connect)
{

// Start the sequence defined by the AddInitStage calls in the constructor
.thread.BeginAsyncInit();

}
}

/* If we get a connection attempt failure, or the connection fails after having been
* connected, this method is called.
*/

method ODBCThreadDemo.onConnectFail()
{

princ ("Connection closed: ", SQLResult.Description, "\n");
}

/* Map the table in the set of table definitions that matches the name in .tablename
* into a Gamma class. This lets us easily convert between class instances and rows
* in the table.
*/

method ODBCThreadDemo.mapTable(name, tabledefinitions)
{

.tableclass = .thread.ClassFromTable(name, tabledefinitions);
}

/* Set up the timer or event handler functions to write to the table. */
method ODBCThreadDemo.startLogging()
{

/* You can modify and/or add similar timers or event handlers for
* for each data point that you want to log. Please refer to the
* "Methods and Functions from Application.g" section of the documentaton
* for more details about the timer and event handler funtions.
* http://www.cogentdatahub.com/Docs/dhs-reference-applicationg.html
*/

// Log a new row of data every 3 seconds.
.TimerEvery(3, ‘(@self).writeData(#$DataSim:Sine));

// Log a new row of data at 20 seconds past each minute of each hour, etc.

28

Chapter 4. Multi-Threaded ODBC Interface

.TimerAt(nil, nil, nil, nil, nil, 20, ‘(@self).writeData(#$DataSim:Triangle));

// Log a new row of data for the point DataSim:Square when it changes.
.OnChange(#$DataSim:Square, ‘(@self).writeData(this));

// Log a new row of data for the point DataSim:Sine when DataSim:Square changes.
.OnChange(#$DataSim:Square, ‘(@self).writeData(#$DataSim:Sine));

}

method ODBCThreadDemo.writeData(pointsymbol)
{

local row = new (.tableclass);
local pttime, ptltime;
local timestring;

// Generate a timestamp in database-independent format to the millisecond.
// Many databases strip the milliseconds from a timestamp, but it is harmless
// to provide them in case the database can store them.
pttime = WindowsTimeToUnixTime(PointMetadata(pointsymbol).timestamp);
ptltime = localtime(pttime);
timestring = format("{ts ’%04d-%02d-%02d %02d:%02d:%02d.%03d’}",

ptltime.year+1900, ptltime.mon+1, ptltime.mday, ptltime.hour, ptltime.min, ptltime.sec,
(pttime % 1) * 1000);

// Fill the row. Since we mapped the table into a Gamma class, we can access
// the columns in the row as member variables of the mapped class.
row.ptname = string(pointsymbol);
row.ptvalue = eval(pointsymbol);
row.pttime = timestring;
// Perform the insertion. In this case we are providing no callback on completion.
.thread.Insert(row, nil);

}

/* Write the ’main line’ of the program here. */
method ODBCThreadDemo.constructor ()
{

// Create and configure the database connection object
.thread = new ODBCThread();
.thread.Configure(.DSN, .username, .password, STORE_AND_FORWARD, .cachefile, 0);

// Use this to delete the table on the first connection after the script starts.
// BE CAREFUL - re-running the script will start over and delete the table again.
// .thread.AddInitStage(format("drop table %s", .tablename), nil, t);

// Use this to create the table if it does not exist. Note: this might not work for all databases.
// When in doubt, create the table manually. The ’t’ in the onFail argument says to ignore errors
// and continue with the next stage.
// .thread.AddInitStage(format("create table %s (ptid int auto_increment primary key, ptname varchar(64),
// ptvalue double, pttime datetime)", .tablename), nil, t);

// Query the table and map it to a class for eash insertion. We want to run an asynchronous event
// within the asynchronous initialization stage, so to do that we specify the special method
// cbInitStage as the callback function of our asynchronous event (GetTableInfo). We deal with
// the return from the GetTableInfo in the onSuccess argument of the init stage.
.thread.AddInitStage(‘(@.thread).GetTableInfo("", "", (@.tablename), "TABLE,VIEW",

‘(@.thread).cbInitStage()),
‘(@self).mapTable(@.tablename, SQLTables), nil);

// Do not start writing data to the table until we have successfully created and mapped
// the table to a class. If we wanted to start writing data immediately, then we would
// create the table class beforehand instead of querying the database for the table
// definition. Then, even if the database were unavailable we could still cache to the
// local disk until the database was ready.
.thread.AddInitStage(nil, ‘(@self).startLogging(), nil);

// Set up the callback functions for various events from the database thread
.thread.OnConnectionSucceeded = ‘(@self).onConnect();
.thread.OnConnectionFailed = ‘(@self).onConnectFail();

29

Chapter 4. Multi-Threaded ODBC Interface

.thread.OnFileSystemError = ‘princ("File System Error: ", SQLResult, "\n");

.thread.OnODBCError = ‘princ("ODBC Error: ", SQLResult, "\n");

.thread.OnExecuteStored = nil;

// Now that everything is configured, start the thread and begin connecting. All of the
// logic now will be driven through the onConnect callback and then through the init
// stages.
.thread.Start();

}

/* Any code to be run when the program gets shut down. */
method ODBCThreadDemo.destructor ()
{
}

/* Start the program by instantiating the class. */
ApplicationSingleton (ODBCThreadDemo);

30

Chapter 5. Classes

DATE_STRUCT
DATE_STRUCT— contains dates (y,m,d).

Synopsis
class DATE_STRUCT
{

day;
month;
year;

}

Description

This structure contains dates. For more information, please refer to C Data Types.

31

ODBCColumn
ODBCColumn—

Synopsis
class ODBCColumn
{

columnsize;
datatype;
decimaldigits;
name;
nullable;

}

Description

Not yet documented.

32

ODBCConnection
ODBCConnection — allocates a connection handle.

Synopsis
class ODBCConnection ODBCHandle
{

__stmt;
h;
handle;
type;

}

Base Classes

ODBCHandle <-- ODBCConnection

Description

This class allocates a connection handle. It corresponds to using the valueSQL_HANDLE_DBCfor the
HandleType of theSQLAllocHandle function.

Class Members

These functions are identical to the corresponding C or C++ functions, as noted.

AddColumn (tablename, column, type, default_val, allow_null)

corresponds to AddColumn.

AllocDescriptor ()

corresponds to AllocDescriptor.

AllocStatement ()

corresponds to SQLAllocStmt.

ClassFromColumns (symclassname, superclass, columns)

corresponds to ClassFromColumns.

ClassFromTable (symclassname, superclass, tablename)

corresponds to ClassFromTable.

ClassesFromTables (superclass, verbose?=nil)

corresponds to ClassesFromTables.

Connect (ServerName, UserName, Authentication)

corresponds to SQLConnect.

CreateTable (tablename, columns...)

corresponds to CreateTable.

Delete (row)

corresponds to Delete.

Disconnect ()

corresponds to SQLDisconnect.

33

ODBCConnection

DropTable (tablename)

corresponds to DropTable.

EndTran (CompletionType)

corresponds to SQLEndTran.

Error ()

corresponds to SQLError.

GetOneColumn (query_string)

corresponds to GetOneColumn.

GetOneValue (query_string)

corresponds to GetOneValue.

Insert (row)

corresponds to Insert.

MakeClass (symclassname, superclass, ivars, tablename, primary_key)

corresponds to MakeClass.

MapClassFromResponse (klass, response)

corresponds to MapClassFromResponse.

Query (query_string)

corresponds to Query.

QueryAndStore (query_string)

corresponds to QueryAndStore.

QueryToClass (klass, query_string)

corresponds to QueryToClass.

QueryToTempClass (superclass, query)

corresponds to QueryToTempClass.

ReQuery (row)

corresponds to ReQuery.

Statement ()

corresponds to Statement.

StoreResult ()

corresponds to StoreResult.

Update (row)

corresponds to Update.

(The following functions are inherited from: ODBCHandle)

GetDiagRec ()

corresponds to SQLGetDiagRec.

34

ODBCDescriptor
ODBCDescriptor — allocates a descriptor handle.

Synopsis
class ODBCDescriptor ODBCHandle
{

h;
handle;
type;

}

Base Classes

ODBCHandle <-- ODBCDescriptor

Description

This class allocates a descriptor handle. It corresponds to using the valueSQL_HANDLE_DESCfor the
HandleType of theSQLAllocHandle function.

35

ODBCEnvironment
ODBCEnvironment — allocates an environment handle.

Synopsis
class ODBCEnvironment ODBCHandle
{

h;
handle;
type;

}

Base Classes

ODBCHandle <-- ODBCEnvironment

Description

This class allocates an environment handle. It corresponds to using the valueSQL_HANDLE_ENVfor the
HandleType of theSQLAllocHandle function.

Class Members

These functions are identical to the corresponding C or C++ functions, as noted.

AllocConnection ()

corresponds to SQLAllocConnect.

(The following functions are inherited from: ODBCHandle)

GetDiagRec ()

corresponds to SQLGetDiagRec.

36

ODBCHandle
ODBCHandle — a parent class for connections, descriptors, environments, and statements.

Synopsis
class ODBCHandle
{

handle;
type;

}

Description

This class is a parent class forODBCConnection , ODBCDescriptor , ODBCEnvironment , and
ODBCStatement handles. Together, these classes provide the functionality ofSQLAllocHandle .

Class Members

These functions are identical to the corresponding C or C++ functions, as noted.

GetDiagRec ()

corresponds to SQLGetDiagRec.

37

ODBCResult
ODBCResult —

Synopsis
class ODBCResult
{

columns;
rows;

}

Description

Not yet documented.

Class Members

These functions are identical to the corresponding C or C++ functions, as noted.

ColumnIndex (column_name)

corresponds to ColumnIndex.

38

ODBCStatement
ODBCStatement — allocates a statement handle.

Synopsis
class ODBCStatement ODBCHandle
{

h;
handle;
type;

}

Base Classes

ODBCHandle <-- ODBCStatement

Description

This class allocates a statement handle. It corresponds to using the valueSQL_HANDLE_STMTfor the
HandleType of theSQLAllocHandle function.

Class Members

These functions are identical to the corresponding C or C++ functions, as noted.

Cancel ()

corresponds to SQLCancel.

CloseCursor ()

corresponds to SQLCloseCursor.

Columns (CatalogName, SchemaName, TableName, ColumnName)

corresponds to SQLColumns.

ExecDirect (StatementText)

corresponds to SQLExecDirect.

Execute ()

corresponds to SQLExecute.

Fetch ()

corresponds to SQLFetch.

FetchScroll (FetchOrientation, FetchOffset)

corresponds to SQLFetchScroll.

FreeStmt (Option)

corresponds to SQLFreeStmt.

GetResultData ()

corresponds to SQLGetData.

Prepare (StatementText)

corresponds to SQLPrepare.

PrimaryKeys (CatalogName, SchemaName, TableName)

corresponds to SQLPrimaryKeys.

39

ODBCStatement

RowCount (StatementText)

corresponds to SQLRowCount.

Tables (CatalogName, SchemaName, TableName, TableType)

corresponds to SQLTables.

(The following functions are inherited from: ODBCHandle)

GetDiagRec ()

corresponds to SQLGetDiagRec.

40

ODBCThread
ODBCThread — configures the multi-threaded ODBC interface.

Synopsis
class ODBCThread
{

Commands; // Internal variable
Callbacks; // Internal variable
OnExecuteStored; // callback
OnConnectionSucceeded; // callback
OnConnectionFailed; // callback
OnFileSystemError; // callback
OnODBCError; // callback
NCached; // Internal variable
NUncached; // Internal variable
NStoredPrimary; // Number of transactions written to level 1 cache
NStoredSecondary; // Number of transactions written to level 2 cache
NForwarded; // Number of transactions read from cache
NStoreFailPrimary; // Number of failures while writing to level 1 cache
NStoreFailSecondary; // Number of failures while writing to level 1 cache
NForwardFail; // Number of failures while writing to the database from cache
NCommands; // Number of commands ever queued to thread
NResults; // Number of commands results ever returned from thread
NRejected; // Number of commands that were rejected without queueing
ReconnectSecs; // Number of seconds to wait between database reconnection attempts
ForwardDelay; // Delay in milliseconds between transactions written from cache to database
MaxTransactions; // Maximum number of transactions to hold on queue

}

Description

As of this writing, the ForwardDelay member is not implemented.

The script developer should only modify the following members:

OnExecuteStored
OnConnectionSucceeded
OnConnectionFailed
OnFileSystemError
OnODBCError
ReconnectSecs
ForwardDelay
MaxTransactions

Methods

ODBCThread.CacheIsEmpty()

returns non-nil if both the level 1 and level 2 cache files are empty.

ODBCThread.Columns (catalog , schema , tablename , columnname , callback)

queries the database table for its column definitions. Thecatalog , schema , tablename and
columnname are all strings. Some of these may accept wildcard patterns depending on the
database being used. When the call completes, the callback code will be executed. The result is
available in theSQLResult for the duration of the callback.

ODBCThread.Configure (DSN, username , password , flags , storagefile ,
maxfilesize)

sets the initial configuration for the database connection. Theflags parameter can be either0 or
STORE_AND_FORWARD. If STORE_AND_FORWARDis not specified then no command on this

41

ODBCThread

connection will be stored, even if the individual command specifies theSTORE_AND_FORWARD
flag. Thestoragefile parameter specifies the name of a file to store the level 1 cache
information for store and forward operation. The level 2 cache file name will be created from this
file name.

Themaxfilesize specifies the maximum number of bytes that a cache file can grow to. There
can in fact be 3 cache files, each of this size, at any one time. Themaxfilesize may be exceeded
by the length of a single transaction for any file. If you setmaxfilesize to 0, then 2.1 GB will
be used. If the size exceeds this amount then it will be truncated to 2.1 GB. You may wish to
intentionally limit the file size to a lower number. In a system where the data rate is always too high
for the database to handle, a smaller cache file size will cause theODBCThread to go through
periods where its data is discarded while the cache file is caught up. A smaller file will make this
discard/catch-up cycle faster.

Flags can be any combination of:

• STORE_AND_FORWARD- If this flag is not set, then no file storage will take place. Any
transactions that cannot be written to the thread immediately will be rejected. Any transactions in
the queue that cannot be delivered to the database will be discarded.

• NO_STORE_TO_SECONDARY- This tells theODBCThread to only use the level 1 cache. If the
queue between the script and the database thread becomes full, further transactions will be
rejected until there is space in the queue. However, any transactions in the queue that cannot be
delivered to the database will be stored in level 1 cache.

• STORE_ALWAYS- This flag tells theODBCThread to always store a transaction do disk before
sending it to the database. This will normally cause the thread to read its queue faster, and write
the transactions to disk more frequently. In case of a system crash, those transactions are more
likely to be recoverable when the script re-starts. This option imposes a speed penalty if the disk
is slow. On systems with fast disks, this penalty is normally minimal.

• ALLOW_CACHE_RESTART- In case of a system or application crash, theODBCThread will
resume reading any disk files at the point where it left off when the application restarts. This flag
tells theODBCThread not to track its position in the disk file, and to restart at the beginning of
the file during a crash recovery. This improves speed on systems with a slow disk, but means that
some transactions may be sent to the database more than once. This should only be used if disk
access is slow.

• NO_FLUSH_ON_WRITE- TheODBCThread normally tries to update files as soon as possible
after a write to disk. This is not efficient, but it improves the chance that more transactions will be
recoverable in the case of a system or application crash. Specifying this flag will cause the
ODBCThread to store data in memory longer and write to disk in larger blocks. This may
improve performance for systems with a slow file system, but it increases the chance that
transactions will be lost if the system crashes or shuts down.

We recommend using either:

STORE_AND_FORWARD

or

STORE_AND_FORWARD | STORE_ALWAYS

unless the impact of disk access is unacceptably high on the system.

42

ODBCThread

ODBCThread.Connect ()

forces a connection attempt, even if the thread connection timer has not expired.

ODBCThread.DataSources (type)

lists all data sources (DSNs). The type parameter can be one of:

• SQL_FETCH_FIRST- retrieve all DSNs.

• SQL_FETCH_FIRST_USER- retrieve only user DSNs.

• SQL_FETCH_FIRST_SYSTEM- retrieve only system DSNs.

The return value is an array of lists of the form:("dsn_name" . "dsn_driver")

ODBCThread.Disconnect ()

forces the thread to disconnect from the database. If the thread is not paused then it will attempt to
reconnect to the database on the next reconnect timer cycle.

ODBCThread.ExecDirect (flags , sql , callback)

executes an SQL statement on the database. Flags can be either0 or STORE_AND_FORWARD. If
the command cannot be executed immediately, andSTORE_AND_FORWARDis set, and
STORE_AND_FORWARDis also set on the thread, then the command will be stored to file and
executed later. The SQL statement is a string. When the statement is executed, the callback will be
called. The result is available in theSQLResult for the duration of the callback.

ODBCThread.GetFlags ()

retrieves the flags set by the.Configure method.

ODBCThread.GetMessageCount ()

retrieves the number of messages currently queued to the database thread.

ODBCThread.GetResultCount ()

retrieves the number of results currently queued from the database thread to the script thread.

ODBCThread.Insert (row , callback)

performs a databaseINSERT given an instance of a class that has been mapped to a column set in
the database. The row must be an instance of a class returned from.ClassFromResultSet ,
.ClassFromTable , or .ClassFromThreadResult . When the insertion is complete, the
callback is executed.

ODBCThread.QueueIsFull ()

returns non-nil if the message queue is full.

ODBCThread.IsPaused ()

returns non-nil if the thread is paused. See the information inODBCThread.Pause() .

ODBCThread.NoOp (callback)

sends a message to the database thread, and do nothing. When the message has arrived at the
database thread, the method returns and runs the callback. This is a mechanism to synchronize
execution in the script with actions that are queued on the database thread.

ODBCThread.Pause ()

pauses the thread. A paused thread will continue to store data to disk to be forwarded later, but it
will not perform transactions on the database. If the database is disconnected and paused, the thread
will not attempt to reconnect until the thread is resumed.

43

ODBCThread

ODBCThread.PrimaryKeys (catalog , schema , tablename , callback)

queries the database for the primary keys for the givencatalog , schema andtablename . The
result is available in theSQLResult when the callback is executed.

ODBCThread.QuoteConversion (head , tail , character , replacement)

is used internally.

ODBCThread.Resume ()

resumes a thread that has been previously paused by.Pause() .

ODBCThread.SlowInsert (row , callback)

is an alternate (slower) method to insert data. It acts the same as the.Insert method, except that
it recomputes the SQL statement on each insert. The.Insert method computes the SQL
statement ahead of time.

ODBCThread.SlowUpdate (row , callback)

is an alternate (slower) method to update data. It acts the same as the.Update method, except that
it recomputes the SQL statement on each update. The.Update method computes the SQL
statement ahead of time.

ODBCThread.Start ()

starts the thread and begins attempting to connect.

ODBCThread.Stop ()

closes the connection to the database and stops the thread.

ODBCThread.Tables (catalog , schema , tablename , tabletype , callback)

queries the database for all tables matching thecatalog , schema , tablename and
tabletype . It calls thecallback when the transaction completes. Specifying an empty string
("") for any argument indicates no preference. The tabletype must be one of"TABLE" , "VIEW"
or "TABLE,VIEW" . The result of this call is available inODBCResult .

ODBCThread.Update (row , callback)

performs a databaseUPDATEgiven an instance of a class that has been mapped to a column set in
the database. The row must be an instance of a class returned from.ClassFromResultSet ,
.ClassFromTable or .ClassFromThreadResult . When the update is complete, the
callback is executed. The result of this call is available inODBCResult .

ODBCThread.ValueString (value)

is used internally.

ODBCThread.AddInitStage (sqlString , onSuccess , onFailure)

adds an initialization stage to the sequential set of steps to be executed as part of the initialization
after the database connections is made. See the sectionConfigure Startup Actionsabove. The return
value from this function is an index that can be given to.BeginAsyncInit .

ODBCThread.BeginAsyncInit (stage ?=0)

starts executing the initialization stages in the order in which they were specified. If the stage
argument is non-zero, being executing from that index in set. This index is provided as the return
value from.AddInitStage .

ODBCThread.cbInitStage ()

is a provided callback that can be used to trigger the next initialization stage in the initialization
sequence. If the stage specifies user-defined code instead of a string for thesqlString argument
of .AddInitStage , that code must at some point call.cbInitStage in order for the
sequence to continue.

44

ODBCThread

ODBCThread.ClassFromResultSet (columnresult , keyresult ,
superclass ?=nil, symclassname ?=#UnboundODBCThreadTableClass)

creates a class from the table defined in the given result sets. Thecolumnresult is the column
definition for the table, and thekeyresult is the result from calling.PrimaryKeys on the
table, or the result from querying the table through the.Tables method. If thesuperclass is
non-nil, the class will be derived fromsuperclass , otherwise it will have no parent class. If
symclassname is provided, that class name will be used instead of the default
UnboundODBCThreadTableClass . The class produced by this call maps each column in the
columnresult to a member variable in the class. In addition, information about the primary key
and the source table is held in the class. Instances of this class are suitable for use with the
.Insert method. If the table has a primary key, then instances of this class can also be used in the
.Update method.

ODBCThread.ClassFromTable (tablename , tables , superclass ?=nil,
symclassname ?=#UnboundODBCThreadTableClass)

creates a class from the table namedtablename from the table set defined intables . The
tables argument is the value ofSQLTables from a call to the.GetTableInfo method. See
the discussion in.ClassFromResultSet for more information.

ODBCThread.ClassFromThreadResult (threadresult , superclass ?=nil,
symclassname ?=#UnboundODBCThreadTableClass)

creates a class from anODBCThreadResult instance. This instance is usually obtained from a
call to .GetTableInfo or .Columns . See the discussion in.ClassFromResultSet for
more information.

ODBCThread.constructor ()

is the constructor for this class. Do not override the constructor forODBCThread in your own code.
Instead, derive a new class fromODBCThread and then define a constructor for your derived class.

ODBCThread.CreateClass (symclassname , superclass , ivars , tablename ,
primary_key)

is the low-level call made from.ClassFromResultSet , .ClassFromTable and
.ClassFromThreadResult . It constructs the necessary code to define a class that maps its
member variables to columns in a result set.

ODBCThread.EvalSafe (code)

is used internally.

ODBCThread.GetDataSources (direction ?=SQL_FETCH_FIRST)

queries the ODBC subsystem for the names of all DSNs. The type parameter can be one of:

• SQL_FETCH_FIRST- retrieve all DSNs.

• SQL_FETCH_FIRST_USER- retrieve only user DSNs.

• SQL_FETCH_FIRST_SYSTEM- retrieve only system DSNs.

The return value is an array of lists of the form:("dsn_name" . "dsn_driver")

This method is the only method that calls synchronously into the ODBC subsystem. The result is
available as the return value from this function. The ODBC definition states that this call will be
entirely satisfied by the driver manager, and so cannot block on the database. The database does not
need to be connected, and the database thread does not have to be started for this method to succeed.

45

ODBCThread

ODBCThread.GetInsertFormat (klass)

constructs the SQL statement that will be issued when the.Insert method is called. If you
change the definition of the table by calling.SetClassKey , then you must also issue
.GetInsertFormat and.GetUpdateFormat after.SetClassKey completes.

ODBCThread.GetTableInfo (catalog , schema , tablename , tabletype ,
callback)

produces a result that will be available in the special variableSQLTables for the duration of the
callback.SQLTables is an array of arrays. Each element of the result is an array of two elements
containing the table name and an instance ofODBCThreadResult corresponding to a call to
.Columns for that table.

ODBCThread.GetUpdateFormat (klass)

constructs the SQL statement that will be issued when the.Update method is called. If you
change the definition of the table by calling.SetClassKey , then you must also issue
.GetInsertFormat and.GetUpdateFormat after.SetClassKey completes.

ODBCThread.HandleColumnInfo (tablename , results , callback)

is used internally.

ODBCThread.HandleFinalInfo (results , callback)

is used internally.

ODBCThread.HandleTableInfo (results , callback)

is used internally.

ODBCThread.NextInitStage ()

is used internally.

ODBCThread.SetClassKey (klass , keysym , ignore_if_set ?=t)

sets the primary key for the class specified byklass . The class is the result of a call to
.ClassFromResultSet , .ClassFromTable and.ClassFromThreadResult . Some
databases (MS-Access in particular) do not provide information about the primary keys in a table.
In order for.Update calls to work on this type of class, the.SetClassKey method must be
called to tell the table which column is its primary key.

46

ODBCThreadResult
ODBCThreadResult — the results of an SQL command.

Synopsis
class ODBCThreadResult
{

Result; // The SQL result set, or nil.
KeyResult; // The SQL result set describing the primary

// keys, for those commands that produce a
// primary key set.

Diagnostic; // The complete ODBC diagnostic set, if any.
KeyDiagnostic; // The diagnostic set for the primary key query.
Description; // A description of the command or result.
ReturnCode; // A numeric SQLRESULT for an SQL command, or an

// "errno" return code for a file system error.
AffectedRows; // The number of affected rows for an SQL command,

// if available.
}

Description

TheDiagnostic andKeyDiagnostic each consist of an array, where the elements of the array are
themselves arrays:

• element[0] = the database diagnostic message, as a string.

• element[1] = the ODBC diagnostic state code, as a string.

• element[2] = the ODBC native error code, as a number.

There can be more than one diagnostic message returned by a single SQL call.

TheResult andKeyResult contain the column and row definitions resulting from an SQL
command. This definition is shared with the single-threaded ODBC implementation. The complete
definition forODBCResult is:

class ODBCResult
{

columns;
rows;

}

Thecolumns member is an array of instances of theODBCColumnclass:

class ODBCColumn
{

columnsize; // A numeric column width.
datatype; // A number representing the ODBC data type.
decimaldigits; // The number of decimal digits, or 0.
name; // The column name.
nullable; // 0 if not nullable, 1 if nullable.

}

Therows member is an array of values, each of which corresponds to the column definition in the same
position in thecolumns array.

47

SQLGUID
SQLGUID— holds ID strings.

Synopsis
class SQLGUID
{
}

Description

This structure is used to hold ID strings. For more information, please refer to C Interval Structure.

48

SQL_DAY_SECOND_STRUCT
SQL_DAY_SECOND_STRUCT— contains time data forSQL_INTERVAL_STRUCT.

Synopsis
class SQL_DAY_SECOND_STRUCT
{

day;
fraction;
hour;
minute;
second;

}

Description

This structure contains time data forSQL_INTERVAL_STRUCT. For more information, please refer to
C Interval Structure.

49

SQL_INTERVAL_STRUCT
SQL_INTERVAL_STRUCT— contains interval data for SQL queries.

Synopsis
class SQL_INTERVAL_STRUCT
{

interval_sign;
interval_type;

}

Description

This structure contains interval data for SQL queries. For more information, please refer to C Interval
Structure.

50

SQL_INTERVAL_STRUCT_intval
SQL_INTERVAL_STRUCT_intval — contains year/month or day/second info for
SQL_INTERVAL_STRUCT.

Synopsis
class SQL_INTERVAL_STRUCT_intval
{

day_second;
year_month;

}

Description

This structure contains year/month or day/second info forSQL_INTERVAL_STRUCT. For more
information, please refer to C Interval Structure.

51

SQL_NUMERIC_STRUCT
SQL_NUMERIC_STRUCT— specifies number precision and sign.

Synopsis
class SQL_NUMERIC_STRUCT
{

precision;
sign;

}

Description

This structure specifies number precision and sign. For more information, please refer to C Data Types.

52

SQL_YEAR_MONTH_STRUCT
SQL_YEAR_MONTH_STRUCT— contains year and month data forSQL_INTERVAL_STRUCT.

Synopsis
class SQL_YEAR_MONTH_STRUCT
{

month;
year;

}

Description

This structure contains year and month data forSQL_INTERVAL_STRUCT. For more information,
please refer to C Interval Structure.

53

TIMESTAMP_STRUCT
TIMESTAMP_STRUCT— contains timestamp data (y,m,d,h,m,s, etc.).

Synopsis
class TIMESTAMP_STRUCT
{

day;
fraction;
hour;
minute;
month;
second;
year;

}

Description

This structure contains timestamp data. For more information, please refer to C Data Types.

54

TIME_STRUCT
TIME_STRUCT— contains time data (h,m,s).

Synopsis
class TIME_STRUCT
{

hour;
minute;
second;

}

Description

This structure contains time data. For more information, please refer to C Data Types.

55

Chapter 6. Global Functions

ODBC_AllocEnvironment
ODBC_AllocEnvironment — creates anODBCEnvironment .

Synopsis
ODBC_AllocEnvironment ()

Description

This function is used to create anODBCEnvironment class, the first step in creating an ODBC
database. When you allocate the ODBC environment in your script, you can optionally specify the
ODBC version that you want. To do this, give the version number (2 or 3) to
ODBC_AllocEnvironment , like this:ODBC_AllocEnvironment(2) ;

56

ODBC_ValueString
ODBC_ValueString —

Synopsis
ODBC_ValueString (value)

Description

Not yet documented.

57

Chapter 7. Constants
ODBCVER SQL_DIAG_SERVER_NAME
SQL_ACCESSIBLE_PROCEDURES SQL_DIAG_SQLSTATE
SQL_ACCESSIBLE_TABLES SQL_DIAG_SUBCLASS_ORIGIN
SQL_ALL_TYPES SQL_DIAG_UNKNOWN_STATEMENT
SQL_ALTER_TABLE SQL_DIAG_UPDATE_WHERE
SQL_AM_CONNECTION SQL_DOUBLE
SQL_AM_NONE SQL_DROP
SQL_AM_STATEMENT SQL_ERROR
SQL_API_SQLALLOCCONNECT SQL_FALSE
SQL_API_SQLALLOCENV SQL_FETCH_ABSOLUTE
SQL_API_SQLALLOCHANDLE SQL_FETCH_DIRECTION
SQL_API_SQLALLOCSTMT SQL_FETCH_FIRST
SQL_API_SQLBINDCOL SQL_FETCH_LAST
SQL_API_SQLBINDPARAM SQL_FETCH_NEXT
SQL_API_SQLCANCEL SQL_FETCH_PRIOR
SQL_API_SQLCLOSECURSOR SQL_FETCH_RELATIVE
SQL_API_SQLCOLATTRIBUTE SQL_FLOAT
SQL_API_SQLCOLUMNS SQL_GETDATA_EXTENSIONS
SQL_API_SQLCONNECT SQL_HANDLE_DBC
SQL_API_SQLCOPYDESC SQL_HANDLE_DESC
SQL_API_SQLDATASOURCES SQL_HANDLE_ENV
SQL_API_SQLDESCRIBECOL SQL_HANDLE_STMT
SQL_API_SQLDISCONNECT SQL_IC_LOWER
SQL_API_SQLENDTRAN SQL_IC_MIXED
SQL_API_SQLERROR SQL_IC_SENSITIVE
SQL_API_SQLEXECDIRECT SQL_IC_UPPER
SQL_API_SQLEXECUTE SQL_IDENTIFIER_CASE
SQL_API_SQLFETCH SQL_IDENTIFIER_QUOTE_CHAR
SQL_API_SQLFETCHSCROLL SQL_INDEX_ALL
SQL_API_SQLFREECONNECT SQL_INDEX_CLUSTERED
SQL_API_SQLFREEENV SQL_INDEX_HASHED
SQL_API_SQLFREEHANDLE SQL_INDEX_OTHER
SQL_API_SQLFREESTMT SQL_INDEX_UNIQUE
SQL_API_SQLGETCONNECTATTR SQL_INSENSITIVE
SQL_API_SQLGETCONNECTOPTION SQL_INTEGER
SQL_API_SQLGETCURSORNAME SQL_INTEGRITY
SQL_API_SQLGETDATA SQL_INVALID_HANDLE
SQL_API_SQLGETDESCFIELD SQL_IS_DAY
SQL_API_SQLGETDESCREC SQL_IS_DAY_TO_HOUR
SQL_API_SQLGETDIAGFIELD SQL_IS_DAY_TO_MINUTE
SQL_API_SQLGETDIAGREC SQL_IS_DAY_TO_SECOND
SQL_API_SQLGETENVATTR SQL_IS_HOUR
SQL_API_SQLGETFUNCTIONS SQL_IS_HOUR_TO_MINUTE
SQL_API_SQLGETINFO SQL_IS_HOUR_TO_SECOND
SQL_API_SQLGETSTMTATTR SQL_IS_MINUTE
SQL_API_SQLGETSTMTOPTION SQL_IS_MINUTE_TO_SECOND
SQL_API_SQLGETTYPEINFO SQL_IS_MONTH
SQL_API_SQLNUMRESULTCOLS SQL_IS_SECOND
SQL_API_SQLPARAMDATA SQL_IS_YEAR
SQL_API_SQLPREPARE SQL_IS_YEAR_TO_MONTH
SQL_API_SQLPUTDATA SQL_MAXIMUM_CATALOG_NAME_LENGTH
SQL_API_SQLROWCOUNT SQL_MAXIMUM_COLUMNS_IN_GROUP_BY
SQL_API_SQLSETCONNECTATTR SQL_MAXIMUM_COLUMNS_IN_INDEX
SQL_API_SQLSETCONNECTOPTION SQL_MAXIMUM_COLUMNS_IN_ORDER_BY
SQL_API_SQLSETCURSORNAME SQL_MAXIMUM_COLUMNS_IN_SELECT
SQL_API_SQLSETDESCFIELD SQL_MAXIMUM_COLUMN_NAME_LENGTH
SQL_API_SQLSETDESCREC SQL_MAXIMUM_CONCURRENT_ACTIVITIES
SQL_API_SQLSETENVATTR SQL_MAXIMUM_CURSOR_NAME_LENGTH
SQL_API_SQLSETPARAM SQL_MAXIMUM_DRIVER_CONNECTIONS
SQL_API_SQLSETSTMTATTR SQL_MAXIMUM_IDENTIFIER_LENGTH
SQL_API_SQLSETSTMTOPTION SQL_MAXIMUM_INDEX_SIZE

58

Chapter 7. Constants

SQL_API_SQLSPECIALCOLUMNS SQL_MAXIMUM_ROW_SIZE
SQL_API_SQLSTATISTICS SQL_MAXIMUM_SCHEMA_NAME_LENGTH
SQL_API_SQLTABLES SQL_MAXIMUM_STATEMENT_LENGTH
SQL_API_SQLTRANSACT SQL_MAXIMUM_TABLES_IN_SELECT
SQL_ARD_TYPE SQL_MAXIMUM_USER_NAME_LENGTH
SQL_ATTR_APP_PARAM_DESC SQL_MAX_CATALOG_NAME_LEN
SQL_ATTR_APP_ROW_DESC SQL_MAX_COLUMNS_IN_GROUP_BY
SQL_ATTR_AUTO_IPD SQL_MAX_COLUMNS_IN_INDEX
SQL_ATTR_CURSOR_SCROLLABLE SQL_MAX_COLUMNS_IN_ORDER_BY
SQL_ATTR_CURSOR_SENSITIVITY SQL_MAX_COLUMNS_IN_SELECT
SQL_ATTR_IMP_PARAM_DESC SQL_MAX_COLUMNS_IN_TABLE
SQL_ATTR_IMP_ROW_DESC SQL_MAX_COLUMN_NAME_LEN
SQL_ATTR_METADATA_ID SQL_MAX_CONCURRENT_ACTIVITIES
SQL_ATTR_OUTPUT_NTS SQL_MAX_CURSOR_NAME_LEN
SQL_CATALOG_NAME SQL_MAX_DRIVER_CONNECTIONS
SQL_CB_CLOSE SQL_MAX_IDENTIFIER_LEN
SQL_CB_DELETE SQL_MAX_INDEX_SIZE
SQL_CB_PRESERVE SQL_MAX_MESSAGE_LENGTH
SQL_CHAR SQL_MAX_NUMERIC_LEN
SQL_CLOSE SQL_MAX_ROW_SIZE
SQL_CODE_DATE SQL_MAX_SCHEMA_NAME_LEN
SQL_CODE_TIME SQL_MAX_STATEMENT_LEN
SQL_CODE_TIMESTAMP SQL_MAX_TABLES_IN_SELECT
SQL_COLLATION_SEQ SQL_MAX_TABLE_NAME_LEN
SQL_COMMIT SQL_MAX_USER_NAME_LEN
SQL_CURSOR_COMMIT_BEHAVIOR SQL_NAMED
SQL_CURSOR_SENSITIVITY SQL_NC_HIGH
SQL_DATA_AT_EXEC SQL_NC_LOW
SQL_DATA_SOURCE_NAME SQL_NEED_DATA
SQL_DATA_SOURCE_READ_ONLY SQL_NONSCROLLABLE
SQL_DATETIME SQL_NO_DATA
SQL_DATE_LEN SQL_NO_NULLS
SQL_DBMS_NAME SQL_NTS
SQL_DBMS_VER SQL_NULLABLE
SQL_DECIMAL SQL_NULLABLE_UNKNOWN
SQL_DEFAULT SQL_NULL_COLLATION
SQL_DEFAULT_TXN_ISOLATION SQL_NULL_DATA
SQL_DESCRIBE_PARAMETER SQL_NULL_HDBC
SQL_DESC_ALLOC_AUTO SQL_NULL_HDESC
SQL_DESC_ALLOC_TYPE SQL_NULL_HENV
SQL_DESC_ALLOC_USER SQL_NULL_HSTMT
SQL_DESC_COUNT SQL_NUMERIC
SQL_DESC_DATA_PTR SQL_OJ_CAPABILITIES
SQL_DESC_DATETIME_INTERVAL_CODE SQL_ORDER_BY_COLUMNS_IN_SELECT
SQL_DESC_INDICATOR_PTR SQL_OUTER_JOIN_CAPABILITIES
SQL_DESC_LENGTH SQL_PC_NON_PSEUDO
SQL_DESC_NAME SQL_PC_PSEUDO
SQL_DESC_NULLABLE SQL_PC_UNKNOWN
SQL_DESC_OCTET_LENGTH SQL_PRED_BASIC
SQL_DESC_OCTET_LENGTH_PTR SQL_PRED_CHAR
SQL_DESC_PRECISION SQL_PRED_NONE
SQL_DESC_SCALE SQL_REAL
SQL_DESC_TYPE SQL_RESET_PARAMS
SQL_DESC_UNNAMED SQL_ROLLBACK
SQL_DIAG_ALTER_DOMAIN SQL_ROW_IDENTIFIER
SQL_DIAG_ALTER_TABLE SQL_SCOPE_CURROW
SQL_DIAG_CALL SQL_SCOPE_SESSION
SQL_DIAG_CLASS_ORIGIN SQL_SCOPE_TRANSACTION
SQL_DIAG_CONNECTION_NAME SQL_SCROLLABLE
SQL_DIAG_CREATE_ASSERTION SQL_SCROLL_CONCURRENCY
SQL_DIAG_CREATE_CHARACTER_SET SQL_SEARCH_PATTERN_ESCAPE
SQL_DIAG_CREATE_COLLATION SQL_SENSITIVE
SQL_DIAG_CREATE_DOMAIN SQL_SERVER_NAME
SQL_DIAG_CREATE_INDEX SQL_SMALLINT

59

Chapter 7. Constants

SQL_DIAG_CREATE_SCHEMA SQL_SPECIAL_CHARACTERS
SQL_DIAG_CREATE_TABLE SQL_STILL_EXECUTING
SQL_DIAG_CREATE_TRANSLATION SQL_SUCCESS
SQL_DIAG_CREATE_VIEW SQL_SUCCESS_WITH_INFO
SQL_DIAG_DELETE_WHERE SQL_TC_ALL
SQL_DIAG_DROP_ASSERTION SQL_TC_DDL_COMMIT
SQL_DIAG_DROP_CHARACTER_SET SQL_TC_DDL_IGNORE
SQL_DIAG_DROP_COLLATION SQL_TC_DML
SQL_DIAG_DROP_DOMAIN SQL_TC_NONE
SQL_DIAG_DROP_INDEX SQL_TIMESTAMP_LEN
SQL_DIAG_DROP_SCHEMA SQL_TIME_LEN
SQL_DIAG_DROP_TABLE SQL_TRANSACTION_CAPABLE
SQL_DIAG_DROP_TRANSLATION SQL_TRANSACTION_ISOLATION_OPTION
SQL_DIAG_DROP_VIEW SQL_TRUE
SQL_DIAG_DYNAMIC_DELETE_CURSOR SQL_TXN_CAPABLE
SQL_DIAG_DYNAMIC_FUNCTION SQL_TXN_ISOLATION_OPTION
SQL_DIAG_DYNAMIC_FUNCTION_CODE SQL_TYPE_DATE
SQL_DIAG_DYNAMIC_UPDATE_CURSOR SQL_TYPE_TIME
SQL_DIAG_GRANT SQL_TYPE_TIMESTAMP
SQL_DIAG_INSERT SQL_UNBIND
SQL_DIAG_MESSAGE_TEXT SQL_UNKNOWN_TYPE
SQL_DIAG_NATIVE SQL_UNNAMED
SQL_DIAG_NUMBER SQL_UNSPECIFIED
SQL_DIAG_RETURNCODE SQL_USER_NAME
SQL_DIAG_REVOKE SQL_VARCHAR
SQL_DIAG_ROW_COUNT SQL_XOPEN_CLI_YEAR
SQL_DIAG_SELECT_CURSOR

60

Index

A
AddColumn

ODBCConnection,33

AddInitStage

ODBCThread,44

AllocConnection

ODBCEnvironment,36

AllocDescriptor

ODBCConnection,33

AllocStatement

ODBCConnection,33

B
BeginAsyncInit

ODBCThread,44

C
CacheIsEmpty

ODBCThread,41

Cancel

ODBCStatement,39

cbInitStage

ODBCThread,44

ClassesFromTables

ODBCConnection,33

ClassFromColumns

ODBCConnection,33

ClassFromResultSet

ODBCThread,44

ClassFromTable

ODBCConnection,33

ODBCThread,45

ClassFromThreadResult

ODBCThread,45

CloseCursor

ODBCStatement,39

ColumnIndex

ODBCResult,38

Columns

ODBCStatement,39

ODBCThread,41

Configure

ODBCThread,41

Connect

ODBCConnection,33

ODBCThread,42

constructor

ODBCThread,45

CreateClass

ODBCThread,45

CreateTable

ODBCConnection,33

D
DataSources

ODBCThread,43

DATE_STRUCT,31

Delete

ODBCConnection,33

Disconnect

ODBCConnection,33

ODBCThread,43

DropTable

ODBCConnection,33

E
EndTran

ODBCConnection,34

Error

ODBCConnection,34

EvalSafe

ODBCThread,45

ExecDirect

ODBCStatement,39

ODBCThread,43

Execute

ODBCStatement,39

F
Fetch

ODBCStatement,39

FetchScroll

ODBCStatement,39

FreeStmt

ODBCStatement,39

61

G
GetDataSources

ODBCThread,45

GetDiagRec

ODBCConnection,34

ODBCEnvironment,36

ODBCHandle,37

ODBCStatement,40

GetFlags

ODBCThread,43

GetInsertFormat

ODBCThread,45

GetMessageCount

ODBCThread,43

GetOneColumn

ODBCConnection,34

GetOneValue

ODBCConnection,34

GetResultCount

ODBCThread,43

GetResultData

ODBCStatement,39

GetTableInfo

ODBCThread,46

GetUpdateFormat

ODBCThread,46

H
HandleColumnInfo

ODBCThread,46

HandleFinalInfo

ODBCThread,46

HandleTableInfo

ODBCThread,46

I
Insert

ODBCConnection,34

ODBCThread,43

IsPaused

ODBCThread,43

M
MakeClass

ODBCConnection,34

MapClassFromResponse

ODBCConnection,34

N
NextInitStage

ODBCThread,46

NoOp

ODBCThread,43

O
ODBCColumn,32

ODBCConnection,33

ODBCDescriptor,35

ODBCEnvironment,36

ODBCHandle,37

ODBCResult,38

ODBCStatement,39

ODBCThread,41

ODBCThreadResult,47

ODBC_AllocEnvironment,56

ODBC_ValueString,57

P
Pause

ODBCThread,43

Prepare

ODBCStatement,39

PrimaryKeys

ODBCStatement,39

ODBCThread,43

Q
Query

ODBCConnection,34

QueryAndStore

ODBCConnection,34

QueryToClass

ODBCConnection,34

QueryToTempClass

ODBCConnection,34

QueueIsFull

ODBCThread,43

QuoteConversion

ODBCThread,44

R
ReQuery

ODBCConnection,34

Resume

ODBCThread,44

RowCount

62

ODBCStatement,39

S
SetClassKey

ODBCThread,46

SlowInsert

ODBCThread,44

SlowUpdate

ODBCThread,44

SQLGUID,48

SQL_DAY_SECOND_STRUCT,49

SQL_INTERVAL_STRUCT,50

SQL_INTERVAL_STRUCT_intval,51

SQL_NUMERIC_STRUCT,52

SQL_YEAR_MONTH_STRUCT,53

Start

ODBCThread,44

Statement

ODBCConnection,34

Stop

ODBCThread,44

StoreResult

ODBCConnection,34

T
Tables

ODBCStatement,40

ODBCThread,44

TIMESTAMP_STRUCT,54

TIME_STRUCT,55

U
Update

ODBCConnection,34

ODBCThread,44

V
ValueString

ODBCThread,44

63

Colophon
This book was produced by Cogent Real-Time Systems, Inc. from a single-source group of SGML files.
Gnu Emacs was used to edit the SGML files. The DocBook DTD and related DSSSL stylesheets were
used to transform the SGML source into HTML, PDF, and QNX Helpviewer output formats. This
processing was accomplished with the help of OpenJade, JadeTeX, Tex, and various scripts and
makefiles. Details of the process are described in our book: Preparing Cogent Documentation, which is
published on-line at
http://developers.cogentrts.com/cogent/prepdoc/book1.html .

Text written by Bob McIlvride and Andrew Thomas.

64

	
	DataHub® ODBC Scripting
	Table of Contents
	Chapter 1. Introduction
	1.1. Overview
	1.2. Setting up a DSN (Data Source Name)
	1.3. Working with MS Access
	Chapter 2. Tutorials
	2.1. Tutorial 1: Writing new rows to a table, based on a trigger MultiThreaded Version
	2.2. Tutorial 2: Writing new rows to a table, based on a trigger SingleThreaded Version
	2.3. Tutorial 3: Updating existing rows, or writing new ones
	2.4. Tutorial 4: Writing data from a database to the DataHub
	2.5. Viewing data from a web browser
	Chapter 3. An Explanation of the Tutorial Code
	3.1. Define the Application Object
	3.2. Interactions with the Database
	3.2.1. Connecting to the Database
	3.2.2. Creating a Gamma Class from a Database Table
	3.2.3. Querying Rows from the Database
	3.2.4. Inserting Rows into a Database
	3.2.5. Updating Existing Rows in a Database
	3.2.6. Creating a Database Table

	3.3. Set up Event Handlers
	3.4. Shut Down
	Chapter 4. MultiThreaded ODBC Interface
	4.1. HowTo
	4.1.1. Create an ODBCThread Instance
	4.1.2. Attach Event Callbacks
	4.1.3. Configure Startup Actions
	4.1.4. Start the Database Thread

	4.2. Store and Forward
	4.2.1. Time Delayed Writes

	4.3. Example
	Chapter 5. Classes
	DATESTRUCT
	Synopsis
	Description

	ODBCColumn
	Synopsis
	Description

	ODBCConnection
	Synopsis
	Base Classes
	Description
	Class Members

	ODBCDescriptor
	Synopsis
	Base Classes
	Description

	ODBCEnvironment
	Synopsis
	Base Classes
	Description
	Class Members

	ODBCHandle
	Synopsis
	Description
	Class Members

	ODBCResult
	Synopsis
	Description
	Class Members

	ODBCStatement
	Synopsis
	Base Classes
	Description
	Class Members

	ODBCThread
	Synopsis
	Description
	Methods

	ODBCThreadResult
	Synopsis
	Description

	SQLGUID
	Synopsis
	Description

	SQLDAYSECONDSTRUCT
	Synopsis
	Description

	SQLINTERVALSTRUCT
	Synopsis
	Description

	SQLINTERVALSTRUCTintval
	Synopsis
	Description

	SQLNUMERICSTRUCT
	Synopsis
	Description

	SQLYEARMONTHSTRUCT
	Synopsis
	Description

	TIMESTAMPSTRUCT
	Synopsis
	Description

	TIMESTRUCT
	Synopsis
	Description

	Chapter 6. Global Functions
	ODBCAllocEnvironment
	Synopsis
	Description

	ODBCValueString
	Synopsis
	Description

	Chapter 7. Constants
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

	Colophon

