
Gamma™ Programmer’s Manual

Version 7.2

Cogent Real-Time Systems, Inc.

August 15, 2012

Gamma™ Programmer’s Manual: Version 7.2

A dynamically-typed interpreted programming language specifically designed to allow rapid development of
control and user interface applications. Gamma has a syntax similar to C and C++, but has a range of built-in
features that make it a far better language for developing sophisticated real-time systems.

Published August 15, 2012
Cogent Real-Time Systems, Inc.

162 Guelph Street, Suite 253
Georgetown, Ontario
Canada, L7G 5X7

Toll Free: 1 (888) 628-2028
Tel: 1 (905) 702-7851
Fax: 1 (905) 702-7850

Information Email: info@cogent.ca
Tech Support Email: support@cogent.ca
Web Site: www.cogent.ca

Copyright © 1995-2011 by Cogent Real-Time Systems, Inc.

Revision History

Revision 7.2-1 September 2007
Updated DataHub-related functions for 6.4 release of the DataHub.

Revision 6.2-1 February 2005
Simplified TCP connectivity.

Revision 4.1-1 August 2004
Compatible with Cogent DataHub Version 5.0.

Revision 4.0-2 October 2001
New functions in Input/Output, OSAPIs, Date, and Dynamic Loading reference sections.

Revision 4.0-1 September 2001
Source code compatible across QNX 4, QNX 6, and Linux.

Revision 3.2-1 August 2000
Renamed "Gamma", changed function syntax.

Revision 3.0 October 1999
General reorganization and update of Guide and Reference, released in HTML and QNX Helpviewer formats.

Revision 2.1 June 1999
Converted from Word97 to DocBook SGML.

Revision 2.0 June 1997
Initial release of hardcopy documentation.

Copyright, trademark, and software license information.

Copyright Notice

© 1995-2011 Cogent Real-Time Systems, Inc. All rights reserved.

Information in this document is subject to change without notice. No part of this document may be reproduced or transmitted in any form or by

any means, electronic or mechanical, for any purpose, without the express written consent of Cogent Real-Time Systems, Inc.

Cogent Real-Time Systems, Inc. assumes no responsibility for any errors or omissions, nor do we assume liability for damages resulting from the

use of the information contained in this document.

Trademark Notice

Cascade DataHub, Cascade Connect, Cascade DataSim, Connect Server, Cascade Historian, Cascade TextLogger, Cascade NameServer, Cascade

QueueServer, RightSeat, SCADALisp and Gamma are trademarks of Cogent Real-Time Systems, Inc.

All other company and product names are trademarks or registered trademarks of their respective holders.

END-USER LICENSE AGREEMENT FOR COGENT SOFTWARE

IMPORTANT - READ CAREFULLY: This End-User License Agreement ("EULA") is a legal agreement between you (either an individual or a

single entity) and Cogent Real-Time Systems Inc. ("Cogent") of 162 Guelph Street, Suite 253, Georgetown, Ontario, L7G 5X7, Canada (Tel:

905-702-7851, Fax: 905-702-7850), from whom you acquired the Cogent software product(s) ("SOFTWARE PRODUCT" or "SOFTWARE"),

either directly from Cogent or through one of Cogent’s authorized resellers.

The SOFTWARE PRODUCT includes computer software, any associated media, any printed materials, and any "online" or electronic

documentation. By installing, copying or otherwise using the SOFTWARE PRODUCT, you agree to be bound by the terms of this EULA. If you

do not agree with the terms of this EULA, Cogent is unwilling to license the SOFTWARE PRODUCT to you. In such event, you may not use or

copy the SOFTWARE PRODUCT, and you should promptly contact Cogent for instructions on return of the unused product(s) for a refund.

SOFTWARE PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by copyright laws and copyright treaties, as well as other intellectual property laws and treaties. The

SOFTWARE PRODUCT is licensed, not sold.

1. EVALUATION USE: This software is distributed as "Free for Evaluation", and with a per-use royalty for Commercial Use, where "Free for

Evaluation" means to evaluate Cogent’s software and to do exploratory development and "proof of concept" prototyping of software

applications, and where "Free for Evaluation" specifically excludes without limitation:

i. use of the SOFTWARE PRODUCT in a business setting or in support of a business activity,

ii. development of a system to be used for commercial gain, whether to be sold or to be used within a company, partnership, organization

or entity that transacts commercial business,

iii. the use of the SOFTWARE PRODUCT in a commercial business for any reason other than exploratory development and "proof of

concept" prototyping, even if the SOFTWARE PRODUCT is not incorporated into an application or product to be sold,

iv. the use of the SOFTWARE PRODUCT to enable the use of another application that was developed with the SOFTWARE PRODUCT,

v. inclusion of the SOFTWARE PRODUCT in a collection of software, whether that collection is sold, given away, or made part of a

larger collection.

vi. inclusion of the SOFTWARE PRODUCT in another product, whether or not that other product is sold, given away, or made part of a

larger product.

2. COMMERCIAL USE: COMMERCIAL USE is any use that is not specifically defined in this license as EVALUATION USE.

3. GRANT OF LICENSE: This EULA covers both COMMERCIAL and EVALUATION USE of the SOFTWARE PRODUCT. Either clause

(A) or (B) of this section will apply to you, depending on your actual use of the SOFTWARE PRODUCT. If you have not purchased a

license of the SOFTWARE PRODUCT from Cogent or one of Cogent’s authorized resellers, then you may not use the product for

COMMERCIAL USE.

A. GRANT OF LICENSE (EVALUATION USE): This EULA grants you the following non-exclusive rights when used for

EVALUATION purposes:

Software: You may use the SOFTWARE PRODUCT on any number of computers, either stand-alone, or on a network, so long as

every use of the SOFTWARE PRODUCT is for EVALUATION USE. You may reproduce the SOFTWARE PRODUCT, but only as

reasonably required to install and use it in accordance with this LICENSE or to follow your normal back-up practices.

Subject to the license expressly granted above, you obtain no right, title or interest in or to the SOFTWARE PRODUCT or related

documentation, including but not limited to any copyright, patent, trade secret or other proprietary rights therein. All whole or partial

copies of the SOFTWARE PRODUCT remain property of Cogent and will be considered part of the SOFTWARE PRODUCT for the

purpose of this EULA.

Unless expressly permitted under this EULA or otherwise by Cogent, you will not:

i. use, reproduce, modify, adapt, translate or otherwise transmit the SOFTWARE PRODUCT or related components, in whole or in

part;

ii. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

iii. alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;

iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;

v. use a multi-processor version of the SOFTWARE PRODUCT in a network larger than that for which you have paid the

corresponding multi-processor fees;

vi. decompile, disassemble or otherwise attempt or assist others to reverse engineer the SOFTWARE PRODUCT;

vii. circumvent, disable or otherwise render ineffective any demonstration time-outs, locks on functionality or any other restrictions

on use in the SOFTWARE PRODUCT;

viii. circumvent, disable or otherwise render ineffective any license verification mechanisms used by the SOFTWARE PRODUCT;

ix. use the SOFTWARE PRODUCT in any application that is intended to create or could, in the event of malfunction or failure,

cause personal injury or property damage; or

x. make use of the SOFTWARE PRODUCT for commercial gain, whether directly, indirectly or incidentally.

B. GRANT OF LICENSE (COMMERCIAL USE): This EULA grants you the following non-exclusive rights when used for

COMMERCIAL purposes:

Software: You may use the SOFTWARE PRODUCT on one computer, or if the SOFTWARE PRODUCT is a multi-processor version -

on one node of a network, either: (i) as a development systems for the purpose of creating value-added software applications in

accordance with related Cogent documentation; or (ii) as a single run-time copy for use as an integral part of such an application. This

includes reproduction and configuration of the SOFTWARE PRODUCT, but only as reasonably required to install and use it in

association with your licensed processor or to follow your normal back-up practices.

Storage/Network Use: You may also store or install a copy of the SOFTWARE PRODUCT on one computer to allow your other

computers to use the SOFTWARE PRODUCT over an internal network, and distribute the SOFTWARE PRODUCT to your other

computers over an internal network. However, you must acquire and dedicate a license for the SOFTWARE PRODUCT for each

computer on which the SOFTWARE PRODUCT is used or to which it is distributed. A license for the SOFTWARE PRODUCT may

not be shared or used concurrently on different computers.

Subject to the license expressly granted above, you obtain no right, title or interest in or to the SOFTWARE PRODUCT or related

documentation, including but not limited to any copyright, patent, trade secret or other proprietary rights therein. All whole or partial

copies of the SOFTWARE PRODUCT remain property of Cogent and will be considered part of the SOFTWARE PRODUCT for the

purpose of this EULA.

Unless expressly permitted under this EULA or otherwise by Cogent, you will not:

i. use, reproduce, modify, adapt, translate or otherwise transmit the SOFTWARE PRODUCT or related components, in whole or in

part;

ii. rent, lease, license, transfer or otherwise provide access to the SOFTWARE PRODUCT or related components;

iii. alter, remove or cover proprietary notices in or on the SOFTWARE PRODUCT, related documentation or storage media;

iv. export the SOFTWARE PRODUCT from the country in which it was provided to you by Cogent or its authorized reseller;

v. use a multi-processor version of the SOFTWARE PRODUCT in a network larger than that for which you have paid the

corresponding multi-processor fees;

vi. decompile, disassemble or otherwise attempt or assist others to reverse engineer the SOFTWARE PRODUCT;

vii. circumvent, disable or otherwise render ineffective any demonstration time-outs, locks on functionality or any other restrictions

on use in the SOFTWARE PRODUCT;

viii. circumvent, disable or otherwise render ineffective any license verification mechanisms used by the SOFTWARE PRODUCT, or

ix. use the SOFTWARE PRODUCT in any application that is intended to create or could, in the event of malfunction or failure,

cause personal injury or property damage.

4. WARRANTY: Cogent cannot warrant that the SOFTWARE PRODUCT will function in accordance with related documentation in every

combination of hardware platform, software environment and SOFTWARE PRODUCT configuration. You acknowledge that software bugs

are likely to be identified when the SOFTWARE PRODUCT is used in your particular application. You therefore accept the responsibility of

satisfying yourself that the SOFTWARE PRODUCT is suitable for your intended use. This includes conducting exhaustive testing of your

application prior to its initial release and prior to the release of any related hardware or software modifications or enhancements.

Subject to documentation errors, Cogent warrants to you for a period of ninety (90) days from acceptance of this EULA (as provided above)

that the SOFTWARE PRODUCT as delivered by Cogent is capable of performing the functions described in related Cogent user

documentation when used on appropriate hardware. Cogent also warrants that any enclosed disk(s) will be free from defects in material and

workmanship under normal use for a period of ninety (90) days from acceptance of this EULA. Cogent is not responsible for disk defects

that result from accident or abuse. Your sole remedy for any breach of warranty will be either: i) terminate this EULA and receive a refund

of any amount paid to Cogent for the SOFTWARE PRODUCT, or ii) to receive a replacement disk.

5. LIMITATIONS: Except as expressly warranted above, the SOFTWARE PRODUCT, any related documentation and disks are provided "as

is" without other warranties or conditions of any kind, including but not limited to implied warranties of merchantability, fitness for a

particular purpose and non-infringement. You assume the entire risk as to the results and performance of the SOFTWARE PRODUCT.

Nothing stated in this EULA will imply that the operation of the SOFTWARE PRODUCT will be uninterrupted or error free or that any

errors will be corrected. Other written or oral statements by Cogent, its representatives or others do not constitute warranties or conditions of

Cogent.

In no event will Cogent (or its officers, employees, suppliers, distributors, or licensors: collectively "Its Representatives") be liable to you for

any indirect, incidental, special or consequential damages whatsoever, including but not limited to loss of revenue, lost or damaged data or

other commercial or economic loss, arising out of any breach of this EULA, any use or inability to use the SOFTWARE PRODUCT or any

claim made by a third party, even if Cogent (or Its Representatives) have been advised of the possibility of such damage or claim. In no event

will the aggregate liability of Cogent (or that of Its Representatives) for any damages or claim, whether in contract, tort or otherwise, exceed

the amount paid by you for the SOFTWARE PRODUCT.

These limitations shall apply whether or not the alleged breach or default is a breach of a fundamental condition or term, or a fundamental

breach. Some jurisdictions do not allow the exclusion or limitation of liability for consequential or incidental damages, or certain limitations

of implied warranties. Therefore the above limitation may not apply to you.

6. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS:

Separation of Components. The SOFTWARE PRODUCT is licensed as a single product. Its component parts may not be separated for use

on more than one computer.

Termination. Without prejudice to any other rights, Cogent may terminate this EULA if you fail to comply with the terms and conditions of

this EULA. In such an event, you must destroy all copies of the SOFTWARE PRODUCT and all of its component parts.

7. UPGRADES: If the SOFTWARE PRODUCT is an upgrade from another product, whether from Cogent or another supplier, you may use or

transfer the SOFTWARE PRODUCT only in conjunction with that upgrade product, unless you destroy the upgraded product. If the

SOFTWARE PRODUCT is an upgrade of a Cogent product, you now may use that upgraded product only in accordance with this EULA. If

the SOFTWARE PRODUCT is an upgrade of a component of a package of software programs which you licensed as a single product, the

SOFTWARE PRODUCT may be used and transferred only as part of that single product package and may not be separated for use on more

than one computer.

8. COPYRIGHT: All title and copyrights in and to the SOFTWARE PRODUCT (including but not limited to any images, photographs,

animations, video, audio, music, text and ’applets", incorporated into the SOFTWARE PRODUCT), any accompanying printed material, and

any copies of the SOFTWARE PRODUCT, are owned by Cogent or its suppliers. You may not copy the printed materials accompanying the

SOFTWARE PRODUCT. All rights not specifically granted under this EULA are reserved by Cogent.

9. PRODUCT SUPPORT:Cogent has no obligation under this EULA to provide maintenance, support or training.

10.RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as provided in DFARS

227.7202-1(a) and 227.7202-3(a) (1995), DFARS 252.227-7013(c)(1)(ii) (OCT 1988), FAR 12.212(a)(1995), FAR 52.227-19, or FAR

52.227-14 (ALT III), as appropriate. Manufacturer is Cogent Real-Time Systems Inc. 162 Guelph Street, Suite 253, Georgetown, Ontario,

L7G 5X7, Canada.

11.GOVERNING LAW: This Software License Agreement is governed by the laws of the Province of Ontario, Canada. You irrevocably attorn

to the jurisdiction of the courts of the Province of Ontario and agree to commence any litigation that may arise hereunder in the courts

located in the Judicial District of Peel, Province of Ontario.

Table of Contents
1. Introduction ..1

1.1. What is Gamma?...1
1.2. Assumptions about the Reader..1
1.3. System Requirements..1
1.4. Download and Installation..2

1.4.1. QNX 4..??
1.4.2. QNX 6..??
1.4.3. Linux...??
1.4.4. Installed file locations...??
1.4.5. Installing licenses...??

1.5. Cogent Product Integration...3
1.6. Where can I get help?..4

2. Getting Started...5

2.1. Interactive Mode...5
2.2. Executable Programs...6
2.3. Symbols and Values..7

3. Basic Data Types and Mechanisms..9

3.1. Numeric Types..9
3.1.1. Integer...??
3.1.2. Real...??
3.1.3. Fixed-point Real...??
3.1.4. Number Operators..??

3.2. Logical Types..10
3.3. Strings...11
3.4. Lists and Arrays..11
3.5. Constants...12
3.6. Operators and Expressions..12
3.7. Comments...13
3.8. Reserved Words...13
3.9. Memory Management...14

4. Tutorial I ...15

4.1. Lists...15
4.2. "Hello world" program..16

5. Control Flow...18

5.1. Statements...18
5.1.1. Conditionals..??
5.1.2. Loops..??
5.1.3. Goto, Break, Continue, Return...??

5.2. Function Calls...19
5.3. Event Handling..19

5.3.1. Interprocess Communication Message Events...??
5.3.2. Timers...??

5.3.2.1. Setting a timer..??
5.3.2.2. Canceling a Timer..??
5.3.2.3. The TIMERS variable:...??
5.3.2.4. Blocking timers from firing...??
5.3.2.5.timer_is_proxy function..??

5.3.3. Symbol Value Events (Active Values)..??

vii

5.3.4. Cogent DataHub Point Events (Exception Handlers)...??
5.3.5. Windowing System Events...??

5.3.5.1. GUI Event Handlers (Callbacks)...??
5.3.6. Signals..??

5.3.6.1.block_signal & unblock_signal ..??
5.4. Error Handling..24

5.4.1. Situations that might cause Gamma to crash..??

6. Tutorial II ...26

6.1. Error Handling -try /catch , protect /unwind ..26
6.2. Dynamic Scoping..27
6.3. Error Handling - interactive session..29

7. Functions and Program Structure...31

7.1. Function Definition...31
7.2. Function Arguments..31

7.2.1. Variable number of arguments..??
7.2.2. Optional arguments...??
7.2.3. Protection from evaluation...??
7.2.4. Variable, optional, unevaluated arguments...??
7.2.5. Examples..??

7.3. Function Renaming...34
7.4. Loading files..34
7.5. Themain Function...35
7.6. Executable Programs...35
7.7. Running a Gamma Program..35
7.8. Command Line Arguments...36

8. Object Oriented Programming ..37

8.1. Classes and Instances..37
8.1.1. Instances...37

8.2. Methods...38
8.3. Inheritance...39
8.4. Instance Variables...41
8.5. Class Variables..41
8.6. Constructors and Destructors..42
8.7. Polymorphism...43

8.7.1. Operator Overloading...??
8.8. Binary Classes and User Classes..44

9. Tutorial III ..46

9.1. Classes and OOP...46

10. Interactive Development and Debugging...49

10.1. Interactive Mode Implementation...49
10.2. Getting On-Line Help for Functions...49
10.3. Examining Variables in a Class or Instance..50
10.4. Using the Debug Prompt...50
10.5. Debugging a program..50

10.5.1. Interacting with an Active Program..??
10.5.2. Trapping and Reporting Errors...??
10.5.3. Determining Error Location...??
10.5.4. Filtering Object Query Output..??

11. Advanced Types and Mechanisms..55

viii

11.1. Symbols...55
11.1.1. Undefined symbols...??
11.1.2. Uniqueness of Symbols..??
11.1.3. Properties..??
11.1.4. Predefined Symbols..??

11.2. Evaluation...56
11.2.1. Evaluation of a Symbol..??
11.2.2. Evaluation of a List...??
11.2.3. Evaluation to Itself..??

11.3. Literal Syntax and Evaluation...58
11.3.1. Literal Expressions...??
11.3.2. Deferring Expression Evaluation..58
11.3.3. Literal Function Arguments..??
11.3.4. Partially Evaluated Literal..??
11.3.5. Constructing Variable Names at Run-time...??
11.3.6. Literal Array Syntax...??

12. Input and Output ...62

12.1. Referencing Files..62
12.2. Lisp and Gamma I/O mechanisms..62
12.3. Writing..62

12.3.1. Print vs. Princ...??
12.3.2. Write vs. Writec..??
12.3.3. Terpri..??
12.3.4. Pretty Printing...??
12.3.5. Printing Circular References..??

12.4. Reading...65
12.4.1. Reading Gamma Expressions...??
12.4.2. Reading Arbitrary ASCII Data...??
12.4.3. Reading Binary Data..??

13. Special Topics...66

13.1. Modifying QNX Process Environment Variables...66
13.2. QNX 4 Interprocess Communication (IPC)..66
13.3. Cogent IPC..67

13.3.1. Cogent IPC Service Modules...??
13.3.2. Cogent IPC Advanced services..??

13.3.2.1. Cogent IPC Messages..??
13.3.2.2. Asynchronous Messages..??
13.3.2.3. Pseudo-Asynchronous Messages...??
13.3.2.4. Task Started & Death Notification...??
13.3.2.5. Automatic Handling of QNX 4 receive and reply...??
13.3.2.6. IPC Initialization..??
13.3.2.7. Locating Tasks...??
13.3.2.8. Transmitting Character Strings..??

13.3.3. Cogent DataHub...??
13.3.4. Cogent DataHub Exceptions and Echos...??

A. Function List ...76

B. GNU Lesser General Public License...86

Colophon...94

ix

List of Tables
10-1. Global Variables in Gamma...??
11-1. Type Evaluation..??

x

Chapter 1. Introduction

1.1. What is Gamma?
Gamma is an interpreter, a high-level programming language that has been designed and optimized to
reduce the time required for building applications. It has support for the Photon GIU in QNX, and the
GTK GUI in Linux and QNX 6. It also has extensions that support HTTP and MySQL.

With Gamma a user can quickly implement algorithms that are far harder to express in other languages
such as C. Gamma lets the developer take advantage of many time-saving features such as memory
management and improved GUI support. These features, coupled with the ability to fully interact with
and debug programs as they run, mean that developers can build, test and refine applications in a shorter
time frame than when using other development platforms.

Gamma programs are small, fast and reliable. Gamma is easily embedded into today’s smart appliances
and web devices.

Gamma is an improved and expanded version of our previous Slang Programming Language for
QNX and Photon. Gamma is available on QNX 4, QNX 6 and Linux, and is being ported to
Microsoft Windows.

The implementation of Gamma is based on a powerful SCADALisp engine. SCADALisp is a dialect of
the Lisp programming language which has been optimized for performance and memory usage, and
enhanced with a number of internal functions. All references in this manual to Lisp are in fact to the
SCADALisp dialect of Lisp.

You could say Gamma’s object language is Lisp, just like Assembler is the object language for C.
Knowing Lisp is not a requirement for using Gamma, but it can be helpful. All necessary information on
Lisp and how it relates to Gamma is in theInput and Outputchapter of this guide.

1.2. Assumptions about the Reader
This guide assumes you are familiar with at least one programming language.

The syntax of Gamma is very similar to C, so programmers familiar with C can start programming in
Gamma almost immediately. Knowledge of pointers and memory allocation is not necessary for using
Gamma.

1.3. System Requirements

QNX 6
• QNX 6.1.0 or later.

QNX 4
• QNX 4.23A or later.

• (For Gamma/Photon) Photon 1.14 or later.

1

Chapter 1. Introduction

Linux
• Linux 2.4 or later.

• (For Gamma/GTK) GTK 1.2.8.

• The SRR IPC kernel module, which includes a synchronous message passing library modeled on the
QNX 4 send/receive/reply message-passing API. This module installs automatically, but requires a C
compiler for the installation. You can get more information and/or download this module at the Cogent
Web Site.

This module may not be necessary for some Gamma applications, but it is required for any use
of timers, event handling, or inter-process communication.

1.4. Download and Installation
You can download Gamma from the Cogent Web Site, and then follow these instructions for installing it
on your system.

Cogent software comes packaged in self-installing archives available for download, or on diskette for
commerically-licensed packages. Each software package name, which we refer to in these instructions as
software_package_name , contains the product name, version number, operating system and
sometimes other information, and will end with either.sh.gz or .qpr . For example,
gamma-4.0-bin-48-Linux.sh.gz or CascDataHub-4.0-bld10-x86-Cogent.qpr are
typical package names. The installation procedure is standardized across Cogent products, but depends
on the operating system.

1.4.1. QNX 4

Option A: Install the archive from diskette.

1. Log in as root.

2. Insert the program diskette into your QNX 4 computer.

3. Type the command:install

and respond to the system prompts.

Option B: Install the archive from a download or received as an e-file.

1. Download or copy thesoftware_package_name .sh.gz file onto your QNX 4 computer.

2. Log in as root.

3. Type the command:gunzip software_package_name .sh.gz

This unzips the software package, and removes the.gz extension from the end of the filename.

4. Type the command:sh software_package_name .sh

and respond to the system prompts.

If you get an error trying to install the.sh archive in QNX, please read the Installing
program archives in QNX section of the Glossary, FAQ and Troubleshooting for help.

1.4.2. QNX 6

Option A: Use the QNX 6 Installer program. The Cogent repository is located at
http://developers.cogentrts.com/repository.

2

Chapter 1. Introduction

Option B: Download thesoftware_package_name .qpr file using the QNX 6 Voyager browser.
The archive will install automatically.

Option C: Download or copy from diskette thesoftware_package_name .qpr file onto your
QNX 6 computer. Then (as root) run the command:

qnxinstall software_package_name .qpr

and respond to the system prompts.

1.4.3. Linux

First make sure the SRR kernel module is installed. If not, it is downloadable from the SRR for Linux
page of the Cogent web site. Then follow these instructions to install the software package:

1. Download or copy from diskette thesoftware_package_name .sh.gz file onto your Linux
computer.

2. Log in as root.

3. Type the command:gunzip software_package_name .sh.gz

This unzips the software package, and removes the.gz extension from the end of the filename.

4. Type the command:sh software_package_name .sh

and respond to the system prompts.

1.4.4. Installed file locations

On whichever OS the software is installed, all files will be written to the/usr/cogent/ directory.
Depending on which packages are installed, the following subdirectories will contain the types of files
shown:

bin/ Binary executables.

dll/ Dynamically-linked libraries.

docs/ Miscellaneous documentation. (Regular documentation is downloaded separately.)

include/ Header files.

lib/ Cogent library files.

license The license file (see below).

require/ Lisp or Gamma files used by Gamma or its extensions.

src/ The source code for examples, tests, tutorials, etc.

1.4.5. Installing licenses

Licenses to use the software can be purchased from Cogent. To install a license, you need to copy the
license string into the/usr/cogent/license file. If this file does not exist on your system, just
create one as a text file and list the license strings, one per line.

If a license is not installed, you will see the following console message on startup:

software_package_name : No valid licenses found.
This program is running in demo mode and will terminate after 1 hour.

and the software will run for one hour in demo mode.

3

Chapter 1. Introduction

1.5. Cogent Product Integration
Cogent products work together to support real-time data connectivity in Windows, Linux, and QNX.
They can be dynamically integrated as a group of modules where each module connects to any other
module(s) as needed. New modules can be added and existing modules reconfigured or modified, all
during run-time. Data in any module of the system can be collected and redistributed to any other module
via the Cascade DataHub and Cascade Connect. Communication with field devices is provided by one of
several Cogent Device Drivers. Historical records of unlimited size can be maintained and queried with
the Cascade Historian, and ASCII text files can be logged with the Cascade TextLogger.

Custom programs written in C or C++ can interface with the system, using the Cogent C API or the
DataHub APIs for C++, Java, and .NET. In addition, Cogent’s own dynamically-typed object-oriented
programming language, Gamma, is fully compatible with all modules. User interfaces can be created in
Gamma, which supports Photon in QNX and GTK in Linux.

1.6. Where can I get help?
If you are having problems with a Cogent product, first check the Troubleshooting Guide. If you can’t
find the answer there, you can contact Cogent Real-Time Systems, Inc. for technical support for any
product you have purchased.

• Email: <support@cogent.ca >

• Phone: 1-888-628-2028

• Fax: (905) 702-7850

4

Chapter 2. Getting Started

2.1. Interactive Mode
You can invoke the Gamma engine by typing

[sh]$ gamma

at the shell prompt. (If you are using Gamma with Photon, you should typephgamma.)

It will return the following Gamma prompt:

Gamma>

Now you can start writing instructions to Gamma and get an immediate response. If you define a variable
a without assigning it a value, Gamma will respond with the message that the symbol is undefined and
suggest debugging:

Gamma>a;
Symbol is undefined: a
debug 1>

TypeCtrl - D to return to the Gamma prompt and assigna a value:
Gamma>a = 5;
5
Gamma>

This time Gamma responds with the value assigned to the variable. In Gamma a variable must be
assigned a value. The library functionundefined_p can be used to test if a variable is defined:

Gamma>undefined_p (b);
t
Gamma>b = 1;
1
Gamma>undefined_p (b);
nil
Gamma>

This function returnst for true andnil for false. The objectst andnil are discussed in more detail in
theLogical Typessection of the Basic Data Types and Mechanisms chapter.

A function is defined in Gamma using afunctionstatement:

Gamma>function MyFunc (a) { a *= 10;}
(defun MyFunc (a) (*= a 10))
Gamma>

Gamma returns the function definition in Lisp syntax. It reflects the fact that Gamma is using the Lisp
engine internally. Basically, Lisp displays functions as lists, surrounded by parentheses. The first word in
every Gamma function definition isdefun because that is the Lisp function for defining functions. After
that, the function name is listed, followed by its arguments and code, which is also in Lisp format.

TheMyFunc function called with 12 as its argument will return the value 120, as follows:

Gamma>MyFunc (12);
120
Gamma>

5

Chapter 2. Getting Started

Notice that no type specification is used. An important feature of Gamma is that it is an abstractly typed
language, making it unnecessary to specify the type of a data object in order to be able to use it. This
does not mean that objects do not have types, but rather the system does not require that the type of an
object be known until the code actually executes. This allows a function to return entirely different types,
depending on what the calculation produces.

For example, aMIN function could be defined as:

function min (x, y) { if (x < y) x; else y; }

This function will return an integer or floating point number depending on the types of the arguments.
The arguments do not need to be the same type. Gamma automatically type-casts them, favoring the
smallest possible memory allocation. However, the less-than comparison will fail if both arguments are
not numeric types.

Finally, return statements are not necessary in Gamma. Looking at the function MyFunc, we see it
returns 120, the result of multiplyinga by 10. Any Gamma function that executes successfully always
returns a value, which is the result of evaluating the last expression in the function. This return value
determines the value and type of the function.

This topic is discussed in greater detail inFunction Definitionsin the Functions and Program Structure
chapter.

2.2. Executable Programs
There is currently no facility for embedding Gamma source code into a stand-alone Gamma executable.
However, it is possible to create a Gamma program which appears to be a stand-alone executable to the
user. This is done by using the shell’s#! directive at the top of the Gamma file. Simply include the line
indicating the full path for your Gamma program, for example:

#!/usr/cogent/bin/gamma

If using Gamma with Photon, you should use:
#!/usr/cogent/bin/phgamma

Then change the permissions on the Gamma file to be executable. The Gamma file can now be run
directly as if it were a stand-alone executable. The directive must appear as the first line of the program,
and it must reference the actual Gamma executable, not a link.

The following example program will print the famous "Hello world" message to the screen:

#!/usr/cogent/bin/gamma

princ ("Hello world\n");

There is no requirement for a function namedmain . If a function with the namemain is defined, then
Gamma automatically starts to execute that function. Thus, the result of the following program:

#!/usr/cogent/bin/gamma

function MyPrint()
{

princ ("Hello world\n");
}

function main()
{

MyPrint();

6

Chapter 2. Getting Started

}

MyPrint();

is that the functionMyPrint will be executed twice.

Command line arguments can be passed to the Gamma program using the list variableargv . For more
details seeTutorial I.

2.3. Symbols and Values
A symbolis a fundamental notion in Gamma. It is a unique word or name within the program. In this
sense all symbols are global in Gamma (although they can have local scope), and all references to a
particular symbol will be the exact same Gamma object.

A symbol can contain: lowercase letters, uppercase letters, digits, and underscores. Using a symbol
character operator, other characters can be used. A ’\ ’ character escapes the next character. A ’$’
escapes any and all of the characters in the symbol.

Symbols can have values so they can be used as variables. For the time being it is probably easier to
think of a symbol as a variable. (For other uses of symbols see theAdvanced Types and Mechanisms
chapter of this guide). The same symbol can have different values depending on the part of the program
in which the reference to the symbol is made.

For example:

Gamma>i = 5;
5
Gamma>function MyLocal (n) { local i; for (i = 1; i < n; i++) princ("i = ", i, "\n");}
(defun ...)
Gamma>MyLocal (3);
i = 1
i = 2
2
Gamma>i;
5

In this example the symboli is created and the value of5 is assigned to it. Then in the definition of
functionMyLocal the value ofi is declared to belocal to the function (or to havelocal scope). The
function prints the local values ofi and returns the result of the last calculation. AfterMyLocal returns,
the value of the symboli remains5, as defined at the beginning.

Unlike many procedural languages such as C and Pascal, Gamma usesdynamic scoping. That means that
if a function defines a local variable, then that variable becomes global to any functions it calls. In the
example above, suppose we defineMyScope in the higher call, or at the global level:

Gamma> function MyScope (s) {........}

Then we modify the functionMyLocal such that now it callsMyScope:
Gamma> function MyLocalNew (n)
{

local i;
for (i = 1; i < n; i++)

{
princ("i = ", i, "\n");
MyScope(i);

}
}

7

Chapter 2. Getting Started

The value ofi used as an argument forMyScope will be the value of the local variable most recently
declared in the calling sequence:MyScope (1) , MyScope (2) , etc. The scope of the variable is thus
determined at run time by the order in which functions are called.

Dynamic scoping in Gamma is very different from the convention in C known as lexical scoping, where
the scope of a variable is determined according to the syntactic position in a program where it is declared.

8

Chapter 3. Basic Data Types and Mechanisms

3.1. Numeric Types
A number in Gamma is any integer, real, or fixed-point value.

3.1.1. Integer

An integer is any 32-bit integer number. Integers can be read and written in the following
representations:

1. decimal

Example: 45, 129000

2. hexadecimal (start with 0x)

Example: 0xf12

3. octal (start with 0o)

Example: 0o777

4. binary (start with 0b)

Example: 0b101001

5. character (enclosed by ’ ’)

Example: ’s’

3.1.2. Real

A real number is a 64-bit double precision floating point number. It can contain a decimal point and it
may end with the lettere followed by a signed exponent.

Examples: 0.1, 235.02013576, 5e-2, 3.74e-7

3.1.3. Fixed-point Real

A fixed-point real number is one that is represented by an integer, where the high 16 bits represent an
integer value, and the low 16 bits represent a mantissa. There are very few reasons to work with
fixed-point numbers unless floating-point error in numeric comparison is intolerable. Fixed-point
numbers are created by any numeric function so long as the value of the symbol_fixed_point_ is
non-nil . The default value of_fixed_point_ is nil , so that floating point numbers of type real are
created by default.

9

Chapter 3. Basic Data Types and Mechanisms

3.1.4. Number Operators

The following operators can be used with numeric data:

• arithmetic (+, -, *, /, %, div)

Example:

Gamma>2 + 3;
5

• logical (!, &&, ||)

Example:

Gamma>!2.75;
nil

• comparison (!=, ==, <, <=, >, >=)

Example:

Gamma>2 != 3;
t

• bitwise (<<, >>, ~, &, |, ^)

Example:

Gamma>bin(25);
0b00011001
Gamma>bin(25 << 1);
0b00110010

3.2. Logical Types
In Gamma, there are two objects of logical type:t andnil. t is a logically true value, andnil is the
ONLY logically false value in Gamma. All other objects are considered to be logically true, including the
number zero. This is different from the C language where the number zero is treated as logically false.

The operators! , &&, and|| can be used witht andnil .

Example:

Gamma>!nil;
t
Gamma>!t;
nil

10

Chapter 3. Basic Data Types and Mechanisms

Gamma>!0;
nil
Gamma>2 || nil;
2
Gamma>2 && nil;
nil

3.3. Strings
A string is a sequence of characters (whose values range from 0x01 to 0xff), stored in consecutive bytes
of memory, terminated by the null character \0. Unlike symbols, strings are not unique within the system.
Strings are denoted by enclosing them in double quotation marks (for example:"A string."). A
string is created by any of the string functions (particularlystring), or by reading a string constant in
the form"A string." .

The following types of operators can be used with strings:

• comparison (!=, ==)

Example:

Gamma>"cat" != "dog";
t
Gamma>"cat" == "dog";
nil

• logical (!, &&, ||). Strings have the logical value of true in Gamma.

Example:

Gamma>"cat" && "dog" && nil;
nil
Gamma>"cat" || "dog" || nil;
"cat"

However, strings are normally manipulated in Gamma using the string functions (see Strings and
Buffers in the Reference Manual.)

3.4. Lists and Arrays
An array is an ordered collection of elements, each of which can be of a different type. Each element is
associated with a fixed numeric index into the array, and can be set or read using the functionsaset and
aref , or through the use of square brackets [] . If an attempt is made to set an array at an index beyond
the end of the array, the array will increase in size to the given index, filling any undefined intermediate
values withnil . If an attempt is made to read an element from an array beyond the size of the array,
thenaref will return nil , and no error will be reported.

An array is created by a call toarray , or by reading a Lisp expression of the form[element
element ...] . A side effect of creating an array using the[...] syntax is that the array will be

11

Chapter 3. Basic Data Types and Mechanisms

effectively static, in the sense that if the array is defined within a function, then it will not be re-created
during each call to the function. It would appear to exist within the code space of the function.

A list is a linked group of consecutive elements called cons cells. A cons cell consists of a reference to
the list element and a forward pointer to the next cons cell. This organization necessarily means that a list
is single-directional, and also means that any cons cell within the list is the head of another list,
consisting of that cons cell and all cells after it in the list. The last cons cell in a list normally has a
forward pointer ofnil .

It is possible to create a list whose last cons cell points to a non-nil object. For example, a single cons
cell could have a data value of1, and a forward pointer to number2. This would create adottedlist,
written as(1 . 2) (note the spaces around the dot). Only the last element in a list can be a dotted cons
cell. Thus, it is not possible to create a list(1 . 2 3) or (1 . (2 3)) . A dotted cons cell is
created by a call tocons , or by reading a Lisp expression of the form(x . y) . The form(x .
nil) is equivalent to(x) .

There are two very important functions used to access the members of a list:car(list) and
cdr(list) . Thecar function returns the first element of a list. For example,car(list(3,2,1))
returns 3. Thecdr function returns the "tail" of the list, that is, the list without the first element. For
example,cdr(list(3,2,1)) returns (2 1). The combinations of these two functions allow access to
any element(s) of a list. For example,car(cdr(list(3,2,1))) returns 2, the second element of
the list. Normally a shortcutcadr(list) is used forcar(cdr(list)) .

For more information seecar, cdr in the Reference Manual.

A list is created by a call tocons or list , or by reading a Lisp expression of the form(x ...) , or by
evaluating a Lisp expression of the form’(x ...) or ‘(x ...) .

Both lists and arrays can be traversed using thewith statement. For example:

Gamma>sum = 0;
0
Gamma>with i in list(1,2,3) do {sum += i;}
nil
Gamma>sum;
6
Gamma>

For more information on thewith statement, seewith in the Reference Manual.

3.5. Constants

A constant is any symbol that has been defined as such with the assignment operator::= . Note that since
the check is made at run-time, the constant is protected, even if the symbol name is evaluated at run-time.

Example:

Gamma>e ::= 2.17128128;
2.17128128
Gamma>e = 3;
Assignment to constant symbol: e
debug 1>

(Type Ctrl - D to return to
the Gamma prompt.)

Gamma>

12

Chapter 3. Basic Data Types and Mechanisms

3.6. Operators and Expressions
Gamma provides operators for the basic arithmetic calculations: addition, subtraction, multiplication,
division and taking the modulus. There is also a group of assignment, bitwise, comparison, increment
and decrement, logical, and quote operators. For information on operator precedence and associativity
see Operators in the Reference Manual.

Operators are used with one, two, or three values to createexpressions. For instance,4 + 2 is an
expression whose value is6. In Gamma, every expression has a value.

Not all expressions contain operators, though. The number5, for example, is also an expression.
Generally speaking, an expression in Gamma is anything that can be evaluated. This includes numbers,
symbols that have been assigned values, strings,t , nil , constants, lists, arrays, and so on.

These are also known assymbolicexpressions, a term that has been abbreviated tos_exp. Since
expressions are often used as arguments for functions, you will come across the parameters_exp in
function definitions in the Reference Manual.

An expression can become astatementby adding a semicolon. Thus,4 + 2; is a statement. For more
information on statements, see theStatementssection in the Control Flow chapter.

3.7. Comments
There are two ways insert comments into Gamma code. To comment out a line, you can use a double
slash (//) like this:

a = 5;
b = 7;

// This assigns the value of c.

c = a + b;

To comment out a block of text, you can put the symbol/* at the beginning, and*/ at the end,
like this:

a = 5;
b = 7;

/* This assigns the value of c,
which is very important to the
future of our project.*/

c = a + b;

It is not permitted to put an unmatched double quote mark (") into the second type of comment.
This is a feature that allows you to comment out a string, to include a comment mark in a string,
and even to comment out a string that includes comment characters, like this:

/*
princ ("/* this is what a comment looks like\n");
princ (" when extended to multiple lines\n");
princ ("*/\n");

*/

3.8. Reserved Words
In Gamma, certain words are predefined and reserved for system use. No symbols can be defined by the
user that are identical to these reserved words.

The reserved words are:

class, collect, do, else, for, function, if, local, method, tcollect,
while, with.

13

Chapter 3. Basic Data Types and Mechanisms

For more details see Reserved Words entry in the Reference Manual.

3.9. Memory Management
The programmer generally does not need to consider the memory management aspects of programming
in Gamma because Gamma handles all memory management requirements of a task internally through a
mechanism known asgarbage collection. This greatly simplifies programming and eliminates errors
associated with dangling pointers, freeing unallocated memory, and array overruns so common in
languages such as C. Nevertheless, Gamma provides some functions for examining and invoking the
garbage collector. These may be used to determine run-time memory requirements or to ensure that the
garbage is collected at pre-determined times.

For more information on garbage collections and the related functions seegc in the Reference Manual.

14

Chapter 4. Tutorial I
This tutorial contains examples of the basic types and mechanisms of Gamma. The first example shows
you how to manipulate lists. A list is a very important data type in Gamma. The understanding of list
manipulation is a key notion to many of Gamma’s constructions. The second example walks you through
the famous "Hello world" program.

4.1. Lists
The examples below demonstrate some of the basics of list manipulation. Since Gamma uses the Lisp
engine, it inherits the rich set of list functions for which Lisp is known.

/* The program starts with the line containing the shell’s
directive #!. It makes a Gamma program appear to be a
stand_alone executable to the user. The directive must appear
as the first line and must reference the actual Gamma
executable, not a link. */

#!/usr/cogent/bin/gamma

/*
* Lisp defines the functions ’car’, ’cdr’, and ’cons’ as the basic
* list manipulation functions. The origins of these names have no
* meaning on today’s computers:
* CAR - Contents of the Address Register
* CDR - Contents of the Decrement Register
* CONS - Construct (OK, this makes sense)
*
* We can define alternate names for car and cdr here:
*/

head := car;
tail := cdr;

/*
* Create some lists.
*/

a = list ("My", "dog", "has", "fleas");
b = list (1, 2, 3, 4, 5, 6);

/* The pound sign "#" in front of a symbol prevents Gamma
from evaluating the symbol so the symbol is taken literally.
Thus, if x = 5, then the function call list (#x, 1) will
create the list (x 1) rather than (5 1).

*/

c = list (#a, #b, #c, #d, #e, #f);
d = list (#d, #h, #b, #i, #g, #e, #c);

/*
* Take the first component of a list.
*/

e = head (a);
princ ("The first component of ", a, " is ", e, "\n");

/*
* Take the tail of a list.
*/

e = tail (a);
princ ("\nThe tail of ", a, " is ", e, "\n");

/*

15

Chapter 4. Tutorial I

* Concatenate two lists. Notice that list elements do not need to be the
* same type.
*/

e = append (a, b);
princ ("\nappending ", b, " to ", a, " gives:\n ", e, "\n");

/*
* Walk a list and print each element
*/

princ ("\nThe elements of ’a’ are:\n");
with i in a do
{

princ (" ", i, "\n");
}

/*
* Add an element to the beginning of a list
*/

princ ("\nAdding a zero to ", b, "\n");
b = cons (0, b);
princ (" Gives: ", b, "\n");

/*
* Take the first element of the tail of the list (the second element)
* We can use combinations of car and cdr to do this. However, Gamma
* predefines a number of car and cdr combinations to make this easier,
* by inserting multiple ’a’s and ’d’s between the ’c’ and the ’r’ in
* the words car and cdr.
* For example, caddr(x) is the same as car(cdr(cdr(x)))
*
* Gamma defines all one_, two_, and three_letter combinations of
* car and cdr.
*/

princ ("\na is ", a, "\n");
x = car (cdr (a));
princ (" car(cdr(a)) is: ", x, "\n");
x = cadr (a);
princ (" cadr(a) is: ", x, "\n");

/*
* Some other interesting list functions...
*/

princ ("\n");
princ ("Union of ", c, " and ", d, " is ", union (c, d), "\n");
princ ("Intersection of ", c, " and ", d, " is ", intersection (c, d), "\n");
princ ("Difference of ", c, " and ", d, " is ", difference (c, d), "\n");
princ ("Difference of ", d, " and ", c, " is ", difference (d, c), "\n");

4.2. "Hello world" program
This example program prints a personalized "Hello" message a given number of times. It demonstrates
variable naming, function definitions and basic control structures, as well as command line arguments.

The program also shows the basic similarities between Gamma and the C language, and some important
differences which highlight the power of Gamma.

#!/usr/cogent/bin/gamma

/* This function iterates, saying hello to the given name.

16

Chapter 4. Tutorial I

In Gamma, all functions return a value, which is the
result of the last evaluated expression in the function.
In this case, we return the string "ok".
*/

function say_hello (name, n)
{

local i;

for (i = 0; i < n; i++)
princ ("Hello ", name, "\n");
"ok";

}

/* A program may optionally have a function main()
declared, in which case Gamma will execute the
main() function after all of the program file has been
read in. If no main() declared, the programmer must
explicitly call a function or enter an event loop at
some point while reading the file. Any code which is not a
function definition will be automatically run AS THE FILE
IS READ. This is useful for providing feedback to the user
while loading. */

function main ()
{

/* Define some locally scoped variables. Notice that
Gamma implements abstract data typing, so it is not
necessary to declare the variable type.
*/

local repeat = 1, my_name = "world";

/* Access the command line arguments. argv is a list of the
command line arguments, as strings, where the first argument
is the program name. */

/* The second argument (cadr(argv)) is my_name,
if present.
*/

if (cadr(argv))
my_name = cadr (argv);

/* The third argument (caddr(argv)) is the number
of iterations, if present.
*/

if (caddr(argv))
repeat = number (caddr(argv));

/_now print the message */

result = say_hello (my_name, repeat);
princ (result, "\n");

}

17

Chapter 5. Control Flow
Gamma provides a variety of mechanisms for control flow. These generally fall into the categories of
statements, function calls, event handlers and error handlers. Many of these are dealt with in more detail
in other sections of this document. All functions have a detailed entry in the Reference Manual.

5.1. Statements
A statementin Gamma is any syntactically complete piece of code that can be independently evaluated,
written in statement syntax. There are two kinds of statement syntax, as follows:

; A semi-colon at the end of an expression is used to denote a single, one-line statement.

{ } Curly brackets surrounding zero or more expressions or statements create a single statement from
them. Multiple statements within the curly brackets can be grouped in any combination, and nested in
any number of levels. This statement syntax is also referred to as acompound statementor code block.
Each expression or statement is evaluated in order, and the result is the result of the last statement or
expression. A code block in Gamma does not create a local scope.

Gamma has a number of built-in statements, several of which are explained below. For a complete list of
built-in Gamma statements, see Statements in the Reference Manual.

5.1.1. Conditionals

Gamma contains a single conditional statement:if . Theif function evaluates its condition, and if the
condition is non-nil , then the first statement after theif is performed. If the condition isnil , the
else clause of the statement is executed. It is not mandatory that anif statement have anelse clause.
In the case of nestedif statements, anelse clause will always bind with the nearestif statement.

For example:

...
if (var == 1)

count1 ++;
else if (var == 2)

count2 ++;
else if (var == 3)

count3 ++;
...

The if statement accepts only a single statement for its true and false clauses. Using the code block
statement syntax, it is possible to perform more than one action inside anif .

Example:

...
if (var == "string")
{

count++;
princ("The number is ", count, "\n");

}
...

18

Chapter 5. Control Flow

5.1.2. Loops

Gamma supports three looping statements:for , while andwith . Thefor loop looks exactly like a
for loop in C:

...
local i;
for (i = 1; i < N; i++)

{
body_statements

}
...

A while loop is also exactly like the Cwhile loop, though the do/while variant available in C is not
supported in Gamma.

Gamma adds thewith loop, which walks a list or an array and executes a body statement once for each
element in the list or array. Thewith loop may be instructed to collect the results of the body statement
for each iteration, and return the accumulated results as a new list or array. The iteration variable in a
with loop is defined only within the body of the loop. For an example, see theLists and Arrayssection
in the Basic Data Types and Mechanisms chapter.

5.1.3. Goto, Break, Continue, Return

Gamma does not contain facilities for non-linear local jumps. Many languages provide one or more
wrappers on thegoto function, such asbreak (go to the end of the expression),continue (go to the
beginning of the expression) andreturn (go to the end of the function). These facilities can be used on
occasion for clarity, but can commonly act to confuse both the programmer and the reader.

In Gamma, such a facility would be very confusing, as it is not always clear which expression constitutes
the scope of a break, continue or return. In addition, the execution speed penalty associated with
supporting local jumps in a functional language generally outweighs the benefit in the few cases where a
local jump would be convenient. Further, because Gamma is dynamically scoped, a local jump would be
defined as a jump that does not cross a scope boundary rather than the more common C definition of a
jump that does not cross a function boundary. This distinction greatly reduces the value of, and the need
for, a local jump capability.

The most common local jump instruction in procedural languages isreturn . This instruction moves
the execution to the bottom of the function and supplies a return value for the function. In Gamma, all
functions implicitly return a value which is the result of the last expression to be evaluated within the
function body. If no expression is evaluated, then the function returnsnil . If the programmer wishes to
return the value of a symbol, he or she can simply write that symbol, followed by a semicolon, as the last
statement to be evaluated in the function.

5.2. Function Calls
Any Gamma expression which makes a call to a function, such astan(3.14159) , causes a change of
program flow, entering a new scope and causing execution to be temporarily diverted into the function
being called. In most cases, the function simply returns and flow continues at the expression containing
the function call.

If an error occurs during a function call, the function will not return, and execution will continue from
the most recentprotect /unwind or try /catch construct (see theError Handlingsection of this
chapter).

19

Chapter 5. Control Flow

5.3. Event Handling
An eventis a change to which the system responds. Events include interprocess communication
(message exchanging between processes) events, signals, timer events (execution of a block of code at
specified time), Graphical User Interface events (clicking on the screen buttons), and DataHub
exceptions (a change in value of a DataHub point).

Gamma provides a generalized event handling capability which processes all these events. A Gamma
function that responds to an event is called anevent handler, or acallback. A pair of functions,
next_event and next_event_nb , invoke the event handler, that is, any callback function(s) that
have been attached to the event. For example, the simple construct:

while (t)
{

next_event ();
}

placed at the end of the file, together with the set of callback functions defined in the application to
handle all the required events, creates a purely event-driven Gamma program. However, unlike typical
event-driven systems applications (such as many GUI-based applications), the user has here the
opportunity to further process the events, providing a conditional which is more complex than an infinite
loop, or even choosing not to receive events. The events will not be processed (or callbacks invoked)
until one of thenext_event calls are made.

The result ofnext_event is the result of executing the callbacks, ornil if no event handler has been
defined (that is, no callbacks have been attached). The result ofnext_event_nb (nb stands for
non-blocking) is the same except thatnil is also returned if no event was available.

Attaching callbacks and receiving events depends on the type of event. For example, in Photon the
functionPtAttachCallback is used to attach actions to clicking on buttons. Normally one does not
wait for an explicit event type, that is, thenext_event call will process ANY event defined within the
system. The following sections describe how some common event types are handled.

5.3.1. Interprocess Communication Message Events

Gamma uses asend/receive/reply(SRR) mechanism to provide interprocess communication via
messages. In this context, a message is any valid Gamma or Lisp expression passed synchonously from
one process to another, using thesend function. The engine treats the message as a null-terminated
character string in Lisp syntax (Gamma’s internal representation), which it parses and evaluates. Any
expression may be transmitted in this way, including function definitions, function calls, variable names
and complex blocks of code. The reply returned is the result of the evaluation.

This process is transparent to the application. The Gamma engine evaluates the incoming message inside
an implicit try /catch block to ensure that externally originated expressions cannot accidentally affect
the running program. Any errors that occur while the message is being evaluated will be indicated in the
return value for the message, but the overall running status of the engine will not be otherwise affected.

For more information see theInterprocess Communicationsection in the Special Topics chapter.

5.3.2. Timers

A timer is a Gamma expression that is submitted for evaluation at specified time in the future. Timer
related events are set up through theevery andafter functions which provide a relative time delay,
and theat function which accepts an absolute time. These functions accept timing parameters and a
block of code that will be evaluated when the timer expires. The code can be simply a function name, or
can be an entire expression to be evaluated.

20

Chapter 5. Control Flow

A timer will only be handled during a call tonext_event , next_event_nb or flush_events .
If a timer expires while another operation is being performed, the engine will evaluate the timer code at
the next event handling instruction.

In Gamma, by default, timers are internally handled by usingproxies. A proxy is non-blocking system
message that does not require a reply. Gamma can act on a proxy immediately, or delay a little while in
order to finish what it is currently doing. It is this ’little while’ that becomes the limit of the accuracy of
the timers in Gamma when they are driven from proxies. You see, most programs written in Gamma are
run through an event loop. The maximum time a proxy-based timer can be delayed is the execution time
of the longest path of code attached to an event. Since this quantity is totally dependent on how your code
is written and the speed of your CPU, it is difficult to put an exact number on the practical accuracy of
Gamma’s proxy-based timers. The maximum resolution of the timers is equal to the OS tick size setting.

5.3.2.1. Setting a timer

A timer is created when any of the following functions are called:

Theafter timer is used to evaluate a piece of code after a given amount of time. It is a one-shot timer
that " goes away " after being fired.

Theevery timer is used to evaluate a piece of code at a specified interval.

Theat timer evaluates the associated code when the current time matches the profile created by six
arguments to the function.

For syntax and examples see the Reference Manual.

5.3.2.2. Canceling a Timer

All timer functions return a timer_id that can be used to cancel the timer. To do so, thecancel function
is called, using the timer-id for its argument.

5.3.2.3. The TIMERS variable:

On startup of Gamma a variable calledTIMERS is initialized. This variable is an array of all the timers
currently in the system. Initially, its value is [] (an empty array) but as timers are added to the system
this array grows.

Gamma>TIMERS;
[]
Gamma>a = every(3,#princ("Hello\n"));
1
Gamma> >TIMERS;
[[860700531 176809668 3 ((princ "Hello\n")) 1]]

TheTIMERSvariable was initially an empty array. Once the first timer was added theTIMERSvariable
contained information on the first timer. The contents of each element can be summarized as:

second nanosecond repeat function timer_id

The second is the number of seconds since Jan. 1, 1970 which is compatible with theclock anddate
functions. The nanosecond is the fraction of the second. Combining these two times gives an accurate
time that identifies the next time the timer will fire. The repeat isnil if the timer is a once-only
"after " timer or an "at " timer. Otherwise, this is the period of an "every " timer. The next item is the
code that is evaluated when the timer fires. The last item in this sub-array is the timer-id.

This array grows as timers are added to the system:

21

Chapter 5. Control Flow

Gamma>b = every(5, #princ("Test\n"));
2
Gamma>_timers_;
[[860700531 176809668 3 ((princ "Hello\n")) 1]

[860700563 494732737 5 ((princ "Test\n")) 2]]
Gamma>

An important point to remember is that theTIMERSvariable is an array, and therefore can be referenced
as such. To reference the first element in theTIMERSarray, useTIMERS[0] just like a regular array
reference. Altering theTIMERSarray can cause unpredictable behavior, and should be avoided.

5.3.2.4. Blocking timers from firing

Sometimes a segment of code is written which must be executed non-stop, without an interruption from
timers. To accomplish this, the code is wrapped betweenblock_timers andunblock_timers
functions. In this way the code will be safe from interruption from timers. This blocking is not necessary
unless timers have been bound to signals rather than proxies.

5.3.2.5. timer_is_proxy function

This function controls how timers are fundamentally handled within Gamma. By default, timers are
handled by the processing of proxies. This allows Gamma to delay the timer, if necessary, when a critical
system process is occurring.

Calling thetimer_is_proxy function withnil makes all timers operate by using signals. In the
QNX 4 operating system, for example, SIGALRM is used, and the attached code is run as a handled
signal. Running timers via signals has some very dramatic consequences. First and foremost, when
running in this modeall timer code must be signal safe. This status must be analyzed with caution, as
most code isnot signal safe. This mode should be avoided except in very rare circumstances.

5.3.3. Symbol Value Events (Active Values)

Gamma has the capability to generate an event when a variable is modified in any way. A variable that
can trigger an event is called anactive value. The code that is executed when the variable changes is
called theset expressionthat is effectively a callback.

Theadd_set_function permits attaching an expression to any defined variable. (It is an error to
attach a set expression to a constant symbol.) When the value of a symbol changes, either by being
declared within a sub-scope or by being explicitly changed using=, : =, --, or + +, the Gamma engine
checks the symbol for the existence of an associated set expression. If a set expression exists, then it is
executed directly after the value of the symbol is changed. This set expression can be any valid Gamma
code, and is evaluated within its own sub-scope. The symbolsvalue , previous andthis are
defined within this sub-scope to be the current value of the symbol, the previous value of the symbol, and
the symbol itself respectively. If an active value causes another active value to change, then that new
active value’s set expression is also evaluated. This provides a very simple and powerful means by which
forward chaining algorithms such as those in expert systems can be implemented.

Active values provide a very powerful way of constructing an event-driven application with a high degree
of cohesiveness. Often, there is some functionality that is related to a derived variable, not an event itself.
The function can be attached to that internal variable, decoupling it from the event, and generating
clearer and more concise code. In the following example, we wish to attach an action to an alarm
condition, which in turn is generated by a change in a measured variable (e.g., the temperature). The#
sign protects an expression from evaluation, causing it to be treated as a literal. (We discussDeferring
Expression Evaluationin more details later, in the chapter on Advanced Types and Mechanisms).

22

Chapter 5. Control Flow

Gamma>temp = 35;
35
Gamma>hi_limit = 40;
40
Gamma>function check_temp (tp)

{if (tp > hi_limit) alarm_hi_on = t;
else alarm_hi_on = nil;}

(defun check_temp (tp)
(if (> tp hi_limit)

(setq alarm_hi_on t)
(setq alarm_hi_on nil)))
Gamma>function print_alarm ()

{if (alarm_hi_on == t) princ("Alarm is on: Temp is over ",hi_limit, ".\n");
if (alarm_hi_on == nil) princ("Alarm is off.\n");}

(defun print_alarm ()
(progn (if (equal alarm_hi_on t)

(princ "Alarm is on: Temp is over " hi_limit ".\n"))
(if (equal alarm_hi_on nil)

(princ "Alarm is off.\n"))))
Gamma>add_set_function(#temp,#check_temp(temp));
(check_temp temp)
Gamma>add_set_function(#alarm_hi_on, #print_alarm());
(print_alarm)
Gamma>temp = 38;
Alarm is off.
38
Gamma>temp = 39;
39
Gamma>temp = 42;
Alarm is on: Temp is over 40.
42
Gamma>

5.3.4. Cogent DataHub Point Events (Exception Handlers)

The Cogent DataHub is a data collection and distribution center designed for easy integration with
Gamma. A point is a name for data in the Cogent DataHub. An exception handler is a Gamma expression
that is attached to a point. The Cogent DataHub can asynchronously transmit any number of point values
to a Gamma program, which will then automatically update the value of a symbol named the same as the
DataHub point.

Theadd_exception_function andadd_echo_function functions permit an application to
bind an expression to a DataHub point exception in a similar way toadd_set_function above. If an
application can both write a point and receive exceptions from that point, then the DataHub will "echo"
the exception originated by the application. The two functions make it possible to distinguish between
these two situations. Only the originating task will see a point exception as an echo, while all other tasks
will see a normal exception.

In addition, the programmer may attach any number of expressions to the symbol, to be evaluated when
the DataHub point changes. The expressions are evaluated within a sub-scope, with the special symbols:
value , previous andthis defined to be: the current value of the point, the previous value of the
point and the point name itself as a symbol. An exception handler is only triggered during a call to
next_event , next_event_nb or flush_events .

5.3.5. Windowing System Events

Gamma’s GUI support offersPtAttachCallback for Photon andAttachCallback for X
Windows that permit attaching callbacks to any GUI event. Like the other event handling functions, the
user can in fact bind any Gamma expression for execution when the event occurs.

23

Chapter 5. Control Flow

5.3.5.1. GUI Event Handlers (Callbacks)

A GUI event handler, also known as acallback, is an arbitrary expression attached to a particular
callback of a widget. A callback may occur whenever a call is made tonext_event ,
next_event_nb , andflush_events . If the appropriate GUI event has occurred, then the Gamma
engine automatically evaluates any callback handlers that deal with the event attached to the particular
widget. This results in essentially asynchronous program flow, where the callback may occur, from the
user’s perspective, at any time during the program execution. In reality, the GUI event is only handled if
the system has been instructed to deal with one or more incoming events.

5.3.6. Signals

Signals are the traditional method of asynchronous communication between tasks, in which no data is
transferred. Asignal handleris an expression attached to an operating system signal, which is delivered
asynchronously to the running program. A signal handler is attached by a call to thesignal function.

A signal pre-empts any activity except garbage collection, and causes control flow to enter the signal
handler. The signal handler should not call non-reentrant functions. It is safe for a signal handler to make
a call to theerror function, which will throw flow control to the nearest error handler.

Gamma supports the following signals:

SIGABRT, SIGBUS, SIGCHLD, SIGCONT, SIGDEV,
SIGEMT, SIGFPE, SIGHUP, SIGILL, SIGINT,
SIGIO, SIGIOT, SIGKILL, SIGNAL_HANDLERS,
SIGPIPE, SIGPOLL, SIGPWR, SIGQUIT, SIGSEGV,
SIGSTOP, SIGSYS, SIGTERM, SIGTRAP, SIGTSTP,
SIGTTIN, SIGTTOU, SIGURG, SIGUSR1, SIGUSR2,
SIGWINCH

For the description of signal values see thesignal entry in the Reference Manual.

5.3.6.1. block_signal & unblock_signal

There are times when certain portions of code must not be interrupted by certain or all signals. Use the
block_signal andunblock_signal functions to protect a process.

5.4. Error Handling
An error handler is a function that responds to an error. In general, when a program executes, the flow of
control moves from one expression to the next, possibly passing into and out of function calls, and
following branches and loops as necessary. If an error occurs, however, the flow of control will not move
to the next expression, but will jump immediately to the most recently declared error handler, either
through theprotect /unwind or thetry /catch constructs. These constructs are the two pairs of
functions available in Gamma which allow for trapping and handling errors. SeeTutorial II for more
details.

The combination of signal handlers and error handlers can cause a program to jump to a predefined point
at any time during its execution. An error can be explicitly caused by a call to theerror function.

5.4.1. Situations that might cause Gamma to crash

Gamma is a very robust language, particularly in comparison to programming in C. However, the power
and ease of use can sometimes lead a programmer to create situations that could crash the Gamma
engine. Generally these are errors that would certainly have crashed a C program, and would be

24

Chapter 5. Control Flow

considered part of the debug cycle. The following list highlights some situations where care must be
taken:

1. A call to init_ipc inside a timer or signal handling routine. You should call (init_ipc) once at
the beginning of your program if at all.

2. Abuse of Photon widget resources. While care has been taken to minimize the risk of a crash by
abusing the Photon widgets, the bottom line is that widgets are raw C structures with fairly complex
manipulation functions. If you write a bad value into a C structure, your program will crash. If you
fail to call PtInit , your program will crash. If you create a non-window widget with no parent,
your program will crash. These are just facts of life.

3. Gamma provides a ’wrapper’ for most of the standard C library functions that makes the
corresponding C function call after extracting the Gamma arguments. If the arguments passed cause
the C function to crash, then your program and the Gamma engine will crash as well.

Having said these things, we are always interested in hearing about new ways that we can make Gamma
more robust. Please don’t hesitate to let us know if you find a weak spot.

25

Chapter 6. Tutorial II
This tutorial includes examples related to control flow in Gamma: namely, error handling and dynamic
scoping.

6.1. Error Handling - try /catch , protect /unwind
This example demonstrates the error handling mechanisms available in Gamma. There are two basic
means of trapping and handling errors.

1. Execute a protected block of code, and specify an error handler which is only executed if an error
occurs within the protected code. If an error occurs, the error handling code is executed, and the
error condition is cleared. This is thetry /catch mechanism.

2. Execute a protected block of code, and specify a second block of code which must be executed even
if an error occurs in the first block. Normally when an error occurs, the execution stack is unwound
to the nearest error handler, aborting any intervening execution immediately. If a block of code must
be run, even when an error occurs, we want to unwind protect that code. After the error is dealt with,
it is passed on up the stack rather than being cleared. This is theprotect /unwind mechanism.

The code for the example is shown below.

#!/usr/cogent/bin/gamma

/*
* Create a function which has an error in it.
* The symbol zero is not defined.
*/

function sign (x)
{

if (x < zero)
princ ("Negative\n");

else
princ ("Positive\n");

}

/*
* Create a function which checks the sign of a number,
* but ensures that an error will not terminate the program.
*/

function checkit (x)
{

princ ("\nEntering a TRY, CATCH block...\n");
try
{

sign (x);
}
catch
{

princ ("Oops: ", _last_error_, "\n");
}

}

/*
* Create a function which checks the sign of a number,
* and which will print a status message whether or not an error
* occurs, before passing a possible error condition up the stack.
* The ’princ’ statement in this case will always be run, even if
* an error occurs.
*/

26

Chapter 6. Tutorial II

function unwindit (x)
{

princ ("\nEntering a PROTECT, UNWIND block...\n");
protect
{

sign (x);
}
unwind
{

princ ("Finished checking the sign\n");
}

}

/*
* Attempt to call this function, but if we get an error,
* simply print the error message and continue.
*/

checkit (-5);

/*
* Run the same code, but with zero defined
*/

zero = 0;
checkit (-5);

/*
* Run the unwind protected function. This should print its unwind
* message.
*/

unwindit (-5);

/*
* Make ’zero’ undefined again so that the error will occur. Now we
* run a function which is unwind protected. This function will not
* return since it passes the error up to the global error handler,
* which causes the program to exit.
*/

zero = _undefined_;
unwindit (-5);

princ ("This message should never be printed\n");

6.2. Dynamic Scoping
This example uses the error handling mechanisms from the previousError Handlingsection to
demonstrate dynamic scoping. Most compiled languages use lexical scoping, which means that a
variable is defined only where it is visibly declared, either as an external global, file global, or local
variable. Gamma uses dynamic scoping, meaning that a variable is defined in any function which defines
it, and in any function which the defining function subsequently calls. This powerful mechanism allows
the programmer to override global variables by defining them in a higher scope, and then calling a
function which believes itself to be using a global variable.

One useful side-effect of dynamic scoping is that functions and variables do not have to be declared
before they are used in other functions. The function or variable only has to be declared when the other
function is actually run.

The code for the example is shown below.

27

Chapter 6. Tutorial II

#!/usr/cogent/bin/gamma

/*
* Create a function which has an error in it.
* The symbol zero is not defined.
*/

function sign (x)
{

if (x < zero)
princ ("Negative\n");

else
princ ("Positive\n");

}

/*
* Create a function which checks the sign of a number,
* but ensures that an error will not terminate the program.
*/

function checkit (x)
{

try
{

sign (x);
}
catch
{

princ ("Oops: ", _last_error_, "\n");
}

}

/*
* Create a function which locally declares the variable ’zero’, and
* then calls the checkit function. Since ’zero’ is a local variable,
* the local value will override the current global definition, which
* is undefined.
*/

function zero_check (x)
{

local zero = 0;
checkit (x);

}

/*
* Create a function which sets zero to -10, and calls the checkit
* function.
*/

function minus_ten_check (x)
{

local zero = -10;
checkit (x);

}

/*
* Attempt to call the checkit function with zero not defined.
*/

princ ("With ’zero’ undefined...\n");
checkit (-5);

/*
* Now let zero be defined and try again.
*/

princ ("\nWith ’zero’ locally defined to 0...\n");

28

Chapter 6. Tutorial II

zero_check (-5);

/*
* Now run with zero defined as -10
*/

princ ("\nWith ’zero’ locally defined to -10...\n");
minus_ten_check (-5);

/*
* Finally, try running checkit again from the global scope. Note that
* zero is undefined once again.
*/

princ ("\nOnce again from the global scope...\n");
checkit (-5);

6.3. Error Handling - interactive session
The code below provides an example of starting an interactive session in case of an error. In this example
a window with two buttons is created. Pressing the button labeledgood button will print a message to
stdout. Pressing the button labelederror button will cause the UNDEFINED symbolg to be evaluated.
This causes an error and starts the interactive session from the catch block. The function that runs the
interactive session is designed to be recursive and relies on the dynamic scoping of variables in Gamma.
Notice that Lisp grammar is being used in this interactive session. You can query the value of any
variable simply by typing the variable name in. For example:

win
but1
but2
(@ win title)

or use some functions like:
(stack)
(* 8 3)

Before terminating the interactive session, try to resize the window. Notice that it does not work because
the event loop is temporarily suspended. Now exit the interactive session by typingCtrl - D and notice
that the window can now be resized. Also notice that once the event loop is re-started, the contents of the
window are not updated but the callbacks are still active. This happens because Photon was interrupted in
the middle of a function call and an error condition now exists between Gamma and the Photon library.

#!/usr/cogent/bin/gamma

require_lisp("PhotonWidgets");

PtInit(nil);
win = new(PtWindow);
win.SetArea(100,100,100,100);

but1 = new(PtButton);
but1.text_string = "good button";
PtAttachCallback(but1,Pt_CB_ACTIVATE,#princ("good button\n"));
but1.SetPos(10,10);

but2 = new(PtButton);
but2.text_string = "error button";
PtAttachCallback(but2,Pt_CB_ACTIVATE,#g);
but2.SetPos(10,40);

29

Chapter 6. Tutorial II

PtRealizeWidget(win);

function interactive_mode (level)
{

local expr;

princ("internal error: ", _last_error_,"\n");
writec(stdout,"\ndebug", level,">");
while ((expr = read(stdin)) != _eof_)

{
try
{

writec(stdout,eval(expr));
writec(stdout,"\ndebug", level,">");

}
catch
{

interactive_mode(level + 1);
writec(stdout,"\ndebug", level,">");

}
}

}

while (t)
{

try
{

next_event();
}
catch
{

princ("starting temporary interactive mode using Lisp grammar\n");
princ("use ^D to exit this mode and return to event loop\n");
interactive_mode(1);
princ("\nleaving temporary interactive mode\n");

}
}

30

Chapter 7. Functions and Program Structure

7.1. Function Definition
A function is defined in Gamma using afunction statement:

Gamma> function thing (a) { random() * a;}
(defun thing (a) (* (random) a))
Gamma> thing (5);
2.3869852581992745399

function pow (v, exp)
{

local result = 1;

while (exp -- > 0)
{
result *= v;
}

result;
}

No type specification is used since the type returned will be determined by the expressions within the
function when it executes:

Gamma>pow (2,3);
8
Gamma>pow (2.1, 3.25);
19.4481

C programmers should note that this typeless function definition bears no similarity to a void function
type, which does not exist in Gamma.

The value and type of a function is the return value of the last expression evaluated within the function.
To return the value of a specific variable that only exists within the scope of the user function, that
variable name is placed by itself on the last line of the function. This effectively causes that symbol to be
evaluated, returning its value.

Functions do not need to be defined before they are referenced in a file, but they must exist before they
are called. In other words, it is the run-time order, not the loading (reading) order that is important.

7.2. Function Arguments
When a function is called, the arguments in the call are mapped to the arguments specified in the
function definition on a one-to-one basis. The Gamma engine evaluates the arguments and maps the
results of those evaluations to each function argument name. Since Gamma is abstractly typed, there is
no need to specify a data type in the function definition. If a particular data type is required within the
function, then the function body can check for the type using the type predicate,type -p .

7.2.1. Variable number of arguments

It is possible to create a function that takes a variable number of arguments. The last argument in a
function’s argument list may be made to act as a "catch-all" orvarargargument which collects all
remaining arguments provided in the function call as a list. For example,

function f (x, y...)

31

Chapter 7. Functions and Program Structure

creates a function with 2 mandatory arguments, the second of which can have one or more values. If this
function is called asf (1,2) , thenx will have the value1, andy will have the value(2) , that is, a list
containing one element whose value is2. If this function is called asf (1,2,3,4,5) , thenx will be
1, andy will be (2 3 4 5) , a list of four elements. If this function is called asf(1) , then an error
would occur because y is not optional.

7.2.2. Optional arguments

Gamma allows optional arguments at the end of an argument list. An optional argument is specified by
appending a question mark (?) to an argument in the function’s argument list. All arguments after the
first optional argument are implicitly optional as well. If the caller wants to provide a value to an optional
argument, then the caller must also provide values for all preceding optional arguments. If an optional
argument is not provided during the call, then the argument will take on the valueUNDEFINED, which
must be dealt with within the body of the function. A default value for an optional argument can also be
provided in the function definition. For example,

function f (x, y?, z=5)

creates a function with 1 mandatory argument and two optional arguments. The argumenty has no
default value, andz has a default value of5. This function could be called asf(1) , f(1,2) or
f(1,2,3) .

7.2.3. Protection from evaluation

Any function argument can be protected from evaluation by an exclamation mark (!) before the
argument name in the function’s argument list. For example,

function f (x, !y)

creates a function with two mandatory arguments , the second of which will not be evaluated when it is
called. If this function were called asf (2+2, 3+3) thenx would have the value of4, andy would
have as its value the expression3+3 . y could be evaluated usingeval(y) to produce the value6.

7.2.4. Variable, optional, unevaluated arguments

A variable argument can also be made optional. If so, and if it is not evaluated, then all the arguments
which are collected into its list will not be evaluated either. For example,

function f (!y...? = 17)

creates a function with one optional argument namedy . The argumenty is not evaluated, and may take
any number of values, passed as a list. If no argument is specified to the function, theny will have the
value of17 . If, instead of17 the default is set tonil , no default will be assigned. This syntax
effectively gives a way to pass a list of arguments of any length to a funtion.

7.2.5. Examples

The following program shows example functions with argument lists similar to those described above.

#!/usr/cogent/bin/gamma

function variable_args (x, y...)
{

princ("---- Output from variable_args(x, y...) ---- \n");
princ("The first arg: ", x, "\n");
with a in y do

{
princ("One of the variable args: ", a, "\n");

}
princ("\n");

}

32

Chapter 7. Functions and Program Structure

function optional_args (x, y?, z=5)
{

princ("---- Output from optional_args(x, y?, z=5) ---- \n");
if (undefined_p(y))

y = "This value has not been defined.";
princ("The first arg: ", x, "\n");
princ("The second arg: ", y, "\n");
princ("The third arg: ", z, "\n");
princ("\n");

}

function no_eval(x, !y)
{

princ("---- Output from no_eval(x, !y) ---- \n");
princ("This argument was evaluated: ", x, "\n");
princ("This argument was not evaluated: ", y, "\n");
princ("\n");

}

function many_args (fixed_arg, !y?... = nil)
{

princ("---- Output from many_args(fixed_arg, !y?... = nil) ---- \n");
princ("fixed_arg: ", fixed_arg, "\n");
princ("y: ", y, "\n");
princ("The first y arg: ", car(y), "\n");
with a in cdr(y) do

{
princ("The next y arg: ", a, "\n");

}
princ("\n");

}

variable_args("hello", 9, "world", 4 + 7, #x);
optional_args(1);
optional_args(1, 2);
optional_args(1, 2, 3);
no_eval(2+2, 3+3);
many_args("Fixed", "hello", 9, "world", 4 + 7, #x);

The output of this program is as follows:

---- Output from variable_args(x, y...) ----
The first arg: hello
One of the variable args: 9
One of the variable args: world
One of the variable args: 11
One of the variable args: x

---- Output from optional_args(x, y?, z=5) ----
The first arg: 1
The second arg: This value has not been defined.
The third arg: 5

---- Output from optional_args(x, y?, z=5) ----
The first arg: 1
The second arg: 2
The third arg: 5

---- Output from optional_args(x, y?, z=5) ----
The first arg: 1
The second arg: 2
The third arg: 3

---- Output from no_eval(x, !y) ----
This argument was evaluated: 4
This argument was not evaluated: (+ 3 3)

---- Output from many_args(!y?... = nil) ----

33

Chapter 7. Functions and Program Structure

One of the args: hello
One of the args: 9
One of the args: world
One of the args: (+ 4 7)
One of the args: ’x

7.3. Function Renaming
When a function is defined, Gamma automatically assigns the function definition to the symbol that was
provided as the function name, in the global scope. This does not mean that the symbol and the function
definition are permanently related.

(A function definition is an independent data object which can be passed as an argument to a function or
assigned to a symbol in any scope. For a C programmer this makes a Gamma function definition operate
in much the same way as a function pointer in C. However, Gamma function definitions are much more
versatile.)

It is possible to re-map a function definition at run-time to modify its behavior. For example, we may like
to modify the functionpow defined in theFunction Definitionsection. We would like the improvedpow
to check the argument type and accept a string as its argument as well as a number. In Gamma, there are
functions likeint_p , real_p , andstring_p that are used to determine the data type of a variable.
(For the complete list of-p functions see Data Types and Predicates in the Reference Manual).

Thus, we rename thepow function defined in the sectionFunction Definitionto __pow and write the
new version as follows:

...
__pow = pow;
function pow (v, exp)
{

local result;
if (string_p (v))
{

result = "";
while (exp -- > 0)

result = string(result, v);
}
else

result = __pow(v, exp);
result;

}

Then the function callpow("hello", 3) will produce:
"hellohellohello"

7.4. Loading files
Files are loaded from the disk to memory using theload andrequire functions. Theload function
loads a Gamma file every time it is called. Therequire function checks to see if a Gamma file has
been loaded, and if not, it loads it. Theload_lisp andrequire_lisp functions do the same thing
for files written in Lisp grammar. All of these functions take the name of the file, as a string, for their
argument.

As a file is loaded by the Gamma engine, therequire mechanism is used to access additional files.
This is similar to the#include directive used in C programs, and likewise permits modularization of
the application code. Note however that since Gamma is a run-time language, there is no equivalent to

34

Chapter 7. Functions and Program Structure

object modules of compiled languages. Therequire function therefore provides the sole mechanism
for bringing together modules that define an application.

The pre-defined global variable_require_path_ contains a list of the paths to be searched to find
the specified filename. This variable usually references the current directory, and the location for
libraries. The list of paths can be augmented with:

_require_path_ = cons ("my_directory_name", _require_path_);

The pre-defined global variable_load_extensions_ contains a list of default extensions that are
used by therequire functions. Filenames with these extensions do not have to specify the full
filename in therequire argument. The variable is initialized to (".slg" ".lsp" ""), and can be
augmented in the same way as_require_path_ .

7.5. The main Function
In Gamma there is no requirement for a function namedmain as there is in C. As a program file is
loaded, a call to a function at the outermost scope will in fact cause that function to be run at that point.
In the same way, variable definitions and assignments at the outermost scope level are executed,
effectively becoming globals. In most cases, the application is initiated by calling the user’s "top level
mainline" function at the end of the file, or by entering a loop, such as an infinite event loop.

If a function is defined with the namemain , then Gamma will automatically start to execute that
function after the load is complete. This is equivalent to placingmain as the last statement in the file.
Note thatmain ’s function definition must contain the keywordfunction , just like any other function
definition. Sinceargv is available as a global variable,main does not require any arguments.

7.6. Executable Programs
Since the Gamma language is based on Lisp (ie. SCADALisp), programs can be written and executed
using either Gamma or Lisp grammar. How to execute a Gamma program is discussed inStand_Alone
Executable Programsin the Getting Started chapter of this Guide, as well as in the next two sections of
this chapter.

Writing Lisp programs is beyond the scope of normal Gamma programming, but it may be useful from
time to time to invoke a Lisp executable. This is done in a similar way to Gamma. Stand-alone programs
will invoke the Lisp engine by using the following shell directive as the first line of the file:

#!/usr/cogent/bin/lisp

The Photon dialect is available through:

#!/usr/cogent/bin/phlisp

7.7. Running a Gamma Program
Gamma programs can be run in two ways: as a stand-alone executable, or by invoking Gamma from the
command line.

35

Chapter 7. Functions and Program Structure

1. For stand-alone executable program, the user simply types the name of the executable, possibly with
command line arguments. The program invokes the Gamma engine through the shell!# directive
(as explained inExecutable Programsin the Getting Started chapter of this Guide.

2. In the case where there is no Gamma engine "embedded" into the program, the commandgamma is
available to run the executable. This command has several options, a few of which we mention here,
and the rest of which are given in thegammaentry in the Reference.

-h gives a help message displaying all the options for this command.

-C declares all Gamma constants at startup. These constants can be viewed using theapropos function.

-d saves debugging information: the file name and line number.

-F declares all Gamma functions at startup. As with the-C option, these functions can be viewed using
theapropos function.

The next section discusses command line arguments for a program, and how to access them within the
program.

7.8. Command Line Arguments
Gamma provides a mechanism for accessing command line arguments. The symbolargv contains a list
of the parsed command line arguments. Thus, if you have an application namedmy_appwhich takes
two argumentsarg1 andarg2 , then the executable invoked with:

my_app arg1 arg2

will receive the followingargv :
(my_app arg1 arg2)

Like any list, the length ofargv is simply length (argv); The command line arguments can be
accessed like any list, using any of the following sample approaches:

for (i=0; i < length(argv); i++)
{

arg = car (nth_cdr (argv, i));
... process arg ...

}

or similarly, but more efficient:
while (length (argv) > 0)
{

arg = car (argv);
... process arg ...
argv = cdr (argv);

}

which can also be expressed, still more efficiently, and without modifying the originalargv , with:
for (i=argv; i; i = cdr(i))
{

arg = car (i);
... process arg ...

}

36

Chapter 8. Object Oriented Programming
Classes are a powerful feature that helps users to organize a program as a collection of objects. Users that
are familiar with C++ will find some syntax similar.

8.1. Classes and Instances
A class is a collection of variables and functions that, together, embody the definition of data type that is
distinct and significant for the user’s problem. Class functions are calledmethods. Class variables can be
of the two kinds:attributesandclass variables. Attributes are more common and do not require any
special identifiers. Class variables are defined with the identifier static. We’ll discuss class variables later
in this chapter. Every class has a name. Here we define a class namedPolygon , and give it four
attributes:

class Polygon
{

sides;
angles;
dimensions = 2;
color = nil;

}

Here is another example,Catalog , with one attribute, defined in interactive mode:
Gamma>class Catalog { data;}
(defclass Catalog nil [][data])

When you define a class in interactive mode Gamma returns an internal representation of itsclass
definitionin Lisp syntax. This definition is a list with the following elements: thedefclass function,
the class name, the parent class name (nil in this case), the class methods and class variables in one
array (none in this example), and the class attributes in a second array.

Default values can be assigned to the attributes. For example, thePolygon class (above) has 2
dimensions and no color by default. TheCatalog class has no default data values.

8.1.1. Instances

A class is an abstract data type. A class is used by constructing newinstancesof it. This is done using the
functionnew:

Gamma>pentagon = new(Polygon);
{Polygon (angles) (color) (dimensions . 2) (sides)}

Gamma>autoparts = new(Catalog);
{Catalog (data)}

In this example, the class isPolygon and the newly-created instance of the class ispentagon . Or, the
class isCatalog and the instance isautoparts .

The variables of the instances of a class are calledinstance variables. They correspond to the attributes
in the class definition. In thePolygon class, for example, the instance variables are:sides , angles ,
dimensions , andcolor . Note that the functionnew returns the written representation of an instance,
which consists of the class name and a list of instance variables. An instance variable with a default value
is represented as adotted list, such as(dimensions . 2) in our example.

In Gamma, to set or query the instance variable of an instance, the dot notation is used. Thus, each of the
instance variables associated with the pentagon instance can now be set as follows:

Gamma>pentagon.angles = 108;
108
Gamma>pentagon.sides = 5;

37

Chapter 8. Object Oriented Programming

5
Gamma>pentagon.color = "blue";
"blue"
Gamma>pentagon;
{Polygon (angles . 108) (color . "blue") (dimensions . 2) (sides . 5)}
Gamma>

Notice that internally Gamma holds a class instance and its instance variables together in curly braces.
This is calledliteral instance syntax.

8.2. Methods
Methods are functions that are directly associated with a class.

We will create aLookup method for theCatalog class. This method lets you look up an entry in the
catalog by a key associated with the entry. In this example we implement our data as an association list,
that is, a list whose elements are also lists, each of which contains exactly two elements : key and value.
The library functionassoc_equal returns the remainder of the association list starting at the element
whose key coincides with the key in the argument of the methodLookup . Thus,Lookup returns the list
associated with the key. The special keywordself is used when the instance refers to itself within the
function:

method Catalog.Lookup (key)
{

car(assoc_equal(key, self.data));
}

Note that the keywordself can be omitted and the call would look as follows:
car(assoc_equal(key, .data));

The calls to class methods are made by instances, using the dot notation. For example, the instance
autoparts created above can call theLookup method as follows:

Gamma>autoparts.Lookup ("muffler");
nil

Since the data attribute did not have a default value, the first time call toLookup returnsnil . In order
to put data in the data list, we must create another method:

method Catalog.Add (key, value)
{

local i;

if (i = .Lookup (key))
{

princ("The entry ", key, " already exists\n");
nil;

}
else
{

.data = cons(list(key, value), .data);
}

}

Notice that theAdd method is usingLookup to determine whether or not the entry already exists in the
association list. If so, it returnsnil . Otherwise the new entry is added to the data list using the library
functioncons . The return value of a method is the return value of the last function executed within the
body of the method.

38

Chapter 8. Object Oriented Programming

Now we can add some data. For example, we can add an entry with the keyword "muffler" and the value
1, which is, for example, the number of mufflers in the stock:

Gamma>autoparts.Add ("muffler", 1);
(("muffler" 1))
Gamma>autoparts.Add ("starter", 5);
(("starter" 5) ("muffler" 1))

Now we can look up the entry for a muffler by the keyword:
Gamma>autoparts.Lookup("muffler");
("muffler" 1)

Note that the autoparts instance variables can be queried using the dot notation as follows:
Gamma>autoparts.data;
(("starter" 5) ("muffler" 1))

8.3. Inheritance
Let us consider the following example where a new class is created:

class Book Catalog
{

size = 0;
}

TheBook class is called aderivedclass and theCatalog class is called abase, or parentclass for the
Book class. In addition to having its own attributes, methods, and class variables, a derived classinherits
all these things from the base class as well. For example, theBook class inherits thedata attribute from
theCatalog class:

(defclass Book Catalog [][data (size . 0)])

The relation between the base classes and the derived classes can be described as an "is-a" relation: a
derived class "is-a" base class, with its own additional features. Due to inheritance, an instance of a
derived class in Gamma can call any method of the base class just like it was an instance of the base class
itself:

Gamma>math = new(Book);
{Book (data) (size . 0)}
Gamma>math.Lookup("Calculus");
nil

In this case it returnsnil because no entry "Calculus" was added to the list of data. Now we can create
anAdd method for theBook class. This method adds an author and a publisher to the association list of
data. If theAdd operation is successful, the size of the list is incremented by 1. This Add method
internally calls theAdd method of the baseCatalog class using thecall function. We say that the
derived class inherits implementation from the base class. If we were to change the way theAdd method
is implemented in the base class, the implementation would propagate to the derived class.

method Book.Add (title, author, publisher)
{

local pair = list(author, publisher);
local result = call(self, Catalog, Add, title, pair);

if (result)
{

.size+= 1;
}

39

Chapter 8. Object Oriented Programming

}

The methodAdd can be evaluated as follows:

Gamma>math.Add ("Calculus", "Thompson", "Wiley");
1

It returns the size of the math catalog as the result of the last evaluated expression within the method.
Now if we would like to search for the entry "Calculus", the methodLookup is evaluated as follows:

Gamma> math.Lookup ("Calculus");
(Calculus (Thompson Wiley))

Classes can be related by "is-a" relations, since one class is a derived class of the other. There can also be
"has-a" relations between classes. Let us consider the following example:

class Figure
{

color;
height;
width;

}

class Book_1
{

size;
figure = new(Figure);

}

Class Book_1 "has" an instance of class Figure as an attribute. In other words, class Book_1contains
one instance of the class Figure. Let us consider the connections between the methods of the two classes
with the "has-a" relations. Suppose the following methods are defined:

method Figure.Show()
{
...

}

method Book_1.Show()
{

.figure.Show();
}

The methodShow of theBook_1 class internally calls the methodShow of theFigure ("contained")
class. We say that theBook_1 classdelegatesits method to theFigure class. Thus, the effect of the
delegation is implementation inheritance. It’s true that to inherit implementation, theFigure class
could be simply derived from theBook_1 class and the "is-a" relations would be in effect. But then it
would be impossible for an instance of theBook_1 class to have several instances of the Figure class.

Note that in the definition of theBook_1 class, theFigure class is instantiated, which makes the
attributefigure an instanceof the classFigure . Thus, if an instance of theBook_1 class is created
it can evaluate itsShow method right away:

...
mystery = new(Book_1);
mystery.Show();
...

However, if an instance offigure is not actually created in aBook class definition,

40

Chapter 8. Object Oriented Programming

class Book_2
{

size;
figure;

}
method Book_2.Show()
{

.figure.Show();
}

then it has to be instantiated for each new instance ofBook_2 before any "delegation" will occur:
...
mystery = new(Book_2);
mystery.figure = new(Figure);
mystery.Show();
...

8.4. Instance Variables
We recall that instance variables (ivars), are non-method items that make up an instance of a class. In the
example below, the ivars of the instancemath aredata andsize . To set or query the value of an ivar
use the class instance and ivar in dot notation:

Gamma>math.size;
1

Gamma has the ability to add ivars to a class at any time, using the functionclass_add_ivar . As an
example consider theCatalog class used in the above examples. Suppose we would like to have a
variable which holds the date when a catalog is started:

Gamma>class_add_ivar(Catalog,#start_date);
nil
Gamma>Catalog;
(defclass Catalog nil [...][data start_date])

Once an instance variable has been added to a class, all new instances of that class createdafter the
variable was added will receive the new ivar.

Gamma>math;
{Book (data) (size . 0)}
Gamma>cooking = new(Book);
{Book (data) (size . 0) (start_date)}

8.5. Class Variables
Class variables (cvars), are non-method items that permanently belong to the class in which they are
defined. One can think of a class variable as named data associated with the class. There is only ever one
copy of the variable. All instances of that class share that copy. All derived classes and all the instances
of the derived classes share that one copy. It is like a global variable.

Gamma has the ability to add cvars to a class at any time, using the functionclass_add_cvar . Once
a class variable has been added to a class it becomes available to all new instances of that class and the
derived classes. However they do not get a private copy of that variable but share one and the same

41

Chapter 8. Object Oriented Programming

variable that belongs to the class. As an example consider theCatalog class and its derived class,
Book , once more.

Gamma>class_add_cvar(Catalog,#capacity, 200);
200
Gamma>Catalog;
(defclass Catalog nil [... (capacity . 200)][data start_date])
Gamma>Book;
(defclass Book Catalog [...][data (size . 0) start_date]
Gamma>history = new(Book);
{Book (data) (size . 0) (start_date)}

We can see that the derived classBook does not have a private copy of the class variablecapacity .
However this variable isavailablefor the derived class as well as for the instances of that class:

Gamma>Book.capacity;
200
Gamma>history.capacity;
200

To set or query the value of a cvar use the class name (or the instance name) and the cvar in dot notation.
Remember, though, a change to the cvar in any class or instance ofCatalog will change it for all
classes and instances ofCatalog .

Gamma>Book.capacity = 300;
300
Gamma>history.capacity;
300
Gamma>history.capacity = 400;
400
Gamma>Book.capacity;
400
Gamma>Catalog.capacity;
400
Gamma>

8.6. Constructors and Destructors
A constructoris a method that is automatically run when a new instance of a class is made. Adestructor
is a method that is automatically run when the instance is destroyed. Constructors are called for all parent
(base) classes of an instance starting with the root of the instance’s class hierarchy. Destructors are called
for all parent (base) classes of an instance starting with the class of the instance and proceeding toward
the root of the instance’s class hierarchy.

In Gamma these two methods take the special namesconstructor anddestructor .

method Book.constructor ()
{

total_books++;
}

method Book.destructor ()
{

total_books --;
}

We’ll now set the example variabletotal_books to 2 (since two have already been created: math and
history):

42

Chapter 8. Object Oriented Programming

Gamma>total_books = 2;
2

A newCatalog object can now be created, and the effect of the constructor and destructor observed:

Gamma>biology = new(Book);
{Book (data) (size . 0) (start_date)}
Gamma>total_books;
3
Gamma>biology = nil;
nil;
Gamma>total_books;
3
Gamma>gc();
166
Gamma>total_books;
2

The constructor worked as expected, but the destructor appears to have failed. Only after thegc function
was called did the destructor get called. Thegc function forces the garbage collector to run. When
biology was set tonil the memory containing the previous definition forbiology was left
unlinked. Once this unlinked memory was recovered by the garbage collector, the destructor was called.

The frequency of the garbage collector running will depend on the program written in Gamma. The
garbage collector can be forced to run by using thegc function. Occasionally, system activity may
prevent it from running immediately, but the requirement to run is noted and it will do so at the next
opportunity.

Classes are often used to keep track of real-world objects, and as such, it is important to keep statistics on
these objects. One of the most common methods of doing this is by using constructors and destructors to
increment and decrement a counter of the number of objects created or currently available.

8.7. Polymorphism
The concept ofpolymorphismhas its roots in programming language design and implementation. A
language is called polymorphic if functions, procedures and operands are allowed to be of more than one
type. In comparison with polymorphic languages, there are languages called monomorphic, such as
FORTRAN and C. Being monomorphic means that it is not possible, for example, to define two
subroutines in FORTRAN with the same name but different number of parameters.

Overloading is a specific kind of polymorphism which Gamma supports.

8.7.1. Operator Overloading

Operator overloadingallows the programmer to define new actions for operators (+,-,*,/, etc.) normally
associated only with numbers. For example, the plus operator (+) normally adds only numeric variables.
Operator overloading allows the user to define an alternate action to adopt when non-numeric variables
are used in conjunction with an operator. The plus operator is often overridden so that strings may be
concatenated using the syntax:

result = "hello" + " " + "there";

43

Chapter 8. Object Oriented Programming

When overloading an operator in Gamma the developer must exercise extreme caution since operator
overloading is achieved by redefining the operator itself. The typeless quality of variables in Gamma
does not allow the interpreter to select an appropriate operator based on the types of the arguments.

Consider the following program fragment:

// Assign plus to a function called ’real_plus’.
real_plus = \+;

// Re_define plus to check for strings, and call
// string() or real_plus() depending on arg types.
function \+ (arg1, arg2)
{

if (string_p(arg1) || string_p(arg2))
string(arg1,arg2);

else
real_plus(arg1,arg2);

}

The first step in this example is to re-assign the functionality of the+ operator to a function called
real_plus . Notice that the backslash character is used to pass the+ character explicitly. Without the
backslash Gamma would interpret the plus character in the function definition statement as a mistake in
syntax.

Once this assignment and definition are entered into Gamma the plus operator can be used with strings as
well as with numbers:

Gamma>5 + 4;
9
Gamma>"hello" + " " + "there";
"hello there"

While it is convenient to set up overloaded functions in Gamma, remember that user functions are
generally slower than Gamma’s built-in functions.

8.8. Binary Classes and User Classes
Binary classes are classes that are built into the specific version of Gamma that you are using. User
classes are those classes defined by the programmer in the process of developing an application.

To test the number of built-in classes in the version of Gamma you are using, start a fresh instance and
use theapropos function interactively to find all available classes:

andrew:/home/andrew > gamma
Gamma;(TM) Advanced Programming Language
Copyright (C) Cogent Real-Time Systems Inc., 1996. All rights
reserved.
Version 2.4 Build 139 at Jul 6 1999 10:48:51
Gamma>apropos("*",class_p);
(Osinfo)

As we can see,gammadoes not have built-in binary classes. Now let us try to runphgamma:

andrew:/home/andrew > phgamma
Gamma(TM) Advanced Programming Language
Copyright (C) Cogent Real-Time Systems Inc., 1996. All rights
reserved.
Version 2.4 Build 139 at July 6 1999 14:21:45
Gamma>apropos("*",class_p);
(Osinfo PhArea PhBlitEvent PhBoundaryEvent PhDim PhDragEvent

44

Chapter 8. Object Oriented Programming

PhDrawEvent PhEvent PhEventRegion PhExtent PhImage PhKeyEvent
PhLpoint PhPoint PhPointerEvent PhPrect PhRect PhRegion PhRgb
PhWindowEvent PtArc PtBarGraph PtBasic PtBasicCallback PtBezier
PtBitmap PtBkgd PtButton PtCallbackInfo PtComboBox
PtComboBoxListCallback PtComboBoxTextCallback PtContainer
PtDivider PtEllipse PtEventData PtFontSel PtGauge PtGenList
PtGenTree PtGraphic PtGrid PtGroup PtHtml PtIcon PtLabel PtLine
PtList PtListCallback PtMenu PtMenuBar PtMenuButton PtMenuLabel
PtMessage PtMeter PtMultiText PtOnOffButton PtPane PtPixel
PtPolygon PtRaw PtRect PtRegion PtScrollArea PtScrollbar
PtScrollbarCallback PtSeparator PtSlider PtTerminal PtText
PtTextCallback PtToggleButton PtTree PtTrend PtTty PtWidget
PtWindow RtTrend)

There is a significant difference in supported classes between thegammaandphgammaexecutables.
The reason is that Photon widgets are mapped intophgammaas classes. The standard Gamma
executable does not have support for Photon graphics and does not have these built-in binary classes.

User classes are found in the same manner. After user classes are defined they will match theclass_p
predicate in theapropos function and be added to the list:

andrew:/home/andrew> gamma
Gamma(TM) Advanced Programming Language
Copyright (C) Cogent Real-Time Systems Inc., 1996. All rights
reserved.
Version 2.4 Build 139 at Jul 6 1999 10:48:51
Gamma>class test
{

a;
b;
c;

}
(defclass test nil [][a b c])
Gamma>apropos("*",class_p);
(Osinfo test)

45

Chapter 9. Tutorial III

9.1. Classes and OOP
Gamma implements object-oriented programming (OOP) features which provide a single-inheritance
class mechanism with instance variables and methods. Since Gamma is an interpreter, the object
definitions are truly dynamic, allowing for run-time extensibility. This example provides the simplest of
starting points to this key software methodology.

#!/usr/cogent/bin/gamma

/*
* Demonstrates:
* class definitions: attributes and methods.
* constructors and destructors
* method overloading
*/

/*
* Define a class of animal, with no default type and a default of 4 legs
*/

class animal
{

type = "animal";
num_legs = 4; // By default, animals have 4 legs

}

/*
* The constructor for an animal is called when any instance of animal
* or a subclass of animal is created using a call to ’new’. Constructors
* have no arguments.
*/

method animal.constructor()
{

princ ("A ", class_name(class_of(self)), " is born\n");
}

/*
* The destructor for an animal is called when any instance of animal
* or a subclass of animal is deleted by the garbage collector. There
* is no explicit deletion mechanism in Gamma. Destructors have no
* arguments.
*/

method animal.destructor ()
{

princ ("A ", class_name(class_of(self)), " dies\n");
}

/*
* All methods except constructor and destructor are overloaded, meaning
* that only the method for the nearest class in the ancestry of the
* instance will be called for any given method name.
*/

method animal.describe ()
{

princ ("The ", self.type, " has ", self.num_legs, " legs.\n");
}

/*
* Create a subclass of animal of a particular type.
*/

class cat animal
{

type = "feline";

46

Chapter 9. Tutorial III

}

/*
* Create another subclass of animal which is itself a parent class
*/

class insect animal
{

num_wings = 2;
num_legs = 6;

}

/*
* Overload the description method for insects so we hear about
* wings and legs when we ask about insects.
*/

method insect.describe ()
{

/*
* We can explicitly call a method of a parent class using the
* ’call’ function and naming a parent class.
*/

call (self, #animal, #describe);
princ (" (oh, and ", self.num_wings, " wings)\n");

}

/*
* Create a destructor for an insect. This will be run before the
* animal destructor.
*/

method insect.destructor ()
{

princ ("Crunch. ");
}

/*
* Create a subclass of an insect which is a particular type.
*/

class beetle insect
{

type = "rhinoceros beetle";
num_wings = 4;

}

function main ()
{

local pet = new (cat);
local bug = new (beetle);

/*
* cat gets its describe method from the animal class
*/

pet.describe();

/*
* beetle gets its describe method from the insect class
*/

bug.describe();

/*
* Since the destructor will be implicitly called by the garbage
* collector, we can cause the destructor to occur by removing
* all references to the instances (set the variables referencing
* the instances to nil), and then explicitly invoke the garbage
* collector. Typically this is not necessary, as the garbage

47

Chapter 9. Tutorial III

* collector will run when necessary.
*/

pet = nil;
bug = nil;

gc();
}

48

Chapter 10. Interactive Development and
Debugging

10.1. Interactive Mode Implementation
The implementation of Gamma’s interactive mode provides an interesting example of the how to use the
concise power of the language. Interactive mode is implemented with the following few lines of Gamma:

princ("Gamma> ");
flush(stdout);
while ((x = read(stdin)) != _eof_)
{

princ(eval(x));
terpri();
princ("Gamma> ");
flush(stdout);

}

An application can easily provide its own customized " interactive mode " by executing a Gamma script
file with a variation of this code that is entered when the file is loaded.

10.2. Getting On-Line Help for Functions
Gamma can display function definitions and parameters. To do this, start Gamma interactively and type
the name of the function followed by a semicolon and return. For example,

andrewt@1:~ > Gamma
Gamma (TM) Advanced Programming Language
Copyright (C) Cogent Real-Time Systems Inc., 1996. All rights
reserved.
Version 2.4 Build 142 at Aug 25, 1999 21:39:51
Gamma>init_ipc;
(defun init_ipc (my_name &optional my_queue_name domain) ...)
Gamma>new;
(defun new (class) ...)
Gamma>array;
(defun array (&optional &rest contents) ...)
Gamma>insert;
(defun insert (array position_or_function value) ...)

Note that the function definitions are described in the internal Lisp representation, as a list. The function
is always displayed with the worddefun first, followed by the name of the function, and then its syntax.
The function arguments are enclosed in parentheses, but not separated by commas as they are in Gamma
syntax. The Gamma function modifiers (! , ?, and...) are represented by:&noeval , &optional ,
and&rest respectively. For details on these modifiers, seefunction in the Reference section. To
give you a general idea, here is how the above functions definitions appear, first in Gamma syntax and
then Lisp syntax:

init_ipc (my_name, my_queue_name?, domain?)
(defun init_ipc (my_name &optional my_queue_name domain) ...)

new (class)
(defun new (class) ...)

array (s_exp?...)
(defun array (&optional &rest contents) ...)

insert (array, position|compare_function, value)
(defun insert (array position_or_function value) ...)

49

Chapter 10. Interactive Development and Debugging

10.3. Examining Variables in a Class or Instance
Classes and instances can be examined in two ways. For a class, you can simply type the name at the
prompt. Instances of classes bound to C structures can be viewed using theinstance_vars function.
To examine an instance of a class, simply type an expression which evaluates to that instance (see, for
example,elephant as an instance of theanimal class in theInstancessection of the Class chapter).

You can examine not only user-defined classes, but also the classes which are implemented in Gamma.
For example,

Gamma>PhImage;
< Binary Class: PhImage >
Gamma>instance_vars (PhImage);
[bpl colors flags format image image_tag palette palette_tag size \

type xscale yscale]
Gamma>x = new (PhImage);
{PhImage (bpl . 0) (colors . 0) (flags . 0) (format . 0) \

(image . #{}) (image_tag . 0) (palette . []) (palette_tag . 0) \
(size . {PhDim (h . 0) (w . 0)}) (type . 0) (xscale . 0) \
(yscale . 0)}

Gamma>x;
{PhImage (bpl . 0) (colors . 0) (flags . 0) (format . 0) \

(image . #{})(image_tag . 0) (palette . []) (palette_tag . 0) \
(size . {PhDim (h . 0) (w . 0)}) (type . 0) (xscale . 0) \
(yscale . 0)}

Gamma>instance_vars (x);
[(bpl . 0) (colors . 0) (flags . 0) (format . 0) (image . #{}) \

(image_tag . 0) (palette . []) (palette_tag . 0) (size . \
{PhDim (h . 0) (w . 0)}) (type . 0) (xscale . 0) (yscale . 0)]
Gamma>pretty_princ (x, "\n");
{PhImage (bpl . 0) (colors . 0) (flags . 0) (format . 0) (image . #{}))

(image_tag . 0) (palette . []) (palette_tag . 0) \
(size . {PhDim (h . 0) (w . 0)}) (type . 0) (xscale . 0) \
(yscale . 0)}

t

10.4. Using the Debug Prompt
Thedebug > prompt appears when an error occurs in interactive mode. Gamma halts execution of the
program and produces the prompt. You can perform any action at thedebug > prompt that you can
perform at the top level, including modifying program source and setting variable values. The value of
any variable can be queried by simply typing its name. The calling stack can be queried by using the
stack function.

Thestack function displays the execution stack, providing a list with the names of the nested functions
executing when the error occurred. The outermost, or top level, function appears first (afterprogn). The
function causing the error appears last on the list.

Once thedebug > prompt appears, the program cannot be continued and must be re-started. If an error
occurs again as a result of code executed within the debug level, another nested level of debug will
appear. Each level adds to the current point on the execution stack. You can move up debug levels and
return to the Gamma> prompt by pressingCtrl - D at thedebug > prompt.

10.5. Debugging a program
The use of an interpreter engine enables some unique approaches to the process of debugging and testing
software. This section describes some of the tools and techniques for debugging an application.

50

Chapter 10. Interactive Development and Debugging

10.5.1. Interacting with an Active Program

Gamma can provide an activeview-portinto the running application. Another task (or shell) can, at any
time, interact with a running Gamma program, without halting it or otherwise disturbing its real-time
response. This provides an approach to debugging that is much more powerful than adding debug print
statements.

For example, suppose that we started a process with the name "my_task" interactively:

Gamma>init_ipc ("my_task");
t

Thegsend(for Gamma) orlsend(for Lisp) utility is used to interact with a running application from a
shell:

[sh]$ gsend my_task
my_task>

The lsendutility accepts Lisp input as the default andgsendaccepts Gamma input as its default.

Once connected to a running Gamma program usinggsend/lsend, the developer can:

• query/set variables/objects/instance_vars in the global scope

• call functions/methods

• re-define function definitions

• run any Gamma command interactively

The syntax for starting thegsend utility is as follows:

gsend [-l] [-g] [program] [pid]

-l

Accept Lisp input from the keyboard.

-g

Accept Gamma input from the keyboard.

program

a Gamma program name, attached byname_attach , init_ipc , or qnx_name_attach

pid

(QNX 4 only) a task ID

gsendandlsendattach to a running Gamma program and allow the user to send commands without
exiting the event loop of the attached process. Any statement may be issued, including changing the
definitions of existing functions. In our simple example we can call theprinc function formy_task to
execute:

[sh]$ gsend my_task
my_task> princ ("Hello!\n");
t

Notice that event processing stops for the duration of the command. Now let’s look atmy_task . In
order to respond to requests fromgsend/lsend, my_taskmust be executing an event loop. We can start
one using thenext_event function in awhile statement:

51

Chapter 10. Interactive Development and Debugging

Gamma> init_ipc ("my_task");
t
Gamma>while(t) next_event();
Hello!

Themy_task program continues to run as normal during this operation.

This presents an excellent opportunity for rapid development by programmers. Typically developers are
used to the " code, compile, link, run, debug, code..." iterative approach to programming. Once a Gamma
developer makes a program with a well written event loop, such as the one shown in the section below on
trapping errors, programming and testing can become operations that happen in parallel.

Programmers will find that after a piece of code has been written, it can be uploaded to an already
running Gamma process withgsend/lsendby using a simple "cut and paste". The code is automatically
assimilated into Gamma and ready to run. Better yet, if there is a problem with the code, the programmer
receives immediate feedback and can track the problem down through an interactive debugging prompt
that can be built right into the event-loop.

10.5.2. Trapping and Reporting Errors

Gamma provides a pair of functions referred to as thetry /catch mechanism, that is very important for
debugging. Consider the following simple event loop:

while (t)
{

next_event();
}

This will run until the program exits or an event triggers some code that produces an error condition.
There is no protection against errors. Now consider the following setup:

while (t)
{

try
{

next_event();
}
catch
{

princ("error occurred\n");
}

}

This setup oftry /catch will try to evaluate the block of code contained in the "try" portion and jumps
to the "catch" portion when an error occurs. A more effective example of thecatch code block is:

while (t)
{

try
{

next_event();
}
catch
{

princ("internal error: ", _last_error_,
" calling stack is: ",stack(),"\n");

}
}

52

Chapter 10. Interactive Development and Debugging

This setup provides the developer with information about the last error and the calling stack which led to
the last error.Tutorial II provides an example which illustrates thetry /catch andprotect /unwind
mechanisms to get reports on an error.

Another setup that the developer may find useful is to automatically start an interactive session in the
case of an error. The example of such a setting can be found inTutorial II.

10.5.3. Determining Error Location

Thestack function will show the current function callingstack , expressed as a list of functions that
the interpreter is currently evaluating. To trace the execution path of parts of a program it is useful to
print out the code as it is evaluated. Thetrace andnotrace functions act as delimiters to areas when
tracing should occur. The tracing information is delivered to standard output.

The following table of predefined global variables provides additional information useful for debugging:

Table 10-1. Global Variables in Gamma

Global Variable Description

_error_stack_ The stack at the time the last error occured.

_unwind_stack_ The stack at the time that an error was discovered.

_last_error_ A string containing the last error.

10.5.4. Filtering Object Query Output

Gamma permits the user to control the level of detail reported, and the format used, when an object is
queried. This is done by defining a function named_ivar_filter with two arguments. For example,
each class instance has a number of instance variables that are reported during interactive mode in the
format:

Gamma>stats = qnx_osinfo(0);
{Osinfo (bootsrc . 72) (cpu . 586) (cpu_speed . 18883) (fpu . 587)

(freememk . 16328) (machine . "PCI") (max_nodes . 7) (nodename . 2)
(num_handlers . 64) (num_names . 100) (num_procs . 500)
(num_sessions . 64) (num_timers . 125) (pidmask . 511) (release . 71)
(reserve64k . 0) (sflags . 28675) (tick_size . 9999) (timesel . 177)
(totmemk . 32384) (version . 423)}

The following example provides a function named_ivar_filter that controls the output format.
Note that each instance variable consists of a name and a value. If we define the following:

function _ivar_filter (!instance,!value)
{

princ(format("\n%-20s %-20s", string(car(value)), string(cdr(value))));
nil;

}

then the output for Gamma in interactive mode now looks like:
Gamma>stats;
{Osinfo

bootsrc 72
cpu 586
cpu_speed 18883
fpu 587
freememk 15544

53

Chapter 10. Interactive Development and Debugging

machine PCI
max_nodes 7
nodename 2
num_handlers 64
num_names 100
num_procs 500
num_sessions 64
num_timers 125
pidmask 511
release 71
reserve64k 0
sflags 28675
tick_size 9999
timesel 177
totmemk 32384
version 423
}

54

Chapter 11. Advanced Types and Mechanisms

11.1. Symbols
We introduced symbols in theSymbols and Valuessection at the beginning of this Guide. Recall that a
symbol is a unique word or name within the system, and that references to a particular symbol will be to
the exact same Gamma object, regardless of how that reference was obtained. Symbols can be used as
variables, as they may have a value that can be queried through evaluation. The value of a symbol can
change depending on the current execution scope.

A symbol may contain any character, though it is necessary to escape some characters using a backslash
(\) when writing them. The normal character set for symbols consists of the following:

• The lowercase letters (a-z)

• The uppercase letters (A-Z)

• The digits (0-9)

• The underscore (_)

A symbol is created by a call tosymbol , or by reading any legal string of characters which forms a
symbol.

11.1.1. Undefined symbols

In Gamma a variable must be assigned a value. A variable does not exist until a value is assigned to it.
Once defined, both the value and type of a variable can be changed, effectively re-defining the variable.
A variable which is used but has never been assigned a value will cause an error:

Gamma>3 + k;
Symbol is undefined: k
debug 1>

Theundefined_p function can be used to test if a variable is defined, as follows:
Gamma>undefined_p (a);
t
Gamma>a = 5;
5
Gamma>undefined_p (a);
nil

11.1.2. Uniqueness of Symbols

The uniqueness of symbols in the system provides an interesting way to perform the equivalent of the C
language enumerated type, in case you want a list of constant values representing different things. In
Gamma, when two symbols are tested for equality, the comparison is first done on the symbol reference
itself, not the value associated with the symbol. This is because the Gamma== operator is mapped to the
Lisp equal function, which determines equality first with theeq function. The Lispeq function tests
for equality of the reference, and only if this has failed will the equal function perform an equality test on
the value of the references. Also in Gamma, a symbol can be defined without assigning a value.

When the Gamma engine reads a literal symbol (seeLiteral Syntax and Evaluationin this chapter), as
illustrated in the example below, it determines that the reference is in fact a symbol. If the symbol does
not exist, Gamma creates the it with a value of_undefined_ .

Gamma>x = #yes;

55

Chapter 11. Advanced Types and Mechanisms

yes
Gamma>yes;
Symbol is undefined: yes
debug 1>

Therefore, it is valid in Gamma to make comparisons for equality between symbols whose values are not
defined. Such comparisons between symbols are actually more efficient than comparing the values of
two symbols. This leads to the following example. Here Gamma uses the equivalent of an enumerated
type, but it is more efficient than assigning actual values to the constants, since the test is for the symbol
reference only.

Gamma>function my_state (x)
{
if (x==#on)

princ ("I am on.\n");
else if (x==#off)

princ ("I am off.\n");
else if (x==#unstable)

princ ("I am not stable.\n");
else

princ ("I don’t know.\n");
}
(defun)
Gamma>a = #on;
on
Gamma>my_state (a);
I am on.
t
Gamma>my_state (#off);
I am off.
t

Notice that the enumerated set (on, off, unstable) was not created as variables with assigned values (1, 2,
3,...) but used directly, leading to a more efficient and cleaner implementation.

11.1.3. Properties

Symbols can be assigned properties, using thesetprop function. Each assigned property is a
name/value pair, which is globally defined for the symbol, regardless of the current scope and value.
These properties can be accessed using thegetprop function.

11.1.4. Predefined Symbols

There are some symbols, such as_undefined_ mentioned above, whose values are predefined in
Gamma. For the complete listing of symbols that are predefined in Gamma see section Predefined
Symbols in the Reference Manual.

11.2. Evaluation
Expressions in Gamma consist of a few basic types, which are submitted to an evaluator to produce a
return value. Every evaluation returns a result. Any Gamma object may be submitted to the evaluator.
The evaluator behaves differently according to the type of the evaluated object.

Table 11-1. Type Evaluation

56

Chapter 11. Advanced Types and Mechanisms

Type of Object Evaluation result

symbol The value of the symbol in the current scope.

list Function or method call.

all others Itself.

11.2.1. Evaluation of a Symbol

If a symbol is being used as a variable, then its value will depend on the scope in which it is being
evaluated. A new scope is entered whenever a user-defined function is executed, or when awith
statement is executed. A symbol is defined within a scope when it appears in the argument list of a
function, or when it appears in the variable list of alocal statement. If a symbol is not defined within
the current scope, then the value of the symbol in the next most local scope is used. This is called
dynamicscoping, since the scope of a symbol used in a function may depend on the calling sequence that
executed that function. The value of a symbol may be any Gamma object. See examples on dynamic
scoping inTutorial II.

11.2.2. Evaluation of a List

Since Gamma is built on top of Lisp, all Gamma statements and expressions are translated into lists,
which represent the equivalent function call. For example, the expression2 + 3; is translated into the
function call(+ 2 3) at read time, and evaluated as a list at run time. (Operators like+ are functions in
Lisp.) For more details on Lisp function syntax, seeGetting On_Line Help for Functions.

When a list is submitted to the evaluator, it will be treated as either a function call or a method call. The
first element in the list is evaluated, and the result examined. If the first element evaluates to a function
definition, then the remainder of the list is treated as the arguments to this function, and the function is
called. If the first element evaluates to an instance of a class, then the second element is evaluated.

If the second element evaluates to a class, then the third argument must be a symbol that names a method
for that class. If the second element does not evaluate to a class, then it must be a symbol that names a
method for the class of the instance, or a method of one of the instance’s parent classes.

Once a method has been identified, the remaining elements of the list are treated as the arguments to the
method, and the method is called on the instance. For example, here we call a function with the given
arguments:

(function arg1 arg2...)

Here we call a method from an instance’s own class.
(instance method_name arg1 arg2...)

And here we call a method from the instance’s class hierarchy.
(instance class method_name arg1...)

If an explicit class is provided, it is normally a parent (base) class of the given instance. This is not
enforced by the evaluator, so it is possible to call a method for an instance which is not a member of the
class for which the method was defined. This is not normally a good idea, and can be highly confusing to
anybody reading the code.

57

Chapter 11. Advanced Types and Mechanisms

11.2.3. Evaluation to Itself

Most Gamma object types evaluate to themselves, meaning that the result of submitting the object to the
evaluator is the object which was submitted, unmodified. Any object except a list or a symbol will simply
return itself when evaluated. For example, the number5, when evaluated, will return5, which is itself.

11.3. Literal Syntax and Evaluation
One of the most powerful features of an interpreter-based language such as Gamma is the ability to
evaluate symbols and expressions at run-time. Gamma uses the# operator to indicate a literal expression.
For those familiar with Lisp, this is equivalent to the forward quote syntax. Gamma also supports
evaluation of sub-expressions, using the‘ and@operators. For more details on their use, see Quote
Operators and further explanation below.

11.3.1. Literal Expressions

A literal expression is the expression that specifies an actual value rather than a function for creating the
value. For example, the number3 is a literal, where the expression(+ 1 2) is not. Similarly, the string
"hello there" is a literal, and the expressionstring("hello ", "there") is not, yet they
produce equal values when evaluated.

Most object types in Gamma have Lisp and Gamma literal forms. You can create a valid object of some
types (such as numbers, symbols, and strings) by reading a literal from a file or the command line. Other
types (such as arrays, classes, and functions) are created by corresponding statements or functions.

See Literals in the Reference Manual for definitions, notations, and examples of literal expressions in
Gamma.

11.3.2. Deferring Expression Evaluation

A Gamma expression preceded by the quote operator (#) will be taken literally, i.e., it will be protected
from the evaluator. When the symbol containing this literal is evaluated, its contents are then interpreted.
For example:

Gamma>x = #5 + 6;
(+ 5 6)
Gamma>#x;
x
Gamma>x;
(+ 5 6)
Gamma>eval (x);
11

In the first case, the quote operator (#) protects the entire expression from the evaluator. That is, it
protects everything to its right, all the way to the end of the expression (usually a semicolon or closed
parenthesis). In the second case it is used to "produce" the literal symbolx . Thenx is evaluated,
returning its literal contents. Finally, theeval function is used to force execution of the literal contents
of x . Theeval function forces the resolution of variable references, as in this example:

Gamma>a = 1;
1;
Gamma>x = a + 5;
6;
Gamma>x = #a + 5;
(+ a 5)
Gamma>a = 10;
10
Gamma>eval (x);

58

Chapter 11. Advanced Types and Mechanisms

15

The literal is often used to delay the evaluation of an expression until an event is triggered. A good
example is theadd_set_function . This function takes two arguments. The first argument must be a
symbol, so the# operator is used to prevent the required symbol from being evaluated. The second
argument is simply any expression, most commonly a function. Theadd_set_function function
sets the second argument to be evaluated when the first argument is changed:

Gamma>add_set_function (#a, #princ("My value = "));
(princ "My value =")
Gamma>a = 21 / 3;
My value = 7

In the following variation of the above example, a symbol used as an argument has been assigned a literal
symbol, so that its evaluation will result in the desired symbol:

Gamma>x = #b;
b
Gamma>add_set_function (x, #princ("My value = "));
(princ "My value =")
Gamma>b = 21 / 3;
My value = 7

11.3.3. Literal Function Arguments

Some functions require arguments that are symbols. Normally, the arguments to a function are evaluated
before the function is actually invoked. It is possible to cause a function’s arguments not to be evaluated
by using theexclamationmodifier in the function declaration.

As an example, we can write our own version of theadd_set_function function mentioned above:

Gamma>function my_add_set (!sym, !exp)
{add_set_function(sym, exp);}

(defun my_add_set (&noeval sym &noeval exp) (add_set_function sym exp))
Gamma>my_add_set (c, princ("My value = "));
(princ "My value = ")
Gamma>c = 21 / 3;
My value = 7

For more details on function arguments seeFunction Argumentsin the Functions and Program chapter of
this Guide.

11.3.4. Partially Evaluated Literal

Gamma supports evaluation of sub-expressions, allowing you to write expressions whose elements may
or may not be evaluated. In the following example, we want to create a literal expression which will
calculatea to the power ofb, whereb is a specific power, evaluated at the time the literal is defined. The
operator‘ is used like# to prevent evaluation of the expression, but it allows for exceptions. These
exceptions, which will be evaluated, are denoted using the@operator.

Gamma>b = 3;
3
Gamma>my_cube = ‘(pow (a, @b));
(pow a 3)
Gamma>a = 10;
10

59

Chapter 11. Advanced Types and Mechanisms

Gamma>eval(my_cube);
1000

In the following example, the timer event is used to demonstrate how the current value of a variable can
be evaluated into a literal:

Gamma>a = "hello";
"hello"
Gamma>every (15, #princ(a,"\n"));
1
Gamma>next_event();
hello
nil
Gamma>a = "goodbye";
"goodbye"
Gamma>next_event();
goodbye
Gamma>cancel (1);
[866239787 836823463 15 ((princ a,"\n")) 1]
Gamma>every (15, list (#princ, a, "\n"));
2
Gamma>next_event();
goodbye
nil
Gamma>a = "no more";
"no more"
Gamma>next_event();
goodbye
nil

11.3.5. Constructing Variable Names at Run-time

Controlling when an expression is evaluated lets you generate the actual variable names at run-time. This
can produce extremely concise code, particularly compared to the C language equivalent. In the
following example, a set of simple objects each has a value. The object name and its value is entered. In
a conventional language, we might search the array of objects to find the one with the given name, and
then make the assignment. Gamma makes it possible to directly construct the variable reference using
theset function, as follows:

Gamma>name = "fido";
"fido"
Gamma>value = "bites";
"bites"
Gamma>set(symbol(string(name)), value);
"bites"
Gamma>fido;
"bites"

Note that the syntax does not accept the= assignment operator, so the functional form of the assignment
operator:set must be used. Note also that we would probably useundefined_p to verify that the
variable actually existed to avoid halting the program due to an undefined variable error. Although the
example is trivial, this technique is very useful for constructing function references based on run-time
data.

60

Chapter 11. Advanced Types and Mechanisms

11.3.6. Literal Array Syntax

An array is defined in Gamma with thearray function, which creates the array and sets the elements to
the specified values.

Gamma uses the familiar square brackets[] syntax to reference array elements. Although Gamma has
the functionsaref andaset for reading and writing specified elements of the array, the square bracket
syntax is normally used. An array is automatically re-sized if an element beyond its current size is set.
Arrays do not have a type, and array elements can be of different types. Array elements can be set to
literals (including expressions protected from evaluation), as in the following example:

Gamma>x = array (3, "hi");
[3 "hi"]
Gamma>x[3] = #a + 5;
(+ a 5)
Gamma>x;
[3 "hi" nil (+ a 5)]
Gamma>a = 8;
8;
Gamma>eval(x[3]);
13

Generally, literal arrays should be avoided except for static variables. A literal array is embedded
into your code. If it is changed, then the code is effectively changed!

61

Chapter 12. Input and Output

12.1. Referencing Files
As in C, there are two ways to reference a file in Gamma, using adescriptoror apointer.

A file descriptor is an integer that identifies an open file within a process. This is the lowest-level handle
available for interacting with the open file. Disk files, pseudo-ttys, IP sockets, UNIX-domain sockets,
pipes and other facilities all offer interaction through file descriptors.

A file pointer is an abstraction of the file that adds buffering on input and output. This would be of type
FILE* in C. The reason this exists is that it is very inefficient to use a file descriptor, which does not
perform any in-process buffering where many reads and writes are being performed. The file pointer
stores many write requests until it has enough data to perform a more efficient write to disk, hopefully in
multiples of the disk block size.

In Gamma, a file pointer is an opaque structure (the internals are not visible to the programmer) that is
effectively a buffered file. (See the note inopen .) It’s abstracted a little further to also include strings as
file pointers, when they are opened usingopen_string .

Some Gamma I/O functions work with file descriptors (generally those that start withfd_), others work
with file pointers, and a few work with both.

12.2. Lisp and Gamma I/O mechanisms
Gamma provides sophisticated mechanisms for reading and writing expressions, which can greatly
simplify most file manipulation functions. There are two fundamental facilities for manipulating file data
in Gamma: the reader and the writer. Gamma is based on the SCADALisp engine, and acts as a read-time
translator from Gamma syntax to SCADALisp internal form. Thus expressions can be read in either
Gamma or Lisp (we abbreviate SCADALisp as simply Lisp) representation.

Since the internal representation of an expression is an optimized Lisp mapping, the writer will produce
its output as Lisp. This makes the reader and the writer symmetrical in Lisp, but not symmetrical in
Gamma. A purely symmetrical Gamma writer is not possible, since there is no way to express literals in
Gamma for data types such as list, buffer, array, instance and class.

The Lisp writer is aware of the format that the Lisp reader requires, and is able to format any expression
such that the reader can subsequently read it back in. This means that an arbitrarily complex expression,
such as a list containing instances of a class whose instance variables include arrays and other instances,
can be written using a single line of code, and read back in using a single line of code as well. Since a
Gamma function is simply a data object, it can be written and read in exactly the same way.

Generally, the lack of symmetry between the Gamma reader and the Lisp writer is not a problem, since
any data written by Gamma will still be readable simply by instructing theopen function to recognize
Lisp instead of Gamma syntax.

12.3. Writing

12.3.1. Print vs. Princ

It is not always appropriate to write a data item in a way that can be read by the Lisp reader. For example,
the Lisp reader requires that all character strings are surrounded by double quotes to differentiate them
from symbols and to deal with white space and special characters. In some cases, the programmer may

62

Chapter 12. Input and Output

wish to write a character string in "human-readable" form, with no quotes and escapes on special
characters.

The Gamma writer will produce both kinds of output. Theprint function will always generate output
which can be read by the Lisp reader, including escape characters, quotation marks and buffer and
instance special forms. Theprinc function attempts to make the output as readable as possible to a
human, but will not necessarily produce output that can be read by the Gamma reader. The nameprinc
is historical, and can simply be thought of as an alternate form ofprint . Notice that neitherprinc nor
print will automatically place a carriage return at the end of a line. The programmer must explicitly
print a "\n" or make a call toterpri .

12.3.2. Write vs. Writec

Like princ andprint , there are two forms of thewrite function. Thewrite function operates
identically to theprint function, except that its first argument declares the file handle to which it will
write its output. The result of awrite function is machine readable, whereas the result of awritec
function is intended to be human readable. Notice that neitherwritec norwrite will automatically
place a carriage return at the end of a line. The programmer must explicitly print a "\n" or make a call to
terpri.

12.3.3. Terpri

Theterpri function will produce a carriage return either to the standard output or to a given file
handle.terpri is most commonly used to generate a carriage return in a file that is being written using
thewrite function. If the programmer were to use (write file "\n") then the file would actually
contain the four characters "\n", rather than the intended carriage return.terpri will insert a carriage
return into the file under any circumstances.

12.3.4. Pretty Printing

All of the printing functions have a further variant, known as the pretty printing functions. These variants
attempt to format the output to an 80-column page, inserting line breaks and white space in order to
make the output more readable. The pretty-printing indentation rules are intended to make data structure
and program flow more easily understood, and closely follow the pattern used by GNU Emacs in its Lisp
indentation mode.

12.3.5. Printing Circular References

It is common when programming with dynamic lists and arrays, or when constructing inter-related class
definitions, to create a data structure which is self-referential, or which contains circular references. For
example, it may be useful to have a child class contain a pointer to its parent, and the parent class contain
a pointer to its child. In this circumstance, an attempt to print an instance of the child class would cause
the Lisp writer to enter an infinite loop if it did not take precautions. In C programs, this circumstance is
normally avoided by having a printing routine which understands the child/parent relationship and
simply writes them in such a way that the infinite loop is never entered. This carries the problem that
each data structure must have its own dedicated printing routine, which necessarily does not preserve a
generalized data syntax, and which cannot perfectly represent the child/parent relationship in any but the
simplest of cases.

Gamma solves the problems of self-reference and circularity by modifying the printed representation of
an object to include embedded reference points in the data structure. Whenever a Gamma object is
printed, all circular references and self-references are detected before the object is printed, and reference
points are inserted into the printed representation. Subsequent attempts to print an object that was

63

Chapter 12. Input and Output

previously printed will merely produce a reference to the first printing of the object. This facility
produces a result that is essentially impossible in languages such as C; it perfectly preserves multiple
pointer references to data which are not known, a priori, to be multiple references.

A very simple example of self-reference may be a list that contains itself. This is normally achieved
using destructive functions such asnappend , rplaca andrplacd . Consider the following dialogue:

Gamma>a = list(1, 2, 3);
(1 2 3)
Gamma>rplacd (cdr (a), a);
(1 2 (1 2 (1 2 (1 2 (1 2 (1 2 (1 2 (1 2 (1 2 ...)))))))))

In this case, by replacing the tail of the list with the list itself, it is possible to create a self-referential list
which cannot be printed using normal means. Any attempt to print this list will cause an infinite loop.
The Lisp writer in fact produces the following output:

Gamma>a = list(1, 2, 3);
(1 2 3)
Gamma>rplacd (cdr (a), a);
#0=(1 2 . #0#)

The first time that the self-referential list is printed, the Gamma writer determines that a self- reference
will occur, and marks that point with a numbered place holder, using the syntax #n=, where n is a
monotonically increasing number counting the number of circular references in the data object. Each
subsequent reference to the marked object will cause the writer to produce a reference back to the
original using the syntax #n#. For example, if we create another, similar list, and then put both lists
together into another list, we will get the following:

Gamma>b = list(4, 5, 6);
(4 5 6)
Gamma>rplacd (cdr (b), b);
#0=(4 5 . #0#)
Gamma>d = list(a,b);
(#0=(1 2 . #0#) #1=(4 5 . #1#))

Using this method, arbitrarily complex objects can be written, with all circular and self-references
maintained.

As a side effect of this printing mechanism, duplicate references to objects which are not circularly
defined will also be caught and correctly reproduced. For example, suppose that a list contains a single
string more than once. It would be wasteful to write that string many times, and would generate an
incorrect result on reading if the multiple references to that string were not preserved. The Lisp writer
will correctly handle this situation:

Gamma>x = "Hello";
"Hello"
Gamma>a = list (x, x, x);
(#0="Hello" #0# #0#)
Gamma>eq (car(a), cadr (a));
t

In the above example, if the Gamma writer did not preserve the multiple references to the string "Hello",
thena would be printed as:

("Hello" "Hello" "Hello")

64

Chapter 12. Input and Output

When this object is read by the Gamma reader, we would get a list which is visibly the same but for
which the data references no longer match:

Gamma>a = list("Hello", "Hello", "Hello");
("Hello" "Hello" "Hello")
Gamma>eq (car(a),cadr(a));
nil

12.4. Reading

12.4.1. Reading Gamma Expressions

Any valid Gamma expression can be read by the Gamma reader using the functionread . Theread
function will read from the current location in a file, skipping over comments, until it encounters a
character which could be the beginning of a Gamma expression. The reader then constructs the shortest
possible complete expression from the input and returns that. A complete Gamma expression may be as
simple as a number, or as complex as a complete function definition or complex data object. The reader
ignores white space, except as a token separator. It may be interesting to note that the entire Gamma
mainline is essentially just a simple loop:

while ((exp = read (input_file)) != _eof_) eval (exp);

12.4.2. Reading Arbitrary ASCII Data

Gamma allows the programmer to read arbitrary ASCII data using the functionread_line , which will
read from the current file position to the first carriage return, regardless of the syntactic validity of the
data on the line. If data fields are known to be separated by white space, then theread function using
Lisp syntax may also be used to read a single field. Notice that theread function will treat an unquoted
string of ASCII characters as a symbol, not as a string. It is more common when dealing with
line-formatted data to useread_line followed bystring_split .

12.4.3. Reading Binary Data

Gamma provides a number of functions for reading binary data. These functions all begin with the prefix
read_ , and they read according to the rules for C data types for the particular platform. For example,
read_char will read a decimal representation of a string of length 1 containing a single character.

65

Chapter 13. Special Topics

13.1. Modifying QNX Process Environment Variables
The QNX 4 environment variables can be read and modified by a Gamma program using thegetenv
andsetenv function calls.

13.2. QNX 4 Interprocess Communication (IPC)
QNX 4 interprocess communication is a popular mechanism for ’talking’ between software modules,
based on the QNX 4 operating system. QNX 4’s microkernel architecture implements message passing
in such a way that only data locations are transferred between processes, making its IPC for small
amounts of data as, or more, efficient than shared memory schemes. Gamma encapsulates most of the
common QNX 4 IPC ’C’ function calls.

Functions such asqnx_receive andqnx_reply may be redundant in a program that is using one of
Gamma’s built-in event-loop mechanisms. To review the built-in functionality of Gamma’s event loops
refer to the section on event loops.

Theqnx_name_attach function attaches a ’name’ to the current process. Names, rather than PIDs,
are convenient ways to look for tasks since they are static while the PID of a program will not be.

Names are ASCII strings up to 32 character in length and can be either local or global. Local names must
be unique to the node. Any attempt to register an existing local name will fail. Global names allow
duplication and start with a slash ’/’ character. Global names are stored within a name program in QNX 4
callednameloc. When one process wants to look up another process’s name, theqnx_name_locate
function is called and the name to PID mapping is completed.

Gamma>myname = qnx_name_attach(0,"my_app");
20

The first argument to theqnx_name_attach function is the node on which to register the name. If the
node number is zero the local node is assumed.qnx_name_attach returns a name id which is used
with theqnx_name_detach function.

Theqnx_name_detach function removes a local or global name from the local name list or the
DataHub.

Gamma>qnx_name_detach(0,myname);
t

As with theqnx_name_attach function, the first argument to theqnx_name_detach function is
the node number. The second argument must be the name id returned when attaching the name.

Once a name is registered then theqnx_name_locate function is useful for locating the task by
name. The return value of this function is a dotted list of the format:(pid . copies) The pid is
the process ID of the located task and copies is the number of processes that matched the name. Local
names must be unique but there can be multiple instances of global names (those starting with ’/’).

An example of using theqnx_name_locate function follows:

Gamma>queue = qnx_name_locate(0,"qserve",0);
(91 . 1)

The PID of theqserve task is 91 and there was a single instance of that registered name found.It is
important to assign the return value of theqnx_name_locate function to a variable since it is the first

66

Chapter 13. Special Topics

number in the list (PID) that is used as an argument to Gamma functions such asqnx_send ,
qnx_receive , qnx_reply , qnx_vc_attach , and qnx_vc_detach .

Theqnx_receive function allows for the Gamma engine to remain receive-blocked on a specific PID,
waiting for a message.

IMPORTANT: If Gamma is being run using a built-in event loop or using thenext_event or
next_event_nb functions then using theqnx_receive function MAY BE REDUNDANT. Event
loops in Gamma have a built-in receive/reply mechanism.

Theqnx_send function uses the QNX 4send C/C++ function to send information between tasks. The
qnx_send function is a synchronous IPC function, and as such, the sending task waits for the receiving
task’s reply before continuing.

Theqnx_send function can be used to send Gamma expressions between Gamma modules. Gamma
ships with a number of example programs, of which example 12 demonstrates the use ofqnx_send to
transmit and execute a function on another module. (Examples can be found in /usr/cogent/examples/
directory)

The important excerpts from this example are:

task = car (qnx_name_locate (0, "gui", 1000));
qnx_send (task, stringc (#Arc.fill_color = PgRGB(0xff, 0xff, 0)));
function TitleClock()
{

win.title = date();
}
// Transmit new function
qnx_send (task, stringc (TitleClock));
// Execute new function once.
qnx_send (task, stringc (#TitleClock()));

The communications channel is opened by locating the task using theqnx_name_locate function
and then usingqnx_send . The firstqnx_send sends a command for the receiving task to evaluate, in
this case to change the fill color of an object named ’Arc’. Thestringc function is used to produce an
expression that is parse-able.

Next, a new function is defined, passed, and executed on the other task using two separateqnx_send ’s.

If you are sending IPC messages to a non-Cogent IPC task thesend_string and
send_string_async functions should be used.

13.3. Cogent IPC
The Cogent IPC layer is a generalization of QNX 4’s send/receive/reply IPC layer. Cogent IPC has many
benefits that allow users to easily code what would be complex systems in C. Some of these services are:

• Network-wide name registration service

• Cogent DataHub exceptions and echos

• true asynchronous messages

• pseudo asynchronous messages

• synchronous messages

• QNX 4 IPC messages

• Task started notification

• Task death notification

• automatic handling of receive/reply for Cogent IPC messages

67

Chapter 13. Special Topics

• remote procedure calls

13.3.1. Cogent IPC Service Modules

To use the Cogent IPC layer, two services optionally provided to the Gamma developer are required:
nserveandqserve. These services are run as programs on the same CPU or network as Gamma.

Thenservecommand is the Cascade NameServer module. Although similar to the QNX 4nameloc
program in concept, this name database has some differences that make it worth using.

Thenservemodule is run on every node requiring name services. Everynservemodule is updated on an
event-basis, rather than on a timed basis as QNX 4’snamelocis, and therefore discrepancies between
multiple nserve’s on a network are rare.

Theqserveprogram is the asynchronous queue manager for Cogent IPC;. Queues are used in Cogent
IPC to implement asynchronous communication channels between two programs. Theqservemodule is
run on every node requiring Cogent queue services.

13.3.2. Cogent IPC Advanced services

The Cogent IPC layer provides many advanced services that augment the basic send/receive/reply
protocol. This section describes those services.

13.3.2.1. Cogent IPC Messages

The Cogent IPC layer provides a messaging protocol that is easier to use and different in format from
raw QNX 4 send/receive/reply.

Messages between Cogent IPC-enabled tasks are very similar to function calls. A message is constructed
and sent, and the task on the other end evaluates the message. The return value of the evaluation of the
message is transmitted to the originating task in the reply.

Consider two Gamma modules using the following code:

Task A:

#!/usr/cogent/bin/gamma
init_ipc("task_a");

while (t)
{

next_event();
}

The functioninit_ipc is called first to initialize Cogent interprocess communication. For more
details, seeIPC Initializationbelow.

Task B:

#!/usr/cogent/bin/gamma
init_ipc("task_b");

function ask_taska_date ()
{

local result,tp;
if (tp = locate_task("task_a",nil))

result = send(tp,#date());
else

result = "could not locate task A";
}

every(1.0,#princ(ask_taska_date(),"\n"));

68

Chapter 13. Special Topics

while (t)
{

next_event();
}

Of specific note in this example is the format of the message in thesend function. The first argument to
the Cogent IPC functionsend is a task. Thelocate_task function, along with thenserve module
provides the name lookup. The second argument is an expression for the receiver to evaluate. For simple
send ’s an unevaluated Gamma expression (using #) will suffice. For more complexsend ’s, such as
when a partially evaluated list of arguments need to be passed, the format of the send command should
be Lisp.

This code gives a good example of using the Cogent IPC layer as an RPC (Remote Procedure Call)
mechanism.

To use the Cogent IPC layer for transferring data between tasks, use the Lisp expression for assignment:
setq . An example is:

Task C:

#!/usr/cogent/bin/gamma
init_ipc("task_c");

add_set_function(#x,#princ("Task C reports x=",x,"\n"));

while (t)
{

next_event();
}

Task D:

#!/usr/cogent/bin/gamma
init_ipc("task_d");

function inc_x ()
{

local result,tp;
x++;
if (tp = locate_task("task_c",nil))

result = send(tp,list(#setq, #x, x));
}

x = 0;
every(0.1,#inc_x());

while (t)
{

next_event();
}

In this example task C sets up aset_function before starting its event loop. The set function will
print out the value of x if it changes. Task D initializes x to 0 and then starts a timer to run every tenth of
a second to increment x and sendsetq expressions to task C.

(setq x 1)
(setq x 2)
(setq x 3)
(setq x 4)

69

Chapter 13. Special Topics

These expressions are in Lisp format because all messages between processes use the Lisp internal
representation for efficiency.

Thesetq function is evaluated in task C. Any side effects of the function, for example the setting of the
variable x, happens in task C. The return value of the function is the content of the reply message. The
return value of thesend function can be found by evaluating the ’result’ variable in theinc_x function.

Consider theinc_x function re-written as:

function inc_x ()
{

local result,tp;

x++;

if (tp = locate_task("task_c",nil))
{

result = send(tp,list(#setq, #x, x));
princ("task D result of send: ",result,"\n");

}
}

When this example is run the return value of the send is shown to be the result of thesetq function.
Obviously, task D must wait for task C to receive and evaluate the message before sending back the
response.

13.3.2.2. Asynchronous Messages

Consider two tasks that wish to communicate: task E and task F. Task E is a time sensitive task that needs
to deliver a package of data to task F. Task E cannot take the chance that task F will accept its data
immediately and issue a reply so that it may continue with its own jobs. In short, a synchronous send
compromises task E’s job because it must wait for task F to respond before proceeding.

To send data asynchronously from task E to task F, a queue is used. Data is sent from task E to the queue.
The queue responds immediately to task E, freeing it up to continue. Then aproxy, a special
non-blocking message, is sent from the queue to task F. Upon receipt of the proxy, task F knows that the
queue contains data for it. When task F is ready it asks the queue for the data.

With some small changes, the example from the previous section can be changed from synchronous
messaging to asynchronous, as follows:

Task E:

#!/usr/cogent/bin/gamma
init_ipc("task_e","task_e_q");

add_set_function(#x,#princ("Task E reports x=",x,"\n"));

while (t)
{

next_event();
}

Task F:

#!/usr/cogent/bin/gamma
init_ipc("task_f","task_f_q");

function inc_x ()
{

local result,tp;

x++;

70

Chapter 13. Special Topics

if (tp = locate_task("task_e",nil))
{

result = send_async(tp,list(#setq, #x, x));
princ("task F result of send: ",result,"\n");

}
}

x = 0;
every(0.1,#inc_x());

while (t)
{

next_event();
}

The init_ipc function calls at the beginning of each module now open a queue name withqserve,
and theinc_x function has been changed to usesend_async instead ofsend .

When this example is run the results show that taskF receives at (true) that the message was delivered
but does not have to wait for taskE to generate the result of the expression.

Using asynchronous communication immediately solves the dead-lock problem that all developers of
multi-module systems must eventually face. To the developer, the use of asynchronous communication in
Gamma entails only the use of a slightly different function:send_async instead ofsend .

13.3.2.3. Pseudo-Asynchronous Messages

For situations where theqserveprogram is not running and an asynchronous non-blocking IPC call is
required then Gamma pseudo-asynchronous IPC call can be used.

The isend function sends a message between two Cogent IPC enabled tasks. Immediately upon receipt
of the message, the receiver replies that the message was received. The return value of the received
message is not sent back.

13.3.2.4. Task Started & Death Notification

When a task registers a name with nserve it can thereafter receive information regarding any other nserve
registered task that starts or stops.

This is done by defining two functions with specific names, each within their respective code, to handle
this information. The functions are:

function taskstarted_hook (name, queue, domain, node, id);

and
function taskdied_hook (name, queue, domain, node, id);

The body of each of these functions is up to the programmer. Most "hook" functions check the name,
queue, and possibly the domain of the started/stopped task and then take a specific action such as:

• restarting a task that has died;

• informing the user that a module has died;

• inform other modules that a new service is available;

• query the new module for information; and,

• Cogent DataHub start/stop.

71

Chapter 13. Special Topics

13.3.2.5. Automatic Handling of QNX 4 receive and reply

The following Gamma functions automatically handle QNX 4receive /reply :

• PtMainLoop

• next_event

• next_event_nb

• flush_events

13.3.2.6. IPC Initialization

Before any form of Cogent interprocess communication occurs there must be a call to theinit_ipc
function. This function opens the channels of communications between Gamma and other tasks powered
by Gamma, Cascade Connect, or other Cogent products. With this function you determine your task’s
name and optionally its queue name and domain.

A program’s name is the string registered with the nserve program. Gamma names and queue names for
tasks should be unique on the network. A program’s queue name is the name of the queue that is
registered if it wants to participate in asynchronous communication using Cogent’sqserveutilities. The
domain name is the name of the default Cogent DataHub domain from which to read and write points.

It is typical to find theinit_ipc function called within the first few calls in the program. Here’s an
example:

#!/usr/local/bin/gamma
require_lisp("PhotonWidget");
require_lisp("PhabTemplate");

myname = car(argv);
init_ipc("myname");

This program segment first defines the engine to run on the first line, then loads some required files for
Photon widget manipulation and Photon Application Builder support. Theargv variable holds the
arguments passed to Gamma. The first item in the list is the name of the executable, which is put in the
myname variable. Theinit_ipc function is then called with the registered name being whatever the
name of the program happens to be.

13.3.2.7. Locating Tasks

Using Gamma’s IPC communications protocol, a task can be located by name or by id. This protocol
allows for synchronous, asynchronous, and semi-asynchronous communications between Gamma,
SCADALisp, and other Cogent products such as Cascade Connect and the Cogent DataHub.

Locating a task by name can be done with thelocate_task function. This is similar to using the
qnx_name_locate function except that, since nserve’s names are intended to be unique on a network
the node number need not be specified.

marko:/home/marko$ gamma -q
Gamma>init_ipc("locate_test");
t
Gamma>tp = locate_task("cadsim",nil);
#< Task:13424 >

72

Chapter 13. Special Topics

The return value of thelocate_task function is a Gamma task type. The task type is an internal
representation of the task that was located. There is nothing the user can do with variables of this data
type other than to pass them through as arguments to Cogent IPC functions.

To locate a task on a specific node with a specific PID number use thelocate_task_id function.

Before using eitherlocate_task or locate_task_id , theinit_ipc function must have already
been called.

Once discussions with a task are completed, the channel should be closed using theclose_task
function.

13.3.2.8. Transmitting Character Strings

Thesend_string andsend_string_async functions are used to format a message to be sent to
a non-Cogent IPC task. These functions will accept a string (text surrounded by quotes) as a parameter,
and will send the contents of the string without the enclosing quotes. Note that the normalsend function
will send the enclosing quotes as part of the message.

13.3.3. Cogent DataHub

The Cogent DataHub is a high performance data collection and distribution center designed for easy
integration with a Gamma application. Just as QNX 4 is an excellent choice for developers of systems
that must acquire real-time data, the Cogent DataHub is the right choice for distribution of that data.

The Cogent DataHub provides:

• data services to its clients by exception and lookup;

• asynchronous data delivery ensuring client task protection blocking;

• network connection/reconnection issues;

• data services to many clients at once;

• transparent data services to/from Gamma;

• flexible data tag names;

• inherent understanding of data types (as Gamma does);

• time-stamping of data;

• C libraries for the creation of custom clients;

• security access levels on data points; and,

• a confidence value for assigning fuzzy values to data points.

The Cogent DataHub is:

• a convenient way to disseminate real-time data;

• a RAM resident module holding current data;

• a proven solution with thousands of hours of installed performance; and,

• a great source of information for:

• historical & relational database;

• hard disk loggers; and,

• Cascade Connect real-time connection to MS-Windows.

73

Chapter 13. Special Topics

The Cogent DataHub is not:

• a historical database;

• a relational database;

• a hard disk logger;

• slow;

• a large memory requirement module; or,

• pre-configured.

Whenever multiple tasks are communicating there is a chance for a deadlock situation. The Cogent
DataHub is at the center of many mission critical applications because it provides real- time data to its
clients without the threat of being blocked on the receiving task. The Cogent DataHub never blocks on a
task that is busy. The DataHub is always able to receive data from clients because it uses theqserve
manager to handle outgoing messages. The DataHub only ever sends messages to the Cascade
QueueServer program, which is optimized to never enter a state where it cannot accept a message from
the Cogent DataHub.

13.3.4. Cogent DataHub Exceptions and Echos

When a new data point is sent to the Cogent DataHub the DataHub automatically updates its clients that
are interested in the point. Some clients get information from the the DataHub on request only, by
polling. Other clients register with the Cogent DataHub for changes in some or all points, called
exceptions.

The Cogent DataHub not only allows its clients to register and receive exceptions on data points, but also
provides a special message type called anechothat is extremely important in multi-node or multi-task
applications.

When the Cogent DataHub receives a new data point it immediately informs its registered clients of the
new data value. The clients will receive an asynchronous exception message. In some circumstances, the
client that sent the new data value to the DataHub is also registered for an exception on that point. In this
case, the originator of the data change will also receive an exception indicating the data change. When
there are multiple clients reading and writing the same data point a client may wish to perform an action
whenever another client changes the data. Thus, it must be able to differentiate between exceptions
which it has originated itself, and ones which originate from other clients. The Cogent DataHub defines
an echo as an exception being returned to the originator of the value change.

In certain circumstances, the lack of differentiation between exceptions and echos can introduce
instability into both single and multi-client systems. For example, consider an application that
communicates with another Lisp or MMI system, such as Wonderware’s InTouch. InTouch
communicates via DDE, which does not make the distinction between exceptions and echos. A data
value delivered to InTouch will always be re-emitted to the sender, which will cause the application to
re-emit the value to the Cogent DataHub. The DataHub will generate an exception back to the
application, which will pass this to InTouch, which will re-emit the value to the application, which will
send it to the DataHub, on so on. A single value change will cause an infinite communication loop. There
are many other instances of this kind of behavior in asynchronous systems. By introducing echo
capability into the DataHub, the cycle is broken immediately because the application can recognize that
it should not re-emit a data change that it originated itself.

The echo facility is necessary for another reason. It is not sufficient to simply not emit the echo to the
originating task. If two tasks read and write a single data point to the DataHub, then the DataHub and
both tasks must still agree on the most recent value. When both tasks attempt to write the point, one gets

74

Chapter 13. Special Topics

an exception and updates its current value to agree with the DataHub and the sender. If both tasks
simultaneously emit different values, then the task whose message is processed first will get an exception
from the first, and the first will get an exception from the second. In effect, the two tasks will swap
values, and only one will agree with the DataHub. The echo message solves this dilemma by allowing
the task whose message was processed second to receive its own echo, causing it to realize that it had
overwritten the exception from the other task.

75

Appendix A. Function List

absolute_path returns the absolute path of the given file.

access checks a file for various permissions.

acos finds the arc cosine of a number.

add_echo_function assigns functions for echoes on a point.

add_exception_function assigns functions for exceptions on a point.

add_hook hooks a function to an event.

add_set_function sets an expression to be evaluated when a given symbol
changes value.

after performs an action after a period of time.

alist_p tests for association lists.

allocated_cells gives the number of allocated and free cells.

and is the same as the corresponding logical operator (&&).

append concatenates several lists into a single new list.

apropos finds all defined symbols in the current interpreter
environment.

aref returns an expression at a given index.

array constructs an array.

array_p tests for arrays.

array_to_list converts an array to a list.

aset sets an array element to a value at a given index.

asin finds the arc sine of a number.

assoc searches an association list for a sublist, using eq.

assoc_equal searches an association list for a sublist, using equal.

at performs an action at a given time, or regularly.

atan finds the arc tangent of a number.

atan2 finds the arc tangent with two arguments.

atexit evaluates code before exiting a program.

AutoLoad allows for run-time symbol lookup.

autoload_undefined_symbol checks undefined symbols for AutoLoad.

AutoMapFunction maps a C function to a Gamma function.

autotrace_p is for internal use only.

backquote corresponds to a quote operator.

band performs bitwise and operations.

basename gives the base of a filename.

bdelete deletes a single character from a buffer.

bin converts numbers into binary form.

binsert inserts a value into a buffer.

block_signal starts signal blocking.

block_timers blocks timer firing.

bnot performs bitwise not operations.

bor performs bitwise inclusive or operations.

breakpoint_p is for internal use only.

76

Appendix A. Function List

bsearch searches an array or list for a element.

buffer constructs a buffer.

buffer_p tests for buffers.

buffer_to_string converts a buffer to a string.

builtin_p is for internal use only.

bxor perform bitwise exclusive or operations.

caaar returns that element of a list.

caadr returns that element of a list.

caar returns that element of a list.

cadar returns that element of a list.

caddr returns that element of a list.

cadr returns that element of a list.

call calls a class method for a given instance.

cancel removes a timer from the set of pending timers.

car returns that element of a list.

cd changes the working directory.

cdaar returns that element of a list.

cdadr returns that element of a list.

cdar returns that element of a list.

cddar returns that element of a list.

cdddr returns that element of a list.

cddr returns that element of a list.

cdr returns that element of a list.

ceil rounds a real number up to the next integer.

cfand performs and operations with a confidence factor.

cfor performs or operations with a confidence factor.

char generates an ASCII character from a number.

char_val generates a character’s numeric value.

chars_waiting checks for characters waiting to be read on a file.

class_add_cvar adds new class variables.

class_add_ivar adds an instance variable to a class.

class_name gives the name of the class.

class_of gives the class definition of a given instance.

class_p tests for classes.

ClearAutoLoad removes allAutoLoad rules.

clock gets the OS time.

close closes an open file.

close_task closes a task opened bylocate_task .

conf queries confidence factors.

cons constructs a cons cell.

cons_p tests for cons cells.

constant_p tests for constants.

copy makes a copy of the top list level of a list.

copy_tree copies the entire tree structure and elements of a list.

77

Appendix A. Function List

cos returns the cosine of a number.

create_state is part of the SCADALisp exception-driven state machine
mechanism.

date gets the OS date and time; translates seconds into dates.

date_of is obsolete, see date

dec converts numbers into base-10 form.

defclass is the function equivalent of the statement:class .

defmacro is a Lisp equivalent of the function:macro .

defmacroe is a Lisp equivalent of the function:macro .

defmethod is the function equivalent of the function:method .

defun is a function equivalent of the statement:function .

defune is a function equivalent of the statement:function .

defvar defines a global variable with an initial value.

delete removes an element from an array.

destroy destroys a class instance.

destroyed_p tests for destroyed instances.

_destroy_task should never be used.

dev_read is a modification of QNX 4dev_read .

dev_setup is obsolete, seeser_setup .

difference constructs a list of the differences between two lists.

directory returns the contents of a directory.

dirname returns the directory path of a file.

div divides two numbers, giving an integer result.

dlclose closes an open dynamic library.

dlerror reports errors in dl functions.

dlfunc reserved for future use.

DllLoad loads dynamic libraries.

dlmethod reserved for future use.

dlopen loads a dynamic library from a file.

drain modifies end-of-file detection.

enter_state is part of the SCADALisp exception-driven state machine
mechanism.

eq compares for identity and equivalence.

equal compares for identity and equivalence.

errno detects and numbers errors.

error redirects the interpreter.

eval evaluates an argument.

eval_count counts evaluations made since a program started.

eval_list evaluates each element of a list.

eval_string evaluates a string.

every performs an action every number of seconds.

exec executes a program.

exit_program terminates the interpreter.

78

Appendix A. Function List

exit_state is part of the SCADALisp exception-driven state machine
mechanism.

exp calculates an exponent of the logarithmic base (e).

fd_close closes a open file identified by a file descriptor.

fd_data_function attaches a write-activated callback to a file.

fd_eof_function attaches an_eof_ -activated callback to a file.

fd_open opens a file or device and assigns it a file descriptor.

fd_read reads a buffer or string from an open file identified by a file
descriptor.

fd_to_file creates a file pointer from a descriptor.

fd_write writes a buffer or string to an open file identified by a file
descriptor.

file_date gives the file modification date.

file_p tests for files.

file_size gives the file size.

fileno creates a file descriptor from a pointer.

find searches a list using the function:eq .

find_equal searches a list using the function:equal .

fixed_point_p tests for fixed-point reals.

floor rounds a real number down to its integer value.

flush flushes any pending output on a file or string.

flush_events handles all pending events, then exits.

fork duplicates a process.

format generates a formatted string.

free_cells returns the number of available memory cells.

funcall provides compatibility with other Lisp dialects.

function_args lists the arguments of a function.

function_body gives the body of a user-defined function.

function_calls tells how often a function was called during profiling.

function_name gives the name of a function.

function_p tests for functions.

function_runtime gives the time a function has run during profiling.

gc runs the garbage collector.

gc_blocksize is for internal use only.

gc_enable is for internal use only.

gc_newblock is for internal use only.

gc_trace controls the tracing of garbage collection.

gensym generates a unique symbol.

getcwd gets the current working directory.

getenv retrieves the value of an environment variable.

gethostname gets the computer’s host name.

getnid returns the local node number.

getpid returns the program ID.

getprop returns a property value for a symbol.

79

Appendix A. Function List

getsockopt gets a socket option.

has_cvar queries for the existence of a class variable.

has_ivar queries for the existence of an instance variable.

hex converts numbers into hexadecimal form.

init_async_ipc requests queue information from a task.

init_ipc sets up necessary data structures for IPC.

inp queries hardware ports (by byte).

inpw queries hardware ports (by word).

insert inserts a value at a given position.

instance_p tests for instances.

instance_vars finds all the instance variables of a class or instance.

int converts numbers to integer form.

int_p tests for integers.

intersection constructs a list of all the elements found in both of two lists.

ioctl performs control functions on a file descriptor.

is_busy determines if a file is busy.

is_class_member checks if an instance or class is a member of a class.

is_dir determines if a file is a directory.

is_file determines if a file exists.

is_readable determines if a file is readable.

is_writable determines if a file is writable.

isend sends a synchronous message and doesn’t wait for the result.

ivar_type returns the type of a given instance variable.

kill sends a signal to a process.

length counts the number of elements in a list or array.

list creates lists, evaluating the arguments.

list_p tests for lists.

list_to_array converts a list to an array.

listq creates lists without evaluating the arguments.

load loads files.

load_lisp loads Lisp files.

locate_task finds and connects to tasks by name.

locate_task_id finds and connects to tasks by task ID and network node.

lock_point locks or unlocks points.

log calculates natural logarithms.

log10 calculates base 10 logarithms.

logn calculates logarithms of a given base.

long_p tests for long integers.

macro helps generate custom functions.

macro_p tests for macros.

make_array creates an empty array.

make_buffer creates a new, empty buffer.

method_p tests for methods.

mkdir creates a new sub-directory.

80

Appendix A. Function List

mmap implements the C function callmmap.

modules is obsolete, and returns nothing of value.

name_attach attaches a name to a task.

nanoclock gets the OS time, including nanoseconds.

nanosleep pauses the interpreter for seconds and nanoseconds.

nappend appends one or more lists, destructively modifying them.

neg negates a number.

new creates a new instance of a class.

next_event blocks waiting for an event, and calls the event handling
function.

next_event_nb is the same as next_event, but doesn’t block.

nil_p tests fornil values.

NoAutoLoad removes selected AutoLoad rules.

not is the same as the corresponding logical operator (!).

notrace turns tracing off.

nremove removes list items, destructively altering the list.

nreplace replaces elements in a list, usingeq .

nreplace_equal replaces elements in a list, usingequal .

nserve_query puts information fromnserveinto an array.

nth_car iteratively applies the car functions to a list.

nth_cdr iteratively applies the cdr functions to a list.

number attempts to convert an expression to a number.

number_p tests for numbers.

oct converts numbers into octal form.

open attempts to open a file.

open_string allows a string to be used as a file.

or is the same as the corresponding logical operator (||).

outp writes values to hardware ports (by byte).

outpw writes values to hardware ports (by word).

parent_class returns the closest parent (base) of a class or instance.

parse_string parses an input string.

path_node gives the node number of a path in a QNX 2 path definition.

pipe creates a pipe.

point_locked indicates if a point is locked.

point_nanoseconds gives the nanoseconds from point_seconds that a point value
changed.

point_seconds gives the time the point value changed.

point_security gives the security level of a point.

pow raises a base to the power of an exponent.

pretty_princ writes to the standard output file, with formatting.

pretty_print writes Lisp-readable output to the standard output file, with
formatting.

pretty_write writes an expression to a file, applying formatting.

pretty_writec writes an expression to a file, applying formatting.

81

Appendix A. Function List

princ writes to the standard output file.

print writes Lisp-readable output to the standard output file.

print_stack prints a Gamma stack.

profile collects statistics on function usage and run time.

prog1 groups several statements into one expression.

progn groups several statements into one expression.

properties should never be used.

pty runs programs in a pseudo-tty.

ptytio runs programs in a pseudo-tty, using a termios structure
argument.

qnx_name_attach registers a local or global name.

qnx_name_detach detaches a name.

qnx_name_locate is an implementation of the C functionqnx_name_locate .

qnx_osinfo returns a class very similar to QNX 4struct_osinfo .

qnx_osstat lists processor loads and number of READY processes at each
priority level.

qnx_proxy_attach creates a proxy message for a process.

qnx_proxy_detach removes a proxy.

qnx_proxy_rem_attach creates a remote proxy message for a task.

qnx_proxy_rem_detach removes a remote proxy.

qnx_receive performs a QNX 4Receive .

qnx_reply replies to messages of type:qnx_receive .

qnx_send implements QNX 4Send.

qnx_spawn_process is an implementation of the C functionqnx_spawn .

qnx_trigger tells a proxy to send its message.

qnx_vc_attach establishes a virtual circuit between two processes on two
computers.

qnx_vc_detach detaches a virtual circuit.

qnx_vc_name_attach attaches a virtual circuit with a name instead of a process ID
number.

quote corresponds to a quote operator.

random generates random numbers from 0 to 1.

raw_memory tells the amount of memory in use.

read reads a Lisp expression from a file.

read_char reads the next character from the input file.

read_double reads the next double from the input file.

read_eval_file reads a file, evaluating and counting expressions.

read_existing_point retrieves points.

read_float reads the next float from the input file.

read_line reads a single line of text.

read_long reads the next long value from the input file.

read_n_chars reads and stores characters.

read_point creates and/or retrieves points.

read_short reads the next short value from the input file.

82

Appendix A. Function List

read_until reads characters, constructing a string as it goes.

real_p tests for reals.

register_all_points registers an application to receive exceptions for all points.

register_exception is not yet documented.

register_existing_point registers an application to receive exceptions for a single
existing point.

register_point creates and/or registers an application to receive exceptions for
a single point.

registered_p tests for registered points.

remove removes list items without altering the list.

remove_echo_function removes an echo function from a symbol.

remove_exception_function removes an exception function from a symbol.

remove_hook removes a hooked function.

remove_set_function removes a set function from a symbol.

rename renames a file.

require requires/loads files.

require_lisp requires/loads Lisp files.

required_file determines which files would be loaded.

reverse reverses the order of list elements.

root_path strips the final file or directory name from a path.

round rounds a real number up or down to the nearest integer.

rplaca replaces the car of a list.

rplacd replaces the cdr of a list.

run_hooks runs a hooked function.

secure_point alters the security level on a point.

seek sets the file position for reading or writing.

send transmits expressions for evaluation.

send_async transmits expressions asynchronously.

send_string transmits strings for evaluation.

send_string_async transmits a string asynchronously.

ser_setup sets parameters for a serial port device.

set assigns a value to a symbol, evaluating both arguments.

set_autotrace is reserved for future use.

set_breakpoint is reserved for future use.

set_conf sets confidence factors.

set_domain sets the default domain for future calls.

set_random starts random at a different initial number.

set_security changes the security level for the current process.

setenv sets an environment variable for the current process.

setprop sets a property value for a symbol.

setprops lists the most recent property value settings.

setq assigns a value to a symbol, evaluating the second argument.

setqq assigns a value to a symbol, not evaluating any arguments.

setsockopt sets a socket option.

83

Appendix A. Function List

shell_match compares string text to a pattern.

shm_open opens shared memory objects.

shm_unlink removes shared memory objects.

shorten_array reduces or expands the size of an array.

shorten_buffer reduces the size of a buffer.

signal defines an expression to be evaluated at an OS-generated
signal.

sin returns the sine of a number.

sleep suspends execution for seconds.

sort sorts a list or array, destructively modifying the order.

sqr finds the square of a number.

sqrt finds the square root of a number.

stack lists all functions called so far.

strchr searches a string for a character, returning the first location.

strcmp compares strings, case-sensitive.

strerror retrieves an error message.

stricmp compares strings, case-insensitive.

string constructs a string.

string_file_buffer queries a string file for its internal buffer.

string_p tests for strings.

string_split breaks a string into individual words.

string_to_buffer creates a buffer object from a string.

stringc constructs a string in Lisp-readable form,

strlen counts the number of characters in a string.

strncmp compares two strings and return a numeric result,
case-sensitive.

strnicmp compares two strings and return a numeric result,
case-insensitive.

strrchr searches a string for a character, returning the last location.

strrev reverses the order of characters in a string.

strstr finds the location of a given substring.

substr returns a substring for a given location.

sym_alist_p tests for symbolic association lists.

symbol constructs a symbol from a string.

symbol_p tests for symbols.

system treats its argument as a system command.

tan returns the tangent of a number.

taskdied calls a function when a task stops.

task_info gets information from a task descriptor.

taskstarted calls a function when a task starts.

tell indicates file position.

terpri prints a newline to an open file.

time gives command execution times.

timer_is_proxy controls timer handling in Gamma.

84

Appendix A. Function List

tmpfile generates temporary output file names.

tolower converts upper case letters to lower case.

toupper converts lower case letters to upper case.

trace turns tracing on.

trap_error traps errors in the body code.

true_p tests for truth value.

unblock_signal ends signal blocking.

unblock_timers unblocks timer firing.

unbuffer_file causes a file to be treated as unbuffered on both input and
output.

undefined_p tests for undefined values.

undefined_symbol_p tests for undefined symbols.

union constructs a list containing all the elements of two lists.

unlink deletes a file.

unread_char attempts to replace a character to a file for subsequent reading.

unregister_point stops echo and exception message sending.

unwind_protect ensures code will be evaluated, despite errors in the body code.

usleep suspends execution for microseconds.

wait waits for process exit status.

when_echo_fns indicates the functions for echos on a point.

when_exception_fns indicates the functions for exceptions on a point.

when_set_fns returns all functions set for a symbol.

whence gives input information.

write writes an expression to a file.

write_existing_point writes values to existing points.

write_n_chars writes characters from a buffer to a file.

write_point writes point values, creating points if necessary.

writec writes a Lisp expression to a file.

85

Appendix B. GNU Lesser General Public
License

GNU Lesser General Public License
Version 2.1, February 1999

Copyright ©1991, 1999 byFree Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

* Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By
contrast, the GNU General Public Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages--typically libraries--of the Free Software Foundation and other authors who decide to use it.
You can use it too, but we suggest you first think carefully about whether this license or the ordinary
General Public License is the better strategy to use in any particular case, based on the explanations
below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software (and
charge for this service if you wish); that you receive source code or can get it if you want it; that you can
change the software and use pieces of it in new free programs; and that you are informed that you can do
these things.

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or to
ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the
recipients all the rights that we gave you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide complete object files to the recipients, so
that they can relink them with the library after making changes to the library and recompiling it. And you
must show them these terms so they know their rights.

We protect your rights with a two-step method:

1. we copyright the library, and

2. we offer you this license, which gives you legal permission to copy, distribute and/or modify the
library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library.
Also, if the library is modified by someone else and passed on, the recipients should know that what they
have is not the original version, so that the original author’s reputation will not be affected by problems
that might be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make
sure that a company cannot effectively restrict the users of a free program by obtaining a restrictive
license from a patent holder. Therefore, we insist that any patent license obtained for a version of the
library must be consistent with the full freedom of use specified in this license.

86

Appendix B. GNU Lesser General Public License

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License.
This license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite
different from the ordinary General Public License. We use this license for certain libraries in order to
permit linking those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combination of
the two is legally speaking a combined work, a derivative of the original library. The ordinary General
Public License therefore permits such linking only if the entire combination fits its criteria of freedom.
The Lesser General Public License permits more lax criteria for linking other code with the library.

We call this license theLesserGeneral Public License because it does Less to protect the user’s freedom
than the ordinary General Public License. It also provides other free software developers Less of an
advantage over competing non-free programs. These disadvantages are the reason we use the ordinary
General Public License for many libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a
certain library, so that it becomes a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free library does the same job as widely used
non-free libraries. In this case, there is little to gain by limiting the free library to free software only, so
we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of
people to use a large body of free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU operating system, as well as its
variant, the GNU/Linux operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does ensure that
the user of a program that is linked with the Library has the freedom and the wherewithal to run that
program using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to
the difference between a “work based on the library” and a “work that uses the library”. The former
contains code derived from the library, whereas the latter must be combined with the library in order to
run.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

Section 0

This License Agreement applies to any software library or other program which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the terms of this
Lesser General Public License (also called “this License”). Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked
with application programs (which use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these
terms. A “work based on the Library” means either the Library or any derivative work under copyright
law: that is to say, a work containing the Library or a portion of it, either verbatim or with modifications
and/or translated straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a
library, complete source code means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and installation of the library.

87

Appendix B. GNU Lesser General Public License

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running a program using the Library is not restricted, and output from such a
program is covered only if its contents constitute a work based on the Library (independent of the use of
the Library in a tool for writing it). Whether that is true depends on what the Library does and what the
program that uses the Library does.

Section 1

You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in
any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

Section 2

You may modify your copy or copies of the Library or any portion of it, thus forming a work based on
the Library, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a.The modified work must itself be a software library.

b. You must cause the files modified to carry prominent notices stating that you changed the files and
the date of any change.

c. You must cause the whole of the work to be licensed at no charge to all third parties under the terms
of this License.

d. If a facility in the modified Library refers to a function or a table of data to be supplied by an
application program that uses the facility, other than as an argument passed when the facility is
invoked, then you must make a good faith effort to ensure that, in the event an application does not
supply such function or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely
well-defined independent of the application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must be optional: if the application does
not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Library, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole which is a work based on
the Library, the distribution of the whole must be on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work
based on the Library) on a volume of a storage or distribution medium does not bring the other work
under the scope of this License.

88

Appendix B. GNU Lesser General Public License

Section 3

You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a
given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they
refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer
version than version 2 of the ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General
Public License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a
library.

Section 4

You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code
or executable form under the terms of Sections 1 and 2 above provided that you accompany it with the
complete corresponding machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the source along with the object code.

Section 5

A program that contains no derivative of any portion of the Library, but is designed to work with the
Library by being compiled or linked with it, is called a “work that uses the Library”. Such a work, in
isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a
derivative of the Library (because it contains portions of the Library), rather than a “work that uses the
library”. The executable is therefore covered by this License. Section 6 states terms for distribution of
such executables.

When a “work that uses the Library” uses material from a header file that is part of the Library, the object
code for the work may be a derivative work of the Library even though the source code is not. Whether
this is true is especially significant if the work can be linked without the Library, or if the work is itself a
library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small
macros and small inline functions (ten lines or less in length), then the use of the object file is
unrestricted, regardless of whether it is legally a derivative work. (Executables containing this object
code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work
under the terms of Section 6. Any executables containing that work also fall under Section 6, whether or
not they are linked directly with the Library itself.

Section 6

As an exception to the Sections above, you may also combine or link a “work that uses the Library” with
the Library to produce a work containing portions of the Library, and distribute that work under terms of
your choice, provided that the terms permit modification of the work for the customer’s own use and
reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the
Library and its use are covered by this License. You must supply a copy of this License. If the work

89

Appendix B. GNU Lesser General Public License

during execution displays copyright notices, you must include the copyright notice for the Library among
them, as well as a reference directing the user to the copy of this License. Also, you must do one of these
things:

a.Accompany the work with the complete corresponding machine-readable source code for the
Library including whatever changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked with the Library, with the complete
machine-readable “work that uses the Library”, as object code and/or source code, so that the user
can modify the Library and then relink to produce a modified executable containing the modified
Library. (It is understood that the user who changes the contents of definitions files in the Library
will not necessarily be able to recompile the application to use the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one
that (1) uses at run time a copy of the library already present on the user’s computer system, rather
than copying library functions into the executable, and (2) will operate properly with a modified
version of the library, if the user installs one, as long as the modified version is interface-compatible
with the version that the work was made with.

c. Accompany the work with a written offer, valid for at least three years, to give the same user the
materials specified in Subsection 6a, above, for a charge no more than the cost of performing this
distribution.

d. If distribution of the work is made by offering access to copy from a designated place, offer
equivalent access to copy the above specified materials from the same place.

e.Verify that the user has already received a copy of these materials or that you have already sent this
user a copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility
programs needed for reproducing the executable from it. However, as a special exception, the materials
to be distributed need not include anything that is normally distributed (in either source or binary form)
with the major components (compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that
do not normally accompany the operating system. Such a contradiction means you cannot use both them
and the Library together in an executable that you distribute.

Section 7

You may place library facilities that are a work based on the Library side-by-side in a single library
together with other library facilities not covered by this License, and distribute such a combined library,
provided that the separate distribution of the work based on the Library and of the other library facilities
is otherwise permitted, and provided that you do these two things:

a.Accompany the combined library with a copy of the same work based on the Library, uncombined
with any other library facilities. This must be distributed under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

Section 8

You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the
Library is void, and will automatically terminate your rights under this License. However, parties who

90

Appendix B. GNU Lesser General Public License

have received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

Section 9

You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Library or its derivative works. These actions are prohibited
by law if you do not accept this License. Therefore, by modifying or distributing the Library (or any
work based on the Library), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Library or works based on it.

Section 10

Each time you redistribute the Library (or any work based on the Library), the recipient automatically
receives a license from the original licensor to copy, distribute, link with or modify the Library subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties with this License.

Section 11

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of
this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License
and any other pertinent obligations, then as a consequence you may not distribute the Library at all. For
example, if a patent license would not permit royalty-free redistribution of the Library by all those who
receive copies directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply, and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

Section 12

If the distribution and/or use of the Library is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries, so that distribution is permitted
only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

Section 13

The Free Software Foundation may publish revised and/or new versions of the Lesser General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

91

Appendix B. GNU Lesser General Public License

Each version is given a distinguishing version number. If the Library specifies a version number of this
License which applies to it and “any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Library does not specify a license version number, you may choose any version ever published by the
Free Software Foundation.

Section 14

If you wish to incorporate parts of the Library into other free programs whose distribution conditions are
incompatible with these, write to the author to ask for permission. For software which is copyrighted by
the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY Section 15

BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE
LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

Section 16

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE
WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public, we
recommend making it free software that everyone can redistribute and change. You can do so by
permitting redistribution under these terms (or, alternatively, under the terms of the ordinary General
Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.> Copyright (C) <year> <name of
author>

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either version 2.1 of the License,
or (at your option) any later version.

92

Appendix B. GNU Lesser General Public License

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if
not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
“copyright disclaimer” for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library ’Frob’ (a library for tweaking
knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990 Ty Coon, President of Vice

That’s all there is to it!

93

Colophon
This book was produced by Cogent Real-Time Systems, Inc. from a single-source group of SGML files.
Gnu Emacs was used to edit the SGML files. The DocBook DTD and related DSSSL stylesheets were
used to transform the SGML source into HTML, PDF, and QNX Helpviewer output formats. This
processing was accomplished with the help of OpenJade, JadeTeX, Tex, and various scripts and
makefiles. Details of the process are described in our book: Preparing Cogent Documentation, which is
published on-line at
http://developers.cogentrts.com/cogent/prepdoc/book1.html .

Text written by Andrew Thomas, Mark Oliver, Bob McIlvride, and Elena Devdariani.

94

	
	Gamma Programmer's Manual
	Table of Contents
	List of Tables
	Chapter 1. Introduction
	1.1. What is Gamma?
	1.2. Assumptions about the Reader
	1.3. System Requirements
	1.4. Download and Installation
	1.4.1. QNX 4
	1.4.2. QNX 6
	1.4.3. Linux
	1.4.4. Installed file locations
	1.4.5. Installing licenses

	1.5. Cogent Product Integration
	1.6. Where can I get help?

	Chapter 2. Getting Started
	2.1. Interactive Mode
	2.2. Executable Programs
	2.3. Symbols and Values

	Chapter 3. Basic Data Types and Mechanisms
	3.1. Numeric Types
	3.1.1. Integer
	3.1.2. Real
	3.1.3. Fixedpoint Real
	3.1.4. Number Operators

	3.2. Logical Types
	3.3. Strings
	3.4. Lists and Arrays
	3.5. Constants
	3.6. Operators and Expressions
	3.7. Comments
	3.8. Reserved Words
	3.9. Memory Management

	Chapter 4. Tutorial I
	4.1. Lists
	4.2. "Hello world" program

	Chapter 5. Control Flow
	5.1. Statements
	5.1.1. Conditionals
	5.1.2. Loops
	5.1.3. Goto, Break, Continue, Return

	5.2. Function Calls
	5.3. Event Handling
	5.3.1. Interprocess Communication Message Events
	5.3.2. Timers
	5.3.2.1. Setting a timer
	5.3.2.2. Canceling a Timer
	5.3.2.3. The TIMERS variable:
	5.3.2.4. Blocking timers from firing
	5.3.2.5. timerisproxy function

	5.3.3. Symbol Value Events (Active Values)
	5.3.4. Cogent DataHub Point Events (Exception Handlers)
	5.3.5. Windowing System Events
	5.3.5.1. GUI Event Handlers (Callbacks)

	5.3.6. Signals
	5.3.6.1. blocksignal & unblocksignal

	5.4. Error Handling
	5.4.1. Situations that might cause Gamma to crash

	Chapter 6. Tutorial II
	6.1. Error Handling try/catch, protect/unwind
	6.2. Dynamic Scoping
	6.3. Error Handling interactive session

	Chapter 7. Functions and Program Structure
	7.1. Function Definition
	7.2. Function Arguments
	7.2.1. Variable number of arguments
	7.2.2. Optional arguments
	7.2.3. Protection from evaluation
	7.2.4. Variable, optional, unevaluated arguments
	7.2.5. Examples

	7.3. Function Renaming
	7.4. Loading files
	7.5. The main Function
	7.6. Executable Programs
	7.7. Running a Gamma Program
	7.8. Command Line Arguments

	Chapter 8. Object Oriented Programming
	8.1. Classes and Instances
	8.1.1. Instances

	8.2. Methods
	8.3. Inheritance
	8.4. Instance Variables
	8.5. Class Variables
	8.6. Constructors and Destructors
	8.7. Polymorphism
	8.7.1. Operator Overloading

	8.8. Binary Classes and User Classes

	Chapter 9. Tutorial III
	9.1. Classes and OOP

	Chapter 10. Interactive Development and Debugging
	10.1. Interactive Mode Implementation
	10.2. Getting OnLine Help for Functions
	10.3. Examining Variables in a Class or Instance
	10.4. Using the Debug Prompt
	10.5. Debugging a program
	10.5.1. Interacting with an Active Program
	10.5.2. Trapping and Reporting Errors
	10.5.3. Determining Error Location
	10.5.4. Filtering Object Query Output

	Chapter 11. Advanced Types and Mechanisms
	11.1. Symbols
	11.1.1. Undefined symbols
	11.1.2. Uniqueness of Symbols
	11.1.3. Properties
	11.1.4. Predefined Symbols

	11.2. Evaluation
	11.2.1. Evaluation of a Symbol
	11.2.2. Evaluation of a List
	11.2.3. Evaluation to Itself

	11.3. Literal Syntax and Evaluation
	11.3.1. Literal Expressions
	11.3.2. Deferring Expression Evaluation
	11.3.3. Literal Function Arguments
	11.3.4. Partially Evaluated Literal
	11.3.5. Constructing Variable Names at Runtime
	11.3.6. Literal Array Syntax

	Chapter 12. Input and Output
	12.1. Referencing Files
	12.2. Lisp and Gamma I/O mechanisms
	12.3. Writing
	12.3.1. Print vs. Princ
	12.3.2. Write vs. Writec
	12.3.3. Terpri
	12.3.4. Pretty Printing
	12.3.5. Printing Circular References

	12.4. Reading
	12.4.1. Reading Gamma Expressions
	12.4.2. Reading Arbitrary ASCII Data
	12.4.3. Reading Binary Data

	Chapter 13. Special Topics
	13.1. Modifying QNX Process Environment Variables
	13.2. QNX 4 Interprocess Communication (IPC)
	13.3. Cogent IPC
	13.3.1. Cogent IPC Service Modules
	13.3.2. Cogent IPC Advanced services
	13.3.2.1. Cogent IPC Messages
	13.3.2.2. Asynchronous Messages
	13.3.2.3. PseudoAsynchronous Messages
	13.3.2.4. Task Started & Death Notification
	13.3.2.5. Automatic Handling of QNX 4 receive and reply
	13.3.2.6. IPC Initialization
	13.3.2.7. Locating Tasks
	13.3.2.8. Transmitting Character Strings

	13.3.3. Cogent DataHub
	13.3.4. Cogent DataHub Exceptions and Echos

	Appendix A. Function List
	Appendix B. GNU Lesser General Public License
	GNU Lesser General Public License

	Colophon

